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Abstract. Our problem is that of recovering, in one view, the 2D Eu-
clidean structure, induced by the projections of N parallel circles. This
structure is a prerequisite for camera calibration and pose computation.
Until now, no general method has been described for N > 2. The main
contribution of this work is to state the problem in terms of a system of
linear equations to solve. We give a closed-form solution as well as bundle
adjustment-like refinements, increasing the technical applicability and
numerical stability. Our theoretical approach generalizes and extends all
those described in existing works for N = 2 in several respects, as we can
treat simultaneously pairs of orthogonal lines and pairs of circles within a
unified framework. The proposed algorithm may be easily implemented,
using well-known numerical algorithms. Its performance is illustrated by
simulations and experiments with real images.

1 Introduction

The roles played by quadrics and conics in recovering the Euclidean structure
of a 3D world have been widely investigated in the computer vision literature
[1][3][12][15][17][19]. More generally, it is now well-understood that the keys to
Euclidean structures [6][11][13][14][17][19][23], in the considered d-dimensional
space, are the identifications of absolute entities, typically absolute quadrics and
conics, whose characteristics are to be left invariant under similarities in d-space.
As an example, the absolute disk quadric envelope, introduced by Triggs in [22],
encodes the complete Euclidean structure of the 3D space.

In the specific case of a 2D scene, located on some 3D supporting plane π,
the image plane of a pinhole camera, to which is projected the scene, can be
seen as a projective representation of π. Formally speaking, the 2D Euclidean
structure of π is given by two (projected) absolute conjugate complex points,
so-called (projected) circular points [5][18]. The circular points of π are, by defi-
nition, common to all of its circles. It is therefore not surprising that the issue of
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inferring metric properties about the camera and/or the scene, from projections
of circular features has been considered, especially for camera calibration pur-
poses [3][11][13][19][23]. Intrinsically, circular targets offer arguably interesting
visual clues: they can be easily detected and fitted [7], even if partially occluded.
It is nevertheless worth remembering that the sole knowledge of the 2D Eu-
clidean structure of π w.r.t. one view is insufficient for calibrating the camera
and recovering the 3D pose of π i.e., multiple views are required [20][22][24].

In this work, we are aiming at finding a closed-form solution to the problem
of recovering such a 2D Euclidean structure, common to a family of parallel
planes, from N ≥ 2 projected unknown parallel circles. Until now, this only has
been solved (in these terms) for N = 2. We emphasize the fact that circles may
correspond to physical entities, like external parallels of a surface of revolution
[6], but also to virtual ones e.g., the para-catadioptric projection of a line onto
the mirror surface [2], the circular motion of a 3D point [11] or even the absolute
conic [10, pp. 81-83], which makes this problem of broader interest.

Our theoretical approach, giving new geometrical insights, unifies and gener-
alizes those described in prior works for N = 2 in several respects. We propose:
– a rigorous formalism, based on the projective invariance of absolute signa-

tures of degenerate circles and generalized eigenvalues of circle pencils;
– a linear algorithm for N ≥ 2 circles, that yields a closed-form solution and

optimal (non-linear) refinements; it generalizes [14, p.60], by the ability of
treating simultaneously pairs of orthogonal lines and pairs of circles.

2 Problem Statement and Proposed Interpretation

Our problem, so-called PN , is that of recovering the Euclidean structure, com-
mon to a family of parallel planes, from N projected circles in one view, taken by
an uncalibrated camera. By projected circles, we refer to conics of the image plane
π̃, which are the projections of 3D parallel circles i.e., lying on parallel planes.
Let h denote the world-to-image homography, mapping one of these plane, say
π, to the image plane π̃. Since the pre-image A ≡ h−1(Ã) of any projected circle
Ã is always a circle in π, for the sake of simplicity, we will only consider as world
circles, not all 3D parallel circles, but the corresponding coplanar circles of π.
Hence, we restrict the terms circles to only refer coplanar circles.

