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Abstract. In this paper, we introduce a tuned eigenspace technique so as to clas-
sify human motion. The method presented here overcomes those problems related
to articulated motion and dress texture effects by learning various human motions
in terms of their sequential postures in an eigenspace. In order to cope with the
variability inherent to articulated motion, we propose a method to tune the set
of sequential eigenspaces. Once the learnt tuned eigenspaces are at hand, the
recognition task then becomes a nearest-neighbor search over the eigenspaces.
We show how our tuned eigenspace method can be used for purposes of real-
world and synthetic pose recognition. We also discuss and overcome the problem
related to clothing texture that occurs in real-world data, and propose a back-
ground subtraction method to employ the method in out-door environment. We
provide results on synthetic imagery for a number of human poses and illustrate
the utility of the method for the purposes of human motion recognition.

1 Introduction

In computer vision and pattern recognition, there is a considerable body of work aimed
at understanding and developing appearance-based methods. Appearance-based meth-
ods can cope with illumination, reflectance and pose effects based upon the appearance
of the scene in the image. The bulk of this work focuses on using PCA to build a sub-
space representation of the scene which is then used for purposes of appearance-base
object and pose recognition. Turk and Pentland [1] have shown how this PCA-based
representation, called the eigenspace, can be used to perform face recognition. In a re-
lated development, Murase and Nayar [2] have performed object and pose recognition
by projecting the views under study onto a basis formed by the eigenspace components.
Kopp-Borotschnig et al. [3] have developed a method to recognise objects from am-
biguous viewpoints using an active vision approach. Hall, Marshall and Martin [4] have
shown how appearance models can be updated based upon addition and substraction
of eigenspaces. Recently Schechtman and Irani [3] have introduced a behaviour-based
similiarity measure which is computed from intensity information.

One of the main arguments levelled against these methods is that they are not ro-
bust to occlusion, shadows or background texture. Ohba and Ikeuchi [6] have proposed
a method to cope with partially occluded objects by storing partial appearances of on
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an “eigenwindow”. A mean eigenwindow method has also proposed by Rahman and
Ishikawa][7] for reducing partial occlusion. Leonardis and Bischof [8] have shown how
the coefficients of the eigenimages can be computed so as to cope with occlusion and
segmentation. Black et al. [9] have used robust estimators to model structured noise and
corruption. Yilmaz and Gokmen [10] have overcome problems related to illumination
changes by applying the eigenspace representation to the edge images rather than the
intensity values.

Despite effective, the methods above are prone to error due to texturing and articu-
lated object variation such as the one present in human body motion. Thus, in this paper,
we introduce a novel development of the appearance-based technique to recognise hu-
man motion. Here, we propose a tuned eigenspace so as to represent and recognise
human posture and/or motion that has which considers dress-changes, pose variation,
imaging noise and background clutter. We depart from the eigenspace technique of
Murase and Nayar [2]. As mentioned earlier, this method makes use an eigenspace
which is prone to variations in pose, dress-texture and clothing variation. Therefore, we
generalise the eigenspace projection approach so that we can overcome these problems.
In addition, we make use of a blurred edge image so as to solve to make the eigenspace
projection robust to dress-texture variations. Further, in order to learn the eigenspace
for a variety of human motions, we propose a mean posture matrix created from sim-
ilar pose-windows. This is done by collecting similar poses from a particular subject
and recovering the mean posture matrix. This mean posture matrix is then used to learn
the eigenspace for the human motion under study. The eigenspace recovered from the
mean posture matrix is what we called a tuned eigenspace. With these ingredients, the
recognition of unobserved motions can be posed as a nearest neighbour search over
the learnt tuned eigenspace. The study conducts a number of experiments for investi-
gating the human dress-texture effect in the eigenspace and how the proposed method
recovers it. Furthermore, We propose a background subtraction method in order to in-
troduce this method in out-door application. We also compare our results with the con-
ventional method.

2 Generating the Eigenspace

In order to develop a tuned eigenspace which can handle dress-texture and articulated
human motion, we consider P = {p1,p2,...,p p|} successive views. Each of these
views is, in practice, an image comprised by M,oys X Neois pixels, where M.pq,5 18
the height and N,.,,s is the width of the image p,. These pixels can be rearranged in a

raster scan manner into a column vector of the form x,, = [xlp, Topy .-y T Np]T, where
N 2 M, ows X Neois - In the sake of simplicity, we assume that this vector is already
normalised to unity, i.e., ||x,| = 1.

