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Abstract. This paper proposes a method for detecting shapes of variable struc-
ture in images with clutter. The term “variable structure” means that some shape
parts can be repeated an arbitrary number of times, some parts can be optional,
and some parts can have several alternative appearances. The particular variation
of the shape structure that occurs in a given image is not known a priori. Ex-
isting computer vision methods, including deformable model methods, were not
designed to detect shapes of variable structure; they may only be used to detect
shapes that can be decomposed into a fixed, a priori known, number of parts. The
proposed method can handle both variations in shape structure and variations in
the appearance of individual shape parts. A new class of shape models is intro-
duced, called Hidden State Shape Models, that can naturally represent shapes of
variable structure. A detection algorithm is described that finds instances of such
shapes in images with large amounts of clutter by finding globally optimal cor-
respondences between image features and shape models. Experiments with real
images demonstrate that our method can localize plant branches that consist of
an a priori unknown number of leaves and can detect hands more accurately than
a hand detector based on the chamfer distance.

1 Introduction

This paper introduces a detection algorithm that is explicitly designed for a large cate-
gory of shape classes where existing detection methods are not applicable: shape classes
that exhibit variable structure. The term “variable structure” is used to characterize
shape classes with the following properties:

– Some shape parts can be repeated an arbitrary number of times, like the teeth in the
hair combs of Fig. 1.

– Some shape parts may be missing. For example, in the rightmost branch shown on
Fig. 1, one of the leaves on the right side of the branch is missing.

– Some parts can appear in alternative ways. For example, in the hand shapes shown
on Fig. 1, a finger can appear totally extended, partially bent, or completely bent.

Natural, biological and man-made objects may have variable structures that result
in large differences in shape. Blood vessels in the retina, airway ducts in the lung,
and dendrites are examples of biological objets with variable structure. Detecting and
recognizing such objects is important for tasks like diagnosing diseases of the retina
or detecting nodules in the lung. Roadways and waterways in aerial images are also
examples of object classes with variable structure.
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Fig. 1. Three shape classes that exhibit variable structure: branches with leaves, hair combs, and
hand contours. Such classes can be naturally modeled with a Hidden State Shape Model (HSSM).

In order to model shape classes of variable structure, we introduce Hidden State
Shape Models (HSSMs), a generalization of Hidden Markov Models (HMMs) [1].
Using HSSMs, shapes can be detected in polynomial time, even in the presence of
a significant amount of clutter. We describe an algorithm that performs detection-by-
registration, and finds globally optimal correspondences between the HSSM model
and image features. In experiments with real images, our method localizes branches
of leaves with 79% accuracy, without prior knowledge of the number of leaves, and our
method detects and recognizes hand shapes with higher accuracy than a method based
on the chamfer distance.

2 Related Work

A large amount of literature in computer vision addresses the issue of detecting de-
formable shapes in images. Shock graphs [2] and FORMS [3] can be used for fitting
deformable models to silhouettes extracted from images, but these methods are sensi-
tive to segmentation errors that change the topological properties of silhouettes. Such
errors are frequent in the presence of noise and clutter. Another family of deformable
models are active contours [4] and active shape models [5]. However active contours
and active shapes cannot be used for automatically detecting deformable shapes in an
image, unless a good initial alignment between the model and the image is provided.

Graphical models can be used to detect deformable shapes automatically, without
requiring an initial guess [6, 7, 8]. When the graphical model is a sequence of parts, or
a tree, Dynamic Programming (DP) can be used to find a globally optimal registration
between the model and a set of possible shape part locations, even in the presence of
clutter [9, 10, 11, 12, 13]. A limitation of DP is that it cannot capture cyclical dependen-
cies between shape parts. Graphical models using iterative inference can capture such
dependencies, at the cost of not guaranteeing a globally optimal solution [6, 7, 8].