To solve PN , all we have at our disposal are the symmetric image matrices
Ãj ∈ R

3×3 of N ≥ 2 projections Ãj of circles Aj of π, j = 1..N . The problem
P2 i.e., for N = 2, can be simply stated e.g., as in [6][11][23]. The Euclidean
structure of π is encoded by its projected circular points ~I ≡ h(I), ~J ≡ h(J),
where the circular points I, J are, by definition [5][18], common to all circles,
including the absolute conic. Hence, two projected circles have four points in
common, among which is the point-pair (~I, ~J). The other point-pair, denoted
here by (~G, ~H), consists of either real or conjugate complex points. Both point-
pairs span real lines, namely the vanishing line ~L∞ ≡ h(L∞) and some “other”
line ~Δ ≡ h(Δ). The existing algorithms solving P2 basically work as follows: (i)
they compute the four common points of Ã1, Ã2; (ii) they pick up the projected
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circular point-pair (~I, ~J). Regarding (ii), when the two obtained point-pairs are
conjugate complex, it can be required to first determine which line is ~L∞ i.e., is
the line spanned by (~I, ~J). These algorithms were designed to only deal with two
circles and their extensions to multiple circles is clearly troublesome. Indeed, for
N > 2, it is about estimating the common root of multiple degree-4 polynomials.
Thus, the issue of finding a numerically stable closed-form solution is far from
straightforward.

Consider a set of N ≥ 2 projected circles. An elegant means of solving the prob-
lem PN is to interpret all or somepairs of the set of projected circles as “generators”
of pencils of conics [5][17][18]. This is the basic idea of the proposedwork. Let us say
that (Ã1, Ã2) is one of these pairs, spanning the conic pencil {Ã1, Ã2}. This latter
is the linear family of projected circles, with image matrices Ã(λ̃) ≡ Ã1 − λ̃Ã2,
where Ã is the image matrix of Ã and λ̃ ∈ C is a parameter. It includes three de-
generate conics consisting of line-pairs, whose parameters λ̃k, k = 1..3, are the
generalized eigenvalues of (Ã1, Ã2). If p̃ ∈ C

3 represents any of the four common
points of Ã1 and Ã2, then the equation p̃�Ã1p̃ = 0 holds as well as p̃�Ã2p̃ = 0.
Thus, taking any linear combination for one of the generalized eigenvalues λ̃k, the
equation p̃�(Ã1 − λ̃kÃ2)p̃ = 0 also holds. This means that the projected circu-
lar points ~I, ~J lie on all the projected degenerate conics of the pencil, which so are
projected degenerate circles. Therefore, by considering multiple projected circle-
pairs, this reduces the problem of recovering ~I, ~J to basically that of finding the
(complex) intersection of a set of lines (cf. Fig. 1). A closed-form solution can then
be obtained using a linear algorithm i.e., by solving an overdetermined system of
linear equations.

This proposed interpretation will also allow us to exhibit interesting results.
It can be shown that one of the degenerate members of the pencil {Ã1, Ã2} is
the projected degenerate circle ˜ΔL∞ i.e., consisting of the two lines ~Δ and ~L∞,
where ~L∞ is the vanishing line of π. An important fact is that ˜ΔL∞ can always
be distinguished from the other degenerate members, thanks to a discriminant
invariant absolute signature (cf. §3.1). Because our algorithm requires to distin-
guish ~L∞ from ~Δ, in §4.3, we will put the emphasis on the roles played by the
projections ~Z1 = h(Z1) and ~Z2 = h(Z2) of the so-called limiting points of the
pencil {Ã1, Ã2}, whose image vectors correspond to two (identifiable) general-
ized eigenvectors of (Ã1, Ã2). Specifically, we will be able to establish a general
necessary and sufficient condition, cf. Propr. 1, depending on the relative posi-
tions of ~Z1, ~Z2 w.r.t. ~Δ, for problem P2 to be well-posed i.e., for the Euclidean
structure to be recovered. In particular, we will show there exist enclosing but
not concentric circle-pairs (as shown in Fig. 2) for which the condition holds,
contrary to what was previously claimed in [11][23].

3 Some Projective and Euclidean Properties of Conics

Before going more into detail about our problem PN , we state some properties
of conics relevant to our work. General projective properties of conics and their
envelopes can be found in standard textbooks, such as [18]. In this section, we
restrict the term conics to only refer coplanar conics.
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Throughout §3-§4, for the sake of simplicity, we will deal with two different
2D representations of a supporting plane, namely Euclidean and projective. The
former can be seen as the world representation and the latter as the image repre-
sentation. When referring to the vectors/matrices of entities w.r.t. the projective
representation, we will systematically add the symbol ,̃ like in (1). We ask the
reader to keep in mind that Q and Q̃ will represent the same entity Q until §5.1.