For a set M of different human motions of order M, we denote the vector x cor-
responding to the m*" motion as x,,". For each motion, its image stream is sampled P
times. These P x M images are collected into a single matrix X of the formX = [x] —X |
xy—x| . xl—x|xf-x|x3-x || x2-x| . |2 x|} x| |2l %],

where X is the mean for the set of all vectors x{ ,l.e.
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The matrix X contains P x M columns and N rows. For the matrix X, the covariance
matrix C is defined by C = XX* .

We can use PCA [[11], we can construct a subspace representation for the covariance
matrix C as follows. Let A\; > Ao > A3 > ... > Ay be the NV eigenvalues of the
covariance matrix C' arranged in decreasing order of rank. We can then select the first
k eigenpairs, i.e. the eigenvectors e; and eigenvalues \; such that \y > Ao > ... > X\
so as to build a k-dimensional space which we denote the eigenspace of X. The image
x,," is then projected into a point g;" in the eigenspace by the following equation

g;" =le1|ea]|...]| eK}Tx;" 2)

For each motion, | P | points, which correspond to each of the p; successive obser-
vations in P, describe a trace in the eigenspace. Since a motion is smooth, these points
conform a smooth curved line. This is called a motion line. If a motion starts and ends
with the same pose, the motion line composes a closed loop, which is referred to as a
motion trajectory hereafter. A global eigenspace is that which contains M motion loops
so as to capture multiple motions.

3 Developing a Tuned Eigenspace

As mentioned in the previous section, a human posture is represented by a point in
the eigenspace, projected making use of Equation [2l A motion is described by a set
of successive points that can provide a motion line. For H subjects, the motion lines
in the eigenspace, corresponding to a particular motion, should ideally coincide with
one other. In practice, this is not the case. Therefore we compute a mean expression of
the postures for every of the motions under study. In this way, we take into account a
general pattern which is comprised by the mean over all the motion lines for the motion
under study. The proposed eigenspace containing the mean expression is called a tuned
eigenspace. Consider a set /I of human motion subjects. Let x;”’h denote the image
stream corresponding to the p** view of the motion indexed m, for the subject h. For
the subject h, the matrix X becomes

) L2k L2h h M,h | _M,h M,h
Xh:[xih|xé’h\...\x11, | X7 [ x5 ||x12, o[ e X ]
3
With the matrix X}, at hand, we define the matrix X = [X; | Xo | ... | ... | Xg[],

which can be regarded as a higher-order analogous of X . For every of the | H | subjects,
we can project the image stream xg%h for the subject h into the point gg%h of the tuned
eigenspace making use of the expression g7" = [¢1 | €3 | ... | ex]"x)"", where &
is the i*" eigenvector of the covariance matrix C = XXT. For the set H of subjects,
we have | H | such points, i.e., g7"; h = {1,2,..., H}. Thus, the points in the tuned
eigenspace are given by the average point )" = , s gy, which captures the p"
postures of a particular motion m learnt from a set H of subjects. The set of | P | points
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g,'|lp = (1,2,..., P) defines a mean line for the motion m. Hence, in the paper, we call
the mean motion line for the M motions a global tuned eigenspace.

4 Dress Texture

In order to employ the global tuned eigenspace for purposes of human motion recogni-
tion, motion representation should be generalised so as to be robust to dress-texture
and clothe variations. The standard eigenspace technique, however, is prone to er-
ror due to the changes in appearance introduced by variations in clothes and dress-
texture. Therefore, here we follow Yilmaz and Gokmen [10] and employ, to recover
the eigenspace, edge images as an alternative to the gray-scale views. In contrast with
their approach, we have used a blurred edge image so as to introduce a Gaussian kernel
over the edge-image for our set of views. Thus, every of our views is comprised by a
blurred edge image E(x,y) computed from the original image I(z, y), which is given
by E((E, y) = GUQ(xa y) * D(GUI ((E, y) * I((E, y))

Here G1(z,y) is a Gaussian kernel with a standard deviation o;. The Gaussian ker-
nel G,1(x,y) is convolved with the Image I(z, y) in order to reduce random jitter and
image noise. The resultant image is differentiated making use of differential operator
D, which in our experiments is given by the Sobel operator. The differentiated images
is, again, convolved with a Gaussian kernel whose standard deviation is 5.