The main difference between the method we introduce in this paper and all above-
mentioned methods is that our method can be used for modeling and detection of
shape classes that exhibit variable structure. We should stress that “structure varia-
tion” is not synonymous with “deformation.” Objects can be totally rigid and still
exhibit variable structure, like the hair combs in Fig. 1. Deformable model methods
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] can model deformations of individual shape parts and
deformations in the spatial arrangements between shape parts; they cannot capture
structure variations, like the possibility that a shape part may be repeated an arbitrary
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number of times. Our method, in addition to modeling deformations, is explicitly de-
signed to model variable structure.

Using existing deformable model methods [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], the
only way one can model a shape class of variable structure is by exhaustively defin-
ing one deformable model for each fixed structure that is a legal structure for that shape
class. However, such an approach can quickly become computationally intractable. For
example, in the branch images shown in Fig. 1, a unique fixed structure is determined by
specifying the number of leaves, and then specifying, for each leaf, if it occurs on the left
or the right side of the stem. Thus, the number of possible fixed structures is exponential
to the number of leaves, and any of the approaches in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
would require exponential time to detect such a shape class. In contrast, our method
captures such shape variability with a single model, and thus provides polynomial-time
detection.

The HSSM models that we introduce in this paper are a generalization of HMMs
[1]. HMMs have been used for shape modeling in previous work [14, 15, 16]. However,
in those methods, HMMs are used to recognize shapes, and object detection is required
as preprocessing. Traditional HMMs [14, 15, 16] cannot be used for object detection in
clutter, even for objects with fixed structure. Our method extends HMMs in a way that
overcomes this limitation.

Complex and variable-structure shapes can also be modeled with shape grammars.
Lindenmayer systems (L-systems) have been used successfully in computer graphics
for generating realistic images of biological shapes [17]. A generic shape grammar
is used in [11] for the task of low-level image segmentation and grouping. In [18] a
shape grammar is used to improve the accuracy of rectangle detection in images. The
main difference between the proposed method and the methods described in [17, 11, 18]
is that our method, in addition to modeling shape classes of variable structure, also
addresses the issue of detecting specific shape classes in cluttered images.

3 Modeling Shapes with HSSMs

First we introduce formal definitions and notation. Then, in Section 3.2, we provide an
example of how an HSSM can be used to model a shape. In Section 3.3 we discuss how
HSSMs are related to HMMs.

3.1 Terminology and Notation

At a high level, in order to design an HSSM for a specific shape class we need to
perform two steps: first, specify a set of states, where each state corresponds to a shape
part. Second, specify some cost functions, that can be used to evaluate how well a
sequence of image features matches a sequence of states. More formally, an HSSM is
defined by specifying the following elements:

1. A set of N states S = S1, . . . , SN .
2. A transition cost function A. A(Si, Sj) is a non-negative real number that repre-

sents the cost of transitioning from state Si to state Sj .
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3. An observation cost function B. B(Si, Fk) is a non-negative real number that rep-
resents the cost corresponding to observing feature Fk at state Si.

4. A feature transition cost function D. D(Si, Fk, Sj , Fl) is a non-negative real num-
ber that represents the cost associated with consecutively matching feature Fk to
state Si and feature Fl to state Sj . This feature transition cost function is an impor-
tant difference between an HSSM model and a classical HMM model, as explained
in Sec. 3.3.

5. An initial cost function I . I(Si) is a non-negative real number that represents the
cost corresponding to state Si being the initial state of the shape. If Si is not a legal
initial state, then I(Si) = ∞.

6. A subset E ⊂ S of legal end states for the shape.

Given a test image J , we assume that, using some feature extraction method, a set
of K features F = {F1, . . . , FK} has been extracted. For example each Fi can cor-
respond to an edge pixel, and Fi can store the location and orientation of that edge
pixel.

A registration between the HSSM and the set F of image features is denoted as
RQ,O = ((Q1, O1), . . . , (QT , OT )), where Q = (Q1, . . . , QT ) is a sequence of T
states (each Qi ∈ S), and O = (O1, . . . , OT ) is a sequence of T observations (each
Oi ∈ F). The pair (Qi, Oi), which represents the i-th step of the registration, consists
of the model being in state Qi (where Qi = Sj for some j) and the corresponding
feature at that step being Oi (where Oi = Fk for some k). Intuitively, a registration
specifies which image features correspond to which shape parts.