The dual notion of a (point) conic Q, represented by the symmetric matrix
Q ∈ R

3×3, is the (line) conic envelope Q∗, whose matrix is the adjugate matrix1

Q∗. The projective matrix Q̃ of a conic Q is related to the Euclidean matrix Q
of Q by the congruence:

Q̃ = sH−�QH−1, s �= 0, (1)

where H ∈ R
3×3 is the matrix of the Euclidean-to-projective homography.

3.1 Projectively Invariant Classification of Degenerate Conics

We let the reader dually restate the following results, by substituting point for
line as well as envelope for locus, whenever the sans serif font is used.

A degenerate conic locus consists of either two lines M and N, with vectors m̃
and ñ, such that its matrix satisfies D̃ ∼ m̃ñ� + ñm̃�, or a repeated line M = N
such that D̃ ∼ m̃m̃�. If M �= N i.e., rank(D̃) = 2, then m̃ × ñ ∈ null D̃.

We will now focus on degenerate conics D, whose matrices D̃ are real. They
obey to a projectively invariant classification, thanks to the following properties.

For any singular D̃ ∈ R
3×3, define the absolute signature Σ(D̃) ≡ |η − ν|,

where η and ν count the positive and negative eigenvalues of D̃. As a corollary of
Sylvester’s inertia theorem [9, p. 403], it can be established that Σ(D̃) ≡ |η − ν|
is invariant under congruence transformations of D̃, as is rank D̃ ≡ η + ν, which
entails that both the absolute signature and the rank of D are projectively
invariant. It is then easy to show that:

Σ(D̃) =

⎧

⎨

⎩

0 ⇔ {m̃, ñ} = {x̃1 + x̃2, x̃1 − x̃2} iff M, N are real and distinct
1 ⇔ m̃ = ñ = x̃1 iff M = N is real
2 ⇔ {m̃, ñ} = {x̃1 + ix̃2, x̃1 − ix̃2} iff M, N are conjugate complex

where
[

x̃1 x̃2
]

≡ US1/2 [

e1 e2
]

∈ R
3×2 (2)

involves the SVD [9, p. 70] U�D̃V = diag(s1, s2, 0) ≡ S, for orthogonal U,
V ∈ R

3×3, with singular values s1 > s2 ≥ 0, and e1 ≡ (1, 0, 0)�, e2 ≡ (0, 1, 0)�.

3.2 Euclidean Structure and Circular-Point Envelope

In the light of §3.1, the “absolute” degenerate conic that will be central regarding
our problem is the circular-point envelope IJ, consisting of the circular point-
pair. It encodes the Euclidean structure in 2D space, in much the same way as
the degenerate absolute quadric envelope [21], encodes the Euclidean structure
in 3D space. Thus, IJ is left invariant under 2D similarities.
1 If Q is not degenerate, then Q∗ ≡ det(Q)Q−1.
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The only “tangent” that touches IJ at both circular points is L∞, such that
(3a) holds. The other “tangents” touch IJ at one circular point and are isotropic
lines. An isotropic line is the complex line, denoted by CI (resp. CJ), through
a real finite point C and I (resp. J), with conjugate complex vectors x̃1 + ix̃2
(resp. x̃1 − ix̃2). They are self-perpendicular lines, satisfying (3b). Perpendicular
lines M and N, with vectors m̃ and ñ, are conjugate w.r.t. IJ, satisfying (3c).

C̃∗
∞ l̃∞ = 03, (3a)

x̃�
1 C̃∗

∞x̃2 = 0 and x̃�
1 C̃∗

∞x̃1 − x̃�
1 C̃∗

∞x̃2 = 0, (3b)

m̃�C̃∗
∞ñ = 0. (3c)

Equations (3a), resp. (3b)-(3c), describe affine, resp.Euclidean, constraints on
IJ, with rank-2 matrix C̃∗

∞.

4 Linear Euclidean Constraints from N ≥ 2 Circles

4.1 Treating Two Circles as Generators of a Pencil of Circles

As said before, interpreting all or some circle-pairs as generators of pencils of
circles [5][18] offers an elegant means of extending the algorithm from N = 2 to
N > 2 circles. The conic pencil {A1, A2}, with circle-pair (A1, A2) as generators,
is the linear family of circles, with matrices of the form Ã(λ̃) ≡ Ã1 − λ̃Ã2. There
are three degenerate circles in {A1, A2}, whose parameters λ̃ are the generalized
eigenvalues of (Ã1, Ã2).