5 Recognition Strategy

Our aim in this paper is to perform human motion recognition based upon the tuned
eigenspace introduced in the previous sections. Consider an image containing a data
view of an unknown human motion. We want to decide if that view belongs to any of
the learnt motions and in the case it does belong to one of the learnt motion classes,
relate it to the views that characterise the motion to which it belongs. Let p’ denote
the data view under consideration. The view p’ is then projected onto a discrete point
gg/ in the learnt global tuned eigenspace. To perform recognition, we make use of
the minimum Euclidean distance d;}* in the learnt tuned eigenspace given by dj." =
minpeP;meM”gZ/L/ —g;’?/H.

Thus, d;\* is such that the nearest learned point in the eigenspace to our data point g;’}/
is related to both, a particular motion m € M and an observation p € P. Therefore, our
strategy of motion recognition does not rely only on the recognition of a particular view
but on the mean for the learnt set of views. Furthermore, since we employ the Euclidean
distance between the data point in the tuned eigenspace and the mean motion line, our
recognition strategy can be viewed as the search over the mass-centres for the points in
the eigenspace corresponding to the observations for every of the learnt motions.

6 Experimental Results

In this section, we conduct a number of experiments in order to verify the effectiveness
of our method for purposes of human motion recognition. This section is divided into
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three parts. In the first of these, we perform recognition using a set of synthetic mo-
tion views rendered using camera rotations. We then provide results on real-world data
for 6 cricket umpiring motions obtained from 5 persons. We conclude the section by
conducting an extensive sensitivity study on dress-texture and its impact on our tuned
eigenspace technique. Along these lines, we propose a background subtraction method
to overcome background noise and jitter and perform experiments so as to evaluate the
proposed method under various noise levels.

6.1 Synthetic Motion Representation and Recognition

We commence by providing results on synthetic imagery. Here, we have modelled syn-
thetic motion by rotating the viewpoint. Since the positions of the subject under study
and the camera are relative, this camera rotation procedure is equivalent to the appear-
ance changes induced by subject position variation. We have used 3D Studio Max to
create a set of four articulated motions in which the camera rotates about the vertical,
sagittal and temporal axis of the subject under study. For each motion, we have used a
subject with a different pose and rendered 120 frames rotating the camera in 4.5° degree
intervals. In Figure [l we show example views for our 3 different camera rotations. In

(a) () (© (d)

Fig. 1. Sample poses (out of a total of 120) obtained from the 3 different camera rotations about
the subject under study

Figure 2] we show the four poses used in our experiments. The pose in the right-most
panel of Figure 2] constitutes our data pose. The other three poses are used for purposes
of learning the tuned eigenspace. It is worth noting that the position of the arm and
hand of the subject vary in an articulated fashion. To learn this articulated variation of
the subject’s limb position, we have used 360 views, i.e. 120 x 3. We have then used
a fourth sequence of 120 views of the same subject in a different pose as our data set.

() (b) (©) (d)

Fig. 2. (a), (b) and (c): Poses used to learn the tuned eigenspace; (d): Pose used to render our data
views
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Eigenspace for Pose 1 Tuned Eigenspace

Fig. 3. Eigenspaces obtained from the articulated motions: (a) Eigenspaces of a single pose, and
(b) tuned eigenspace obtained from 3 poses

Fig. 4. Real world motions used in the experiment

For our recognition task, we consider a view to have been classified correctly if it corre-
sponds to the point in the tuned eigenspace for the set of view in our learning set whose
camera position is the same as that of the data view. This is, the rotation of the camera
for the views in the learning set and that of the data view are the same. We have done
this since the camera rotations along with hand movement give us various appearance-
change. Therefore, for our synthetic data, the camera rotation and the pose determine
the appearance. In our experiments, the recognition rate was of 99.3%. In other words,
118 views out of the 120 data views were classified correctly. An eigenspace obtained
from 120 sample views is shown in Figure Bla) and a tuned eigenspace generated from
the three subject’s poses is also shown in the Figure B(b).