The cost C(RQ,O) of registration RQ,O is defined as follows:

C(RQ,O) = I(Q1) +
T∑

i=1

B(Qi, Oi) +
T−1∑

i=1

A(Qi, Qi+1)

+
T−1∑

i=1

D(Qi, Oi, Qi+1, Oi+1) . (1)

We define an operation ⊕ that takes a registration RQ,O =((Q1, O1), . . . , (QT , OT ))
and a state-feature pair (Q, O) and returns a new registration that is the result of append-
ing (Q, O) to the end of R:

RQ,O ⊕ (Q, O) = ((Q1, O1), . . . , (QT , OT ), (Q, O)) . (2)

We define a registration RQ,O = ((Q1, O1), . . . , (QT , OT )) to be a total registration
if QT ∈ E, i.e., if the last state of the registration is a legal end state for the HSSM.

Suppose we are given a shape modeled as an HSSM, a registration length Tmax,
and a set F of features extracted from image J . Detecting the shape in image J con-
sists of finding the globally optimal total registration Ropt, i.e., the registration among
all possible total registrations RQ,O with length Tmax that minimizes C(RQ,O). Al-
though the set of all possible total registrations is exponential in Tmax, the algorithm
described in Sec. 4 finds a globally optimal total registration in polynomial time,
using DP.
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Fig. 2. An HSSM model of the branch class. a). The states of the model, and the allowed tran-
sitions out of each state. State S1 models the stem, states S2, . . . , S7 model the left-side leaves,
states S8, . . . , S13 model the right-side leaves, states S14, . . . , S19 model the top leaf. b). An
edge image, containing a branch and some “clutter” objects. Each line and arc segment stand for
an image feature. c). An example registration of the model with the image features: state labels
are shown next to the features they were matched with. Note that the “clutter” features are not
assigned to any state.

3.2 An Example

Consider the class of branch shapes shown in Fig. 1. Fig. 2a displays the state topology
of an HSSM model for this class. We actually use this model in the experiments, to de-
tect branches of leaves. In Sec. 5 we quantitatively define the cost functions associated
with this model. In the next paragraphs we describe at an intuitive level what we want
to capture with the model topology and the cost functions.

In the model, the stem is modeled as a straight line, and the leaves are modeled as
hexagons. From the input image we extract oriented edge pixels (Fig. 2b). State S1 mod-
els the stem. We expect stem features to have an upright orientation, and observation
cost B(S1, Fi) penalizes for deviations from that orientation. Similarly, the six states
corresponding to each leaf have low observation costs for features whose orientations
are similar to the orientations expected to be observed at those states.

The state transition cost A(Si, Sj) is set to zero for all the legal state transitions
shown in Fig. 2a, and to infinity for all other transitions. The initial cost I(S1) for
state S1 is zero, and the initial cost for all other states is infinity. The feature transition
cost function D(Si, Fk, Sj , Fl) reflects the expectation that, if we match state Si with
feature Fk and then we make the transition from state Si to state Sj , then the feature Fl

matched to state Sj should appear in a position near Fk, and the direction of the vector
connecting Fk to Fl should be compatible with the transition from Si to Sj .

Fig. 2c shows an example registration of the model shown in Fig. 2a with the edge
image shown in Fig. 2b. We should stress that the model shown in Fig. 2a is simply one
of many possible models for the class of branch shapes shown in Fig. 1. For example,
one could instead design leaf detectors, and model each leaf with a single state. The im-
age features that would be matched to that state would correspond to locations where the
detector response exceeds a threshold, and the observation cost of each feature would
depend on the detector response at that feature location.
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3.3 Relation to HMMs

HSSMs are a superclass of HMMs. An HMM is a special case of an HSSM, in which:

– Feature transition cost function D is set to zero.
– Function A(Si, Sj) is the negative logarithm of the transition probability of moving

from state Si to state Sj .
– Function B(S, F ) is the negative logarithm of the probability of observing feature

F while at state S.
– Function I(S) is the negative logarithm of the probability of S being the initial

state.