In this work, we only consider non-intersecting generators2. As a consequence,
any degenerate circles of {A1, A2} have a real rank-2 matrix so can be classi-
fied and decomposed into lines, according to (2). Remind that the Euclidean
structure of π is encoded by the circular-point envelope IJ, as explained in §3.2.
The important fact is that a degenerate circle of {A1, A2} is either an isotropic
line-pair, through I and J, or a real line-pair, including L∞. In the former case,
we call it point-circle, yielding Euclidean constraints (3b) on the plane’s struc-
ture IJ. In the latter, we call it line-circle, yielding, providing L∞ is identified,
affine constraints (3a). Identifying L∞ is about distinguishing its vector in de-
composition (2). As explained in [23], solving this ambiguity requires to study
the relative position of A1 and A2.

4.2 Relative Positions of Two Circles and Generalized Eigenvalues

The issue of studying the different relative positions of A1 and A2 is now tackled
by analysing the generalized eigenvalues [9, p. 375] of (Ã1, Ã2), which are the
three real solutions for λ̃ of the cubic equation det(Ã1 − λ̃Ã2) = 0.

2 Actually, the case of intersecting circles does not introduce major difficulties to
be treated in the proposed framework, besides dealing with complex generalized
eigenvalues. However, owing to lack of space, this could hardly be included here.
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Fig. 1. The problem of finding the circular points may reduce to that of intersecting
degenerate circles, consisting of line-pairs, with rank-2 matrices of the form A1 − λA2

An interesting fact is that the generalized eigenvalues are projectively invari-
ant as a set, up to a scale factor [16]. More precisely, if Ãj = sjH−�AjH−1,
then (λ, z) and ( s2

s1
λ,Hz) are generalized eigen-pairs of (A1,A2) and (Ã1, Ã2),

respectively. This allows us to introduce canonical matrices in order to simplify
computations.

Let us attach some Euclidean representation to the 3D plane such that A1
and A2 have (Euclidean) matrices:

A1 =

⎡

⎣

1 0 0
0 1 0
0 0 −1

⎤

⎦ , A2 =

⎡

⎣

1 0 −d
0 1 0

−d 0 d2 − r2

⎤

⎦ . (4)

Thus, A1 is centred at the origin O and has radius 1; A2 is centred at point (0, d),
with d ≥ 0, and has radius r > 0 (cf. Fig. 1).

We can specify all relative positions of A1, A2, using constraints on d and
r. Circles intersect (i.e., at two real points) iff d > |r − 1| and d < r + 1, or,
equivalently, iff α < 0, where:

α ≡ (d − r + 1)(d − r − 1)(d + r − 1). (5)

Regarding other cases, A1 and A2 are tangent iff α = 0 and are disjoint i.e., not
intersecting, iff α > 0. Disjoint circles can be separate (d > r + 1), concentric
(d = 0) or enclosing but not concentric (d < |r − 1|).

What the generalized eigenvalues of (Ã1, Ã2) tell us. We now explain
how to recover d and r from the generalized eigenvalues of (Ã1, Ã2) and, thus,
how to determine the relative position of the generators A1, A2.

Let λ̃, resp. λ, denote the vector of generalized eigenvalues of (Ã1, Ã2), resp.
(A1,A2), computed by Maple as:

λ̃ ∼ λ =
(

1 + r2 − d2 −
√

β

2r2 ,
1 + r2 − d2 +

√
β

2r2 , 1
)�

, β ≡ α(d + r + 1). (6)
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Since we deal with non-intersecting generators, we have α ≥ 0 ⇒ β ≥ 0. There-
fore, all the λ’s are real so all the degenerate circles have real matrices.

Now, consider the system of two equations obtained by expanding and sim-
plifying (λ̃1 ± λ̃2)/λ̃3, in order to eliminate the scale factor in λ̃ . Then, solve it
for d and r by only picking the positive values. We get:

{

(λ̃1 + λ̃2)/λ̃3 = (r2 − d2 + 1)/r2

(λ̃1 − λ̃2)/λ̃3 =
√

β/r2 ⇔
{

d =
√

λ̃1λ̃2(λ̃1 − λ̃3)(λ̃2 − λ̃3)/|λ̃1λ̃2|
r = |λ̃3|/

√

λ̃1λ̃2

(7)

Ordering the generalized eigenvalues. Since λ̃1, λ̃2 play symmetric roles
in (7), do not distinguish them by using indifferently the notations λ̃+ or λ̃−.
Moreover, denote by Σ(λ̃) the absolute signature Σ(Ã1 − λ̃Ã2). Of course, let
these notations also apply to the Euclidean representation.