6.2 Human Motion Representation and Recognition

For our real-world experiments, we have employed 6 prominent actions (M = 6) of
an umpire arbitrating a cricket match, i.e. “wide”, “no”, “boundary”, “over-boundary”,
“leg bye”, and “out”. Sample views for each of these are shown in Figure[dl The motions
were captured using a digital video camera. For each motion, we have used 10 views, i.e.
(P = 10). For purposes of recognition, we have used the blurred edge images computed
making use of the procedure introduced earlier in the paper. For our gaussian blurring,
we have chosen 07 = 0.30 and 02 = 2.0. As aresult, P x M = 60 edge-images were
used to learn our global eigenspace. In the left-hand panel of Figure we show 10
successive images of the “wide” motion. Their blurred edge images are shown in the

right-hand panel of the figure[5(b)} A graphical representation of a global eigenspace is



180 M. Masudur Rahman and A. Robles-Kelly

(a) (b)

Fig. 6. Persons involved in performing the experiments. Models where background subtraction
method is: (a) not employed, and (b) employed.

Eigenspace Made by 6 Motion

Eigenvector : 3

Eigenvector : e2 T Eigenvector : e1

Fig.7. A global eigenspace of 6 motions. Only 3 prominent dimensions are displayed.

shown in Figure[7] In the figure, individual motion trajectories are indicated by different
colors/markers in the graph. Since all the motions start and end with an identical pose,
i.e., a natural standing posture, every motion makes a closed loop. As a result,

the global eigenspace in Figure [7] contains 6 motion loops originating from a com-
mon point. In order to illustrate how the tuned eigenspace reflects the eigenspaces
for each of the 6 motions, in Figure [§] we have plotted the motion trajectories in the
eigenspace for individual motions. In the top row of Figure [8l we show the trajectories
of the “wide” and “no” motions, respectively, for five subjects. These have been ob-
tained using our method. It is worth noting that, despite the models all wear different
clothes, this do not the recovered eigenspace. As a result, each motion trajectory is very
similar to one another. We have also compared our results with those obtained using the
method of Murase and Nayar [2]]. In the bottom row of Figure[8] we show the results for
the method in [2]. The motion trajectories are less congruent and show more variation
than those recovered using our method.
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Eigenspace of NO Motion

Eigenvector : 83

R T

Eigenvector - 82 Eigenvector : el

Fig. 8. Top row: comparison of motion trajectories obtained from 5 persons: Similar motion tra-
jectories obtained from the proposed approach; Bottom row: Motion trajectories affected by the
model’s variations in the conventional method.

Table 1. Experimental results. MPM denotes mean posture matrix

Experiment Training Set/MPM Testing Set  Eigen  Recog. Rate
(Postures) (Postures) Dimension (Average)
Human Motion 4 (240) 1(60) 6 87.5%
Dress 9(324) 1(36) 6 88.88%
Background 16(576) 51(36) 6 86.9%

6.2.1 Motion Recognition Using Tuned Eigenspaces

Since our method employed primarily 5 motions for recognizing human motions via
posture recognition, a leave-one-out scheme is applied for selecting the image set. It
means that we always choose 4 data sets for generating a tuned eigenspace and leave
one data set for testing. A tuned eigenspace obtained from 4 data sets is shown in
Figure[TI(a) The obtained recognition results are shown in Table[Il We have obtained
an average of 86.5% recognition rates where background issue were not considered. It
is worth noting that the obtained motion recognition is 100%.