Overall, if functions A, B, D and I are defined to be negative log likelihoods, then
the HSSM model becomes probabilistic, and it provides a generative model that de-
scribes how to stochastically generate a set of image features given a shape class. At the
same time, if the underlying probability distributions are not available, we can easily
create HSSMs by constructing cost functions either manually or automatically. In our
experiments we found it straightforward and intuitive to define those functions manu-
ally, as described in Sec. 5.

HMMs are typically used to recognize temporal sequences of observations. The tra-
ditional Viterbi algorithm employed in HMMs [1] optimally assigns a state to each
observation, but relies on two key assumptions: first, that the observations are ordered
(temporal sequences of observations are naturally ordered based on the time in which
they were observed), and second, that each observation should be matched with the
model. In our setting, we cannot use the standard Viterbi algorithm because neither of
those two assumptions holds. The set F of features is an unordered set of observations,
and only a subset of those observations may actually match the model, since many
(possibly most) observations will correspond to clutter.

Since our system does not know a priori the order in which features must be regis-
tered, we need a feature transition cost function to evaluate different possible orderings.
This function models the fact that, given two consecutive states Si and Si′ , we may
have two features Fk and Fk′ such that B(Si, Fk) and B(Si′ , Fk′ ) are very low, but the
features Fk and Fk′ are located so far from each other or have some other combined
property that makes them a really bad choice for consecutively matching Si and Si′ .
Fig. 3 illustrates an example.

4 Optimal Registration in Clutter

Suppose that we are given an HSSM model, a registration length Tmax, and a set F of
features extracted from image J . We want to find a globally optimal total registration
Ropt. In this section we describe how to find Ropt in polynomial time, using a modified
version of the Viterbi algorithm.

As is typical in DP methods, we solve our problem by breaking it up into many sub-
problems whose solutions are related to each other. In particular, we define W (i, j, k)
to be the registration RQ,O that achieves the smallest cost C(RQ,O) under the following
constraints:
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Fig. 3. An illustration of the need for a feature transition cost function. A square is modeled
with four states, S1, . . . , S4, as shown on the left. Suppose that B(Si, Fk) compares the edge
orientation at Fk with the orientation corresponding to state Si. Consider features F1, F2, F3,
shown on the right. Without a feature transition cost function, registration ((S1, F1), (S1, F2)) is
as good as registration ((S1, F1), (S1, F3)), since F1, F2, and F3 have the same orientation. The
feature transition cost function D can penalize the transition from (S1, F1) to (S1, F3), since F3

is so far from F1.

1. The length of RQ,O is j.
2. Qj = Si. That is, the last state Qj of RQ,O is state Si.
3. Oj = Fk. That is, the last feature Oj of RQ,O is feature Fk .

If j = 1, then W (i, j, k) = ((Si, Fk)). For j > 1, assume that we have already
computed W (i′, j − 1, k′) for every i′ ∈ {1, . . . , N} and k′ ∈ {1, . . . , K}, where N
is the number of states and K is the number of features. Then, W (i, j, k) can be found
easily as follows: first, for notational convenience, for every i′, k′, we define registration
V (i′, k′, i, j, k) as:

V (i′, k′, i, j, k) = W (i′, j − 1, k′) ⊕ (Si, Fk) . (3)

Now, W (i, j, k) is simply the V (i′, k′, i, j, k) for which the cost C(V (i′, k′, i, j, k))
is minimized:

W (i, j, k) = argminV (i′,k′,i,j,k)C(V (i′, k′, i, j, k)) . (4)

Suppose that we have computed W (i, j, k) for every combination of i, j, k. We want
to find the globally optimal total registration Ropt, i.e., the total registration RQ,O with
the lowest cost C(RQ,O). First we define the set W of all registrations W (i, Tmax, k)
that are total, meaning that their last state is a legal end state:

W = {W (i, Tmax, k)|Si ∈ E} . (5)

The globally optimal total registration Ropt is simply the registration in W with the
lowest cost:

Ropt = argminRQ,O∈WC(RQ,O) . (6)

Registration Ropt describes the optimal way to align the HSSM with the observed
image features. It specifies where the shape is in the image, and also it specifies the
actual structure of the shape, and the location of each individual shape part.
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4.1 Complexity

In the worst case, to determine W (i, j, k) for a specific combination of i, j, k we need
to evaluate KN possible registrations V (i′, k′, i, j, k), where K is the number of image
features and N is the number of model states. Each of these possible registrations can be
evaluated in constant time assuming that, for every i, j, k, when we compute W (i, j, k)
we save the cost C(W (i, j, k)) in an array U(i, j, k). Then,

C(V (i′, k′, i, j, k)) = U(i′, j − 1, k′) + A(Si′ , Si)
+D(Si′ , Fk′ , Si, Fk) + B(Si, Fk) .

There are O(KTmaxN) possible combinations of i, j, k. Therefore, the worst case
cost of computing W (i, j, k) for every combination of i, j, k is O(K2TmaxN

2) op-
erations. This cost is polynomial to all terms, which is much more efficient than the
brute force method of simply evaluating every one of the exponentially many possible
registrations between the model and the set of image features.

The complexity can be further reduced if we can impose some additional constraints.
Constraints can be imposed in three different ways:

– By restricting the set of allowed state transitions. This restriction significantly re-
duces the number of registrations V (i′, k′, i, j, k) that need to be evaluated in order
to find W (i, j, k), by requiring that Si′ can be legally succeeded by Si.

– By restricting the set of allowed feature transitions. If such a restriction is available,
it can be used so that, when W (i, j, k) is computed, the system only evaluates
registrations V (i′, k′, i, j, k) such that Fk′ can be legally succeeded by Fk.

– By restricting, for each state, the set of features that can legally be matched to that
state. Then, W (i, j, k) is evaluated only if Fk can be legally matched to Si.

In the HSSM models used in our experiments we implemented two of those restric-
tions: first, there are at most four legal transitions for every state. Second, we do not
allow a transition between any features fk and fl if the distance between fk and fl ex-
ceeds a threshold. With these two restrictions, the time complexity of the registration
process is reduced from O(K2TmaxN

2) to O(KTmaxN).

5 Implementation

Given a shape class of variable structure, there are several alternative ways to set up
an HSSM model for that class. For example, one can define specific detectors for in-
dividual shape parts and use the results of those detectors as features [10, 13]. For the
implementation used in our experiments, we opted for a simpler solution, where every
feature F is simply the location of an edge pixel. We denote with L(F ) the location of
F , and with θ(F ) the edge orientation of F , where the range of θ(F ) is [0, 2π).

Each state S simply models a line segment with orientation θ(S). To determine how
well a feature F matches state S, we simply measure the difference between their ori-
entations. We will denote with Δ(θ1, θ2) the angle between orientations θ1 and θ2. The
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range of Δ(θ1, θ2) is limited to [0, π
2 ]. Based on this notation, we define the observation

cost function B between state S and feature F as follows:

B(S, F ) = Δ(θ(S), θ(F )) (7)

In all the models used for the experiments we set the transition cost function A to
zero for state transitions that we define as legal, and to infinity for state transitions that
we define as illegal. Every state is allowed to make a transition to itself. The observation
transition cost function D(Si, Fk, Sj , Fl) depends on the difference in position and
orientation between Fk and Fl. More formally, we denote by V (θ) the two-dimensional
unit vector with orientation θ. Given a weight α that balances position and orientation
information, the observation transition cost function D(Si, Fk, Sj , Fl) is defined as:

D(Si, Fk, Sj, Fl) = ‖ L(Fl) − L(Fk)
‖L(Fl) − L(Fk)‖ − V (θ(Sj))‖ +

α|Δ(θ(Si), θ(Sj)) − Δ(θ(Fk), θ(Fl))| . (8)

Note that these definitions make the resulting HSSM models invariant to translation,
since we do not use absolute feature location in any of the cost functions; we only use, in
function D, relative feature location with respect to the location of the previous feature.
The HSSM models used in the experiments are dependent on scale and orientation. We
obtain the optimal value for α using a validation set, disjoint from the set of test images.