After some symbolic computations, it can be stated that the degenerate circles
satisfy, either Σ(λ+) = 2 and Σ(λ−) = Σ(λ3) = 1 for concentric generators, or
Σ(λ+) = Σ(λ−) = 2 and Σ(λ3) = 0, otherwise. Thanks to invariance of the
absolute signature, this eventually entails that:

Σ(Ã1 − λ̃±Ã2) ≥ 1 ≥ Σ(Ã1 − λ̃3Ã2). (8)

The pair (d, r) as a double invariant of two circles. Assume that the λ̃’s
in λ̃ are sorted by decreasing order of absolute signatures such that (8) holds.
As a result, d and r, given as functions (7) of the λ̃’s, are projectively invariant.

Therefore, given (Ã1,Ã2), we can deduce the relative position of A1 and A2,
by determining which constraint on d and r holds.

4.3 Recovering the Line at Infinity

After analysing their decompositions into lines according to (2), the set of three
degenerate circles of the pencil are made up of:

– the rank-1 line-circle L2
∞ twice and the point-circle OIOJ (concentric case),

– a rank-2 line-circle ΔL∞ and the point-circle ZIZJ twice (tangent case),
– a rank-2 line-circle ΔL∞ and two distinct point-circles ZIcZ

J
c (disjoint case),

where O is the origin. Points Z as well as line Δ will be specified in §4.3.
The issue is now to recover the line at infinity L∞. The only relative positions

that require investigations are cases of two non-concentric circles i.e., iff d > 0.

What the generalized eigenvectors of (Ã1, Ã2) tell us. Assume d > 0.
Maple computes the matrix of generalized eigenvectors associated with λ̃ as:

Z̃ = HZ

⎛

⎝

ξ1
ξ2

ξ3

⎞

⎠ , Z =

⎡

⎣

1+d2−r2+
√

β
2d

1+d2−r2−√
β

2d 0
0 0 1
1 1 0

⎤

⎦ , (9)

where ξ1, ξ2, ξ3 are some non-zero scale factors.
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The third column z3 of Z is the Euclidean vector of the centre of a line-circle
ΔL∞, with Euclidean matrix A(λ3). Using (2), given that l∞ ∼ (0, 0, 1)�, we
have A(λ3) ∼ A1 − 1A2 ∼ l∞δ� + δl�∞, where:

δ = (−2d, 0, 1 + d2 − r2)�. (10)

δ is the Euclidean vector of the radical axis Δ of {A1, A2}, which is the locus
of points having equal powers w.r.t. both circles [5, pp. 95-96]. Note that when
d = 0, we have δ ∼ l∞ so ΔL∞ = L2

∞ consists of the repeated line at infinity.
Vectors zc (c = 1, 2) are the Euclidean vectors of the centres Zc of point-circles

ZIcZ
J
c, whose Euclidean matrices are A(λc). A point-circle ZIcZ

J
c may be looked

upon a “limiting circle” of the pencil with radius zero. For this reason, Zc is
called a limiting point of the pencil {A1, A2} [5, p.97] (see Fig. 2). If A1, A2
are separate, then it is defined as the point included in every circle of {A1, A2}
located in each half-plane bounded by Δ. If A1, A2 are tangent, both limiting
points coincide with the contact point Z. In any case, they are located on the
line of the centres of the generators.

An important fact is that vectors z1, z2 satisfy (δ�z1)(δ�z2) ≤ 0 i.e., that
Z1 and Z2 either lie on the radical axis Δ or are on opposite sides of Δ. Since
(l�∞z1)(l�∞z2) > 0, they also lie on the same half-plane bounded by L∞.

5 Proposed Algorithms

5.1 Outline of the Linear Algorithm

We will now make again the distinction between the entities of π and their pro-
jections onto the image plane π̃, by adding ˜ to the calligraphic letters denoting
these latter. Thus, let us denote by Ãj , j = 1..N , the image matrices of the
projections Ãj of N circles Aj of π, onto the image plane π̃.