6.3 Special Experiment Considering Clothing Problem

We have further performed another experiment where the attention was focused in the
clothing problem with a number of typical dressing schemes. In the experimental setup,
we have used a camera for taking a video image of a turning motion (therefore m = 1)
of a particular subject wearing 10 typical clothes. The dresses are shown in Figure 0
From the 10 different clothes, we have obtained P = 360 sampled views. For the com-
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(a) (b)

Fig. 10. Motion’s trajectories with all of 10 dresses: (a) the conventional method, and (b) the
proposed method

parison, the study employed a conventional method [2]] where an original gray image
was employed for generating an eigenspace. Figure [10| shows the closed motion tra-
jectories generated from various clothes. Dress texture has made an undesirable effect
by the conventional method, as shown in Figure[T0O(a) producing dissimilar motion tra-
jectories, despite having identical models and motions. On the other hand, the motion
loops are mutually quite similar using the proposed method as shown in Figure [10(b)|
For obtaining the recognition performance, we have employed the earlier mentioned
leave-one-out scheme for selecting the tuned eigenspace. Therefore, 9 data set are used
for training and one data set is always left for the testing. An average of 87% recognition
rate is achieved for this particular data set as shown in Table [Tl

6.4 Background Subtraction Method

A background subtraction method is applied in order to prove the effectiveness of the
method. We have conducted an experiment employing 17 human models as shown in
Figure The motion categories and segmentation process were same as described
in section 6.3. However, respective backgrounds have been subtracted automatically
from the sampled images and silhouette images are obtained. Figure shows the
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Mean Eigenspace Made by 5 Data ES Made by Posture Matrix

Eigenvector : &3
Eigenvector : 3

Eigenvector : a2 a3 Eigenvector : a1 Eigenvector : 2 0 Eigenvector : el
(@) (b)
Fig. 11. Tuned eigenspace for the 5 data sets in Figure[6(a)} and (b) 5 data sets in Figure[d]

Fig. 12. Background subtraction method: (from left to right) original image, background sub-
tracted image, segmented image and Sobel edge image

result of this subtraction method. Figures (from left to right) show an original image,
background subtracted image, a segmented image containing human portion and the
sobel-edge image. Once again, we have employed leave-one-out method for generat-
ing tuned eigenspace and obtaining the recognition results. The recognition results are
listed in the Table[Tl

6.5 Comparison Results

We have compared our results with the conventional method [2]where original images
are used for generating the eigenspace. It is also mentioned that conventional method
employed only one data sample obtained from the best search scheme for creating the
eigenspace. Once again, the proposed method has employed earlier described image
pre-processing techniques for overcoming the clothing and noise effect, and a pos-
ture matrix for creating a tuned eigenspace. Since we have employed a leave-one-out
method for selecting the data sets for creating the tuned eigenspace, it confirms use
of every image data either for training and/or testing. The comparisons are two mani-
fold:representation of eigenspaces in the presence of clothing effects, model variations
and appearance-change. The proposed method has always generated eigenspaces with
similar pattern with respect to the motions. Therefore, an eigenspace of a particular
motion can be used for testing the other models. The requirement of eigen dimensions
were also reasonable in the proposed method as shown in Figure 4l In contradictory,
eigenspace obtained form the conventional way have always been affected by the pre-
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Recognition Rates Vs Eigendimensions with Error Bars
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Eigendimensions
Fig. 13. Imaging noise used in the experi- Fig. 14. Requirement of eigen dimensions.
ment. (left) Original image and (right) Im- The error bars correspond to the standard
age with 20% salt and pepper. error for the recognition rate.

ceding problems. Therefore, conventional method is not suitable for flexible object
recognition. Consequently, poor recognition rates (i.e., 44.4% of using the data used
in the experiment 6.2 and 42.1% from the data used in the experiment 6.3) have been
achieved from the conventional method.

6.6 Noise Reduction

As stated earlier, double gaussian kernel are used mainly for reducing random noise
and clothing texture effects. Therefore, our method is also effective under noisy image
environments. We have made a comparison how the proposed method works under
various noise levels. Figure [[3] shows the noise level used in the experiment. We have
used 20% salt and pepper noise to the images shown in the Figure[6(a)] and they have
used for creating eigenspaces and for the recognition. If we do not use the gaussian
blurring, the posture recognition rate is shown always less than 70% even using the
proposed method. Therefore, the pre-image processing techniques has provided us the
noise reduction capability in a significant level.

7 Discussion and Conclusions

In this paper, we have introduced a novel appearance-based method for articulated mo-
tion recognition and illustrated its utility in recognition tasks. We have validated the
proposed method in a number of ways using synthetic and real-world data. The pro-
posed tuned eigenspace has the robustness to work under both, real human and articu-
lated motions. Furthermore, the method also has the robustness to work under random
imaging noise and background variations.
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