6 Experiments

We have evaluated our method on the task of object localization in two datasets of real
images containing shapes of variable structure. The first dataset consists of 100 images
of branches of leaves, and the second dataset consists of 353 hand images (Figs. 4, 5,
6). The task of object localization can be summed up as follows: the system knows that
there is a single object of the desired class in the image, and the goal is to successfully
locate the object and identify the orientation and shape of the object.

In order to provide quantitative measures of accuracy, we will use the following
terms to describe accuracy on a particular image:

– “Correct recognition”: the system has found the shape at the correct location and
orientation, has correctly estimated the number of shape parts, and has correctly
registered each shape part.

– “Correct localization”: the system has identified the correct object location and
orientation. In particular, for the branches we require that 75% of the stem be reg-
istered correctly, and for hand images we require that the 75% of the palm edges be
registered correctly. We allow incorrect estimation of the number and/or location
of some shape parts, and incorrect registration of some shape parts.

– “Incorrect localization”: the method failed to find the correct object location and
orientation.

Figs. 4, 5, 6 illustrate the meaning of each of these terms with example images.
Exhaustive search was used to identify the orientation that gave the best registration

score. For each image, eight different orientations were applied, sampled uniformly in
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the range from 0 to 2π. With respect to the scale of the object, we assume that Tmax is
known. The values used for Tmax were from the set {200, 250, 300, 350, 400, 450, 500}.

The test images were 120 × 160 pixels. All images were converted to grayscale, no
color information was available to the algorithm. Edges were extracted using a Canny
edge detector. There were between 2000 and 4000 edge pixels extracted from each
image. In the HSSMs used for these experiments we did not allow transitions between
features that were more than five pixels away. It took about 5-6 minutes to process
each image (including trying all eight orientations), with a C++ implementation, on an
Opteron 2.0GHz processor. The memory size of the program was under 400MB.

6.1 Experiments on Branch Localization

We constructed an HSSM model for branches of leaves, where leaves occur at the left
and right side of the stem (Fig. 2). We then registered the model with 100 real images

Fig. 4. Examples of “correct recognition” on images of branches of leaves (top half) and hand
images (bottom half). For each test image, we show the actual image, the corresponding edge
image, and the edge pixels registered to the HSSM model.



Detecting Instances of Shape Classes That Exhibit Variable Structure 131

of branches. The intention of this experiment was to illustrate that our method extracts
useful information from heavily cluttered edge images, and can be a useful complement
to other sources of information, like color, motion, and background modeling.

Figs. 4, 5, 6 show example results of our method, and Table 1 provides a quantitative
evaluation. In 79% of the images our method produced correct localization. Registration
was correct in 43% of the images. We find these results promising, given that we only
used edge information. Incorporating color information and more descriptive features,
like shape context [19] and SIFT features [20], should greatly improve registration ac-
curacy. Such enhancements remain a topic for future investigation.

6.2 Experiments on Hand Localization

We also applied our method to the problem of localizing hands in grayscale images
using only edge information. We compared the detection and recognition accuracy of
our method to results obtained using both the chamfer distance [21], and the modi-
fied chamfer distance (denoted here as chamfer distance + orientations) that takes edge
orientations into account and was used in [22] for hand localization.

The class of hand contours that we modeled in this experiment is defined as follows:
the back of the palm is visible, the camera viewing direction is perpendicular to the
palm surface, and each of the five fingers can be either fully extended or fully hidden.
Since each of the five fingers can appear in two different ways, for the chamfer distance
we used 25 = 32 fixed-structure models, so as to represent all valid fixed structures. In
contrast, a single HSSM was sufficient for modeling the entire range of variations.