The proposed algorithm consists in “fitting” the projection ˜IJ of the circular-
point envelope IJ, using constraints (3a-3c), from the degenerate projected cir-
cles of the pencils {Ãq

1, Ã
q
2} spanned by Q selected pairs, 1 ≤ q ≤ Q ≤ 1

2N(N−1).
To estimate the matrix C̃∗∞ of ˜IJ with a linear method, we substitute some regu-
lar symmetric matrix X for C̃∗

∞ in Eqs. (3a-3c). Hence, there are six unknowns,
defined up to a scalar. The algorithm works as follows. We solve the equation
system built by calling the procedure AddLinearConstraint(), as described in
Procedure 1, for each of the Q matrix-pairs (Ãq

1, Ã
q
2). Basically, this procedure

identifies the relative position of the corresponding circles in π and classifies the
degenerate members of {Ãq

1, Ã
q
2}, so as to yield equations (3a) and/or (3b).

Note that our solution generalizes that of Liebowitz [10, p.56][14, p.60], by
the ability of also treating simultaneously pairs of projected orthogonal lines i.e.,
enabling us to add constraints (3c).

N=2 projected circles (exact solution). Given one pair (Ãq
1, Ã

q
2) we can

obtain zero or one constraint (3a) and two constraints (3b). For problem P2
to be well-posed so to get an exact solution, we need at least one constraint
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(3a), ensuring that the property rank(X) = 2 holds, plus at least one constraint
(3b). We have to discuss in which cases this can be achieved. Remind that the
projected line-circle L̃∞Δq can always be identified among the three degenerate
circles of the pencil {Ãq

1, Ã
q
2} but there is an ambiguity in saying which line is

~L∞ (or, equivalently, the projected radical axis ~Δq). Since, in the world plane,
the limiting points Zq

1, Z
q
2 of a pencil {Aq

1, A
q
2} either lie on, or are on both sides

of, the radical axis Δq (cf. §4.3), we claim that (superscript q is omitted):

Proposition 1. A necessary and sufficient condition for the projected limiting
points ~Z1, ~Z2 to lie, in the image plane, on opposite sides of the projected radical
axis ~Δ is that Z1, Z2 lie, in the world plane π, on the same half-plane bounded by
the line (π ∩ π̃F ), which is the intersection of the principal plane3 π̃F and π.

Proof is omitted due to lack of space. Note that this proposition (see Fig. 2)
could have been equivalently stated by using a condition for ~Z1 and ~Z2 to lie, in
the image plane, on the same half-plane bounded by ~L∞.

In other words, we know exactly when P2 is well-posed: the Euclidean struc-
ture can be recovered from two projected circles, providing the limiting points lie
in front of the camera. This holds for all relative positions of two circles except
for some, not all, cases of enclosing, non-concentric, circle-pairs. Clearly, there
exist such pairs (see Fig. 2) from which (~I, ~J) is recoverable, contrary to what
was claimed in some previous works [11][23].

Procedure 1. SYS = AddLinearConstraint(SYS, Ã1, Ã2 )

[ λ̃, Z̃ ] = GeneralizedEig(Ã1, Ã2)
if all λ̃’s are real /* non-interesecting circles only */ then

sort λ̃ and Z̃ to ensure Σ(Ã(λ̃k)) ≥ Σ(Ã(λ̃l)) for k ≤ l
compute d and r using (7)
if d == 0 /* concentric circles */ then

l̃∞ = Ã1z̃1

add equation (3a) to system SYS /* affine constraint */
[ x̃1, x̃2 ] = LinesofRank2RealConic(Ã1 − λ̃1Ã2) /* Σ == 2 */
add equation (3b) to system SYS /* Euclidean constraint */

else
if d ≥ |r − 1| /* non-enclosing circles only */ then

[ l0, l1 ] = LinesofRank2RealConic(Ã1 − λ̃3Ã2) /* Σ == 0 */
l̃∞ = l1−c, where c ∈ {0, 1} is such that 1

Z̃31Z̃32
(l�c z̃1)(l�c z̃2) < 0

add equation (3a) to system SYS /* affine constraint */
end if
for k ∈ {1..2} do

[ x̃1, x̃2 ] = LinesofRank2RealConic(Ãk − λ̃kÃ2) /* Σ == 2 */
add equation (3b) to system SYS /* Euclidean constraint */

end for
end if

end if

3 Containing the camera centre and parallel to the image plane.
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projected

limit. points

projected

radical axis

radical axis (pair #1)radical axis (pair #1)

limit. points (pair #1)

radical axis (pair #2)

limit. points (pair #2)

radical axis (pair #3)
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Fig. 2. Prop. 1 says that problem P2 is ill-posed for enclosing pair #1 (A1, A2) but well-
posed for separate pair #2 (A1, A3) and enclosing pair #3 (A3, A4). Right-hand, a real
image of some enclosing pair, from which the projected circular points are recovered.

N≥2 projected circles (Least-Squares solutions). If N ≥ 2, strictly speak-
ing, this is an overdetermined problem of estimating parameters subject to an
ancillary constraint, in our case det(X) = 0. Efficient and well-founded methods
exist, e.g. [4]. However, we use a straightforward solution that consists in seeking
a least-squares solution X̂, then imposing the ancillary constraint via a rank-2
approximation of X̂ by cancelling its smallest singular value.

It is worth noting that, once the circular point-envelope is recovered, a rectify-
ing homography matrix M−1 can be computed [10, pp.55-56] from the SVD-like
decomposition C̃∗∞ = M diag(1, 1, 0)M�, where M ∈ R

3×3 satisfies M ∼ HS
for some 2D similarity S ∈ R

3×3 of π. Since there are only 4 d.o.f. in C̃∗
∞, there

are also only 4 d.o.f. in M. Typically, by applying M−1 to the image, we get its
metric rectification (e.g., as shown in Fig. 4).

5.2 Non-linear Algorithm Refinements

We also implemented a bundle adjustment style optimization of both, the rec-
tified circles, and the plane-to-image homography. In addition, for every image
point we estimate an associated point that lies exactly on the associated rec-
tified circle. The cost function for the optimization is then the sum of squared
distances between image points and corresponding points on circles, re-projected
to the image via the homography.

Since rectification is defined up to a similarity transformation in the scene
plane, we may fix 4 degrees of freedom in our parameterization. We implemented
two approaches to do so. The first one is to parameterize the homography using
4 parameters [10]. The second one is to use 8 parameters for the homography
(we simply fix H33 to a non-zero value, which is appropriate in our scenario),
but to fix the centres of two of the circles to their initial positions.

Each circle Ac is naturally parameterized by its radius rc and centre (xc, yc),
and each point Qcp on a circle is parameterized by an angle Θcp, with vector
Qcp = (xc + rc cosΘcp, yc + rc sin Θcp, 1)�. The optimization problem is then:
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min
H,xc,yc,rc,Θcp

N
∑

c=1

P
∑

p=1

dist2(qcp,HQcp)

The initializations of the unknowns is rather trivial, given the results of a
rectification with any of the method linear. Note that the above cost function
is identical in spirit to the one used in [8] for estimating ellipses that minimize
the sum of squared distances to data points.

We use Levenberg-Marquardt for the optimization, and take advantage of
the sparse structure of the Jacobian. The most complex step in each iteration
is the inversion of a symmetric matrix of order (4 + N). Typically, for simu-
lated experiments similar to those in §6, with up to N = 10 circles and 50
points per circle, the optimization took (much) less than a second (see results in
Tab. 1).

Table 1. RMS residuals of non-linear optimization. Average over 500 runs of the square
roots of the average cost function value.

Circles 2 3 4 5 6 7 8 9 10
RMS 0.49 0.52 0.54 0.55 0.56 0.57 0.57 0.57 0.58

6 Experiments

Synthetic data. We are aiming here at assessing how accurately is fitted the
Euclidean structure, given N = 16 unknown non-intersecting circles projected in
one view. We investigate the link between the number Q ∈ {1, .., 25} of randomly
selected circle-pairs (among the 120 possible pairs) and several fitting errors.
Fig. 3 shows the average values of these errors.

The synthetic scene, located on some world-plane π, consists of a 1500× 1500
square area over which are spatially distributed the N circles, whose radii vary
within [25; 75]. The camera is at a distance of about 2500, with randomly gener-
ated camera orientations, in terms of azimuth, elevation and swing angles varying
within [−60◦; 60◦]. The simulated camera has a 512 × 512 pixel resolution and
constant internal parameters. Each circle projects to an ellipse, sampled by S
equally spaced pixels, where S roughly equals the ellipse perimeter. Gaussian
noise of zero mean and standard deviation σ = 1 is added to the pixel (integer)
coordinates.