We tested our method on 353 real images of hands, from seven different subjects.
Figs. 4, 5, 6 show example results, and Table 1 quantitatively compares our method
to the chamfer distance. For detection and recognition based on the chamfer distance,
“correct localization” means that best response was obtained at the correct position

Fig. 5. Example images of branches and hands where the HSSM had “correct localization” but
not “correct recognition.” For each test image, we show the actual image, the corresponding edge
image, and the edge pixels registered to the HSSM model.
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Fig. 6. Example images of branches and hands where the result was labeled as “incorrect”. For
each test image, we show the actual image, the corresponding edge image, and the edge pixels
registered to the HSSM model.

Table 1. Results of HSSM on images of branches and hands,as measured on 100 images of
branches of leaves and 353 hand images. For hand images, we also show results using two version
of the chamfer distance. Note that “correct recognition” is a subcase of “correct localization.”
Under each method we indicate the number of orientations at which the method was applied.

dataset: branches hands
chamfer distance

method: HSSM HSSM + orientations chamfer distance
number of orientations: 8 8 72 72
correct recognition 43.0% 33.7% 21.8% 4.0%
correct localization 79.0% 59.5% 54.6% 35.2%
incorrect localization 21.0% 40.5% 45.4% 64.8%

(up to a displacement of half the size of the palm) and orientation (up to 45 degrees).
“Correct recognition” means that, in addition to obtaining correct localization, the best
response was obtained by the correct fixed-structure model.

To ensure a fair comparison to our method, the scale of the hand was available to
the chamfer distance. For each image, brute-force search for the smallest chamfer dis-
tance was conducted over all pixel locations, 72 orientations, and all 32 models. Hand
localization using the chamfer distance took about 15 seconds/image.

As seen in Table 1, our method was more accurate than the results obtained us-
ing either variant of the chamfer distance, in terms of both correct localization and
correct recognition. At the same time, we consider the accuracy reported here as the
“lower bound” on hand pose matching accuracy with our approach, since color fea-
tures, motion, etc. could be added to further improve localization and recognition rates.
We deliberately did not include these additional features, so that edge-based matching
performance vs. the chamfer distance could be directly tested and compared.
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7 Discussion and Future Work

We have described a novel method for detecting shapes of variable structure in clut-
tered images, using the proposed HSSM models. A globally optimal registration can
be found in polynomial time, using Dynamic Programming. The HSSM models used
in our experiments can be registered with a cluttered image using only easy-to-extract,
low level features like edge pixel locations and orientations.

So far we have evaluated our method in a localization setting, where the system
knows that there is exactly one object of interest, and the system tries to find the best
registration hypothesis for that object. However, our method can also be applied in a
more classical detection setting, where the system does not know a priori if there are
zero, one, or multiple instances of an object. Fig. 7 shows some preliminary results
for multiple instance detection. Those results correspond to the two highest scoring
registrations found using the proposed registration algorithm.

Fig. 7. Preliminary results illustrating the ability of our method to detect multiple objects in the
same image. Two branches and two hands are detected successfully, by using, for each input
image, the two highest scoring registrations found by the proposed registration algorithm.

In this paper, a registration is constrained to be a linearly ordered set of feature-
state pairs. However, dynamic programming algorithms can also efficiently produce
registrations that are tree-ordered [10, 13]. Such registrations are more appropriate for
branching shapes like waterways, dendrites, and blood vessels. We are interested in
extending our method to handle such cases.

It is interesting to note that our method operates in a strictly bottom-up way, and the
resulting global registration is simply the result of many local decisions. We expect that
pairing our method with top-down mechanisms can significantly reduce false matches.
We also believe that the accuracy of the method can be greatly improved by applying
machine learning methods to optimize the cost functions, and to identify the most dis-
criminative features for each state of the HSSM model. We are currently working on
incorporating such methods into our framework.
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