Series of 500 tests are conducted for each of the following error criteria.
Let Ĉ∗

∞ denote the estimated projected circular-point envelope C̃∗
∞, using

our algorithm described in §5.1, both matrices being normalized to have unitary
Frobenius norm. The “true” world-to-image homography H, induced by the
chosen Euclidean representation of π, must obey to the decomposition [20][24]
H = KR [ e1 | e2 | t ], where K ∈ R

3×3 is the calibration matrix, R ∈ R
3×3 is

a rotation such that r3 represents the normal to π w.r.t. the camera frame, and
t ∈ R

3. Hence, the “true” matrix C̃∗∞ satisfies K−1C̃∗∞K−� ∼ R diag(1, 1, 0)R�

i.e., its two nonzero singular values are equal. Referring to Fig. 3(a), two error
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Fig. 3. Assessing the performance of the proposed method

criteria on Ĉ∗∞ are derived. We quantify, in a way, how Ĉ∗∞ is closed to the “true”
C̃∗

∞: first, by computing the relative error (ŝ1 − ŝ2)/ŝ1, where ŝ1 ≥ ŝ2 > ŝ3 = 0
are the singular values of K−1Ĉ∗∞K−�, involving the “true” K (“singular value
constraint”); second, by computing the error ||Ĉ∗

∞−C̃∗
∞||F (“Frobenius norm”).

In Fig. 3(b), we quantify the error on the pose of π, by computing the angular
error on the normal to π, that is arccos(r�3 û3), involving the “true” r3, where
û3 is the singular vector associated with ŝ3 = 0.

Let M̂−1 be the estimated rectifying homography, obtained from Ĉ∗
∞ (cf. end

of §5.1). In Fig. 3(c-d), we assess the accuracy of the 2D reconstruction by
computing errors on the alignment between reconstructed of image points, via
M̂−1, and true world points. The alignment error is the sum of the squared
residuals for all points, from the best Euclidean 2D mapping between recon-
structed points and true points. Alignment errors have been computed for the
circle points and circle centres as well as for a set of control points. Lastly, in
Fig. 3(d), we compute the relative error on “normalized” radii and distances be-
tween centres, as defined by r and d in §4.2, of the (approximated) reconstructed
circles.

These series of tests show the excellent performance of the proposed algorithm.
The obtained solutions are unquestionably more stable when using multiple cir-
cles, much like using multiple points to fit a conic.
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(a) (b) (c)

(d) (e)

Fig. 4. Top: (a) 1536 × 1024 photograph of the endpaper of some comic book, with
drawn hieroglyphs. (b) Image rectification from N = 2 (black-filled) circles ; (c) from
N = 9 circles. Bottom: (d) 1536 × 1024 photograph of a table in a kitchen, (e) Image
rectification (cropped) using N = 6 (blue) circles.

Real data. We illustrate the performance of the proposed algorithm by carrying
out a metric rectification [10, §1.7.5] of an image i.e., by warping it to remove
the perpespective distortion. The image in Fig.4 was captured using a Canon

EOS 300D camera, with 1536 × 1024 image resolution.

7 Conclusion

We described a method for recovering the Euclidean structure of some observed
world plane π, from N ≥ 2 projected parallel circles. We suggested to state
the problem as that of “fitting” the projected degenerate absolute conic of π,
namely the projected circular-point envelope ˜IJ, to line-pairs, so-called projected
line- and point-circles. These are the degenerate members of the conic pencil,
spanned by all (or some) combinations of pairs of the whole set of projected
circles. We showed that the degenerate members of the pencil can yield either
affine or Euclidean linear constraints on the parameters of ˜IJ. Depending on
the relative position of the corresponding circle-pair in π, we show exactly what
these line-pairs are and which kind of constraints they will set on ˜IJ. Conse-
quently, the problem is stated as that of solving a (possibly) overdetermined
system of linear equations, so taking into account more than two projected
circles.



Euclidean Structure from N ≥ 2 Parallel Circles 251

We are convinced that the usefulness of the proposed formalism, through the
interpretation of the geometrical nature of the degenerate members of conic
pencils or quadric pencils, as reported in [17], might go beyond the scope of this
work e.g., regarding calibration of catadioptric cameras [2], or even the problem
of calibration from spheres [1].
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