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Abstract. In this paper, we address the problem of discovering novel non-coding
RNA (ncRNA) using primary sequence, and secondary structure conservation,
focusing on ncRNA families with pseudo-knotted structures. Our main techni-
cal result is an efficient algorithm for computing an optimum structural align-
ment of an RNA sequence against a genomic substring. This algorithm finds two
applications. First, by scanning a genome, we can identify novel (homologous)
pseudoknotted ncRNA, and second, we can infer the secondary structure of the
target aligned sequence. We test an implementation of our algorithm (PAL), and
show that it has near-perfect behavior for predicting the structure of many known
pseudoknots. Additionally, it can detect the true homologs with high sensitiv-
ity and specificity in controlled tests. We also use PAL to search entire viral
genome and mouse genome for novel homologs of some viral, and eukaryotic
pseudoknots respectively. In each case, we have found strong support for novel
homologs.

1 Introduction

Ribonucleic acid (RNA) is the third, and (until recently) most underrated of the trio of
molecules that govern most cellular processes: the other two being proteins and DNA.
While much of cellular RNA carries a message encoding an amino-acid sequence, other,
‘non-coding’ RNA participate directly in performing essential functions. Recent and
unanticipated discoveries of novel ncRNA families [[1,12,/3}14}15] point to the possibility
of a ‘Modern RNA world’ in which RNA molecules are as abundant, and diverse as
protein molecules [6]. The analog of the computational gene-finding problem: “given
genomic DNA, identify all substrings that encode ncRNA” is increasingly relevant,
and relatively unexplored. While potentially abundant, RNA signals are weaker than
proteins making them harder to identify computationally. Possibly, the strongest clue
is from secondary structure. Being single-stranded, the base-pairs stabilize by form-
ing hydrogen bonds, leading to a characteristic secondary and tertiary structure. With
a few exceptions, the base-pairs are non-crossing, and form a tree-like structure. This
recursive structure is the basis for efficient algorithms to predict RNA structure [[7,/8]].
With this extensive work in structure prediction, it is natural to expect that novel non-
coding RNA could be discovered simply by looking for genomic sub-strings that fold
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into low-energy structures. Unfortunately, that idea doesn’t work. Rivas and Eddy [9]]
showed that random DNA (usually with high GC-content) can also ’fold’ into low-
energy configurations, making it unlikely for a purely de novo approach to be success-
ful. Therefore, a comparative approach is employed, often typified by the question:
“Given a query RNA with known structure, and a genome, identify all genomic sub-
strings that match the query sequence and structure”. The query itself can be either a
single molecule or a model (covariance model/stochastic context free grammar) of an
RNA structure. This approach has been quite successful and single queries as well as
covariance based models are routinely used to annotate genomes with ncRNA [[10,[11].
Central to these approaches is an algorithm for computing a local alignment between a
query structure and a DNA string. The search itself is simply a scan of the genome to
obtain all high scoring local alignments.

Here we pose a related question: Given a query RNA with known structure, al-
lowing for pseudoknots, and a genome, identify all genomic sub-strings that match
the query sequence and structure. Without being precise, pseudoknots are base-pairs
that violate the non-crossing rule (See Figure [Il). While not as common as other sub-
structures (bulges,loops), they are often critically important to function. Pseudoknotted
RNAs are known to be active as ribozymes [12]], self-splicing introns [[13]], and partici-
pate in telomerase activity [[14]. They have also been shown to alter gene expression by
inducing ribosomal frame-shifting in many viruses [[L5]. However, understanding the
extent and importance of these molecules is partially handicapped by the difficulty of
identifying them (computationally). The algorithm presented here will facilitate identi-
fication.

In order to compute a local structural alignment, we must start with a formal defi-
nition of a pseudoknot in Section2l Many definitions of pseudoknots have been postu-
lated [116}/17,118.[19L120], and recent research investigates the power of these definitions
in describing real pseudoknots [21]. We start here with Akutsu’s formalism (simple
pseudoknots) [[16], which has a clean recursive structure and encompasses a majority
of the known cases [21,22]]. We also present algorithms that extend this class of al-
lowed pseudoknots (standard pseudoknots). Section 3l describes the chaining procedure
which is key to the alignment algorithm that follows (Section ). However, the sim-
ple pseudoknots usually do not occur independently, but are embedded in regular RNA
structures. In Section [5] we extend the algorithm to handle these cases. Other exten-
sions are considered in Section [7l It has been brought to our attention that a recent
publication [23] considers the identical problem using the formation of tree adjoining
grammars to model pseudoknots. The pseudoknots considered by them are a restricted
version of our simple pseudoknots. Futhermore, our alignment combines sequence and
structural similarity. A detailed comparison is deferred to the full version of the paper.

The local alignments can be used in two ways. First, they can be used to infer the
structure of the aligned substring that is conserved with the query. We show in Sec-
tion [8.1] that in a majority of the cases, this leads to a perfect prediction of secondary
(pseudoknotted) structure. Next, they can be used to predict novel ncRNA in genomic
sequences. While our algorithms are computationally intensive, they can be used in
combination with database filtering approaches to search large genomic regions. In Sec-
tion [8.2] we validate our approach on real sequences embedded in random sequence.
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Fig. 1. (a) Simple pseudoknot. (b) Standard pseudoknot of degree d. (c) Recursive simple pseudo-
knot. (d) Recursive standard pseudoknot of degree d.

Finally, in Section[9] we identify (putative) novel pseudoknotted ncRNA in a search of
viral and eukaryotic genomes.

2 Definitions and Preliminary Information

Let A = a;...a,, be an RNA sequence. The secondary structure is represented simply
as the set of base-pairs

M ={(,7)1 <i<j<mn,(a;a;)is abase pair}

Also, let M;, , € M be defined by M, r, = {(i,4) € Mliop < i < j < ko}.
The secondary structure, in the absence of crossing or interweaving base-pairs is called
regular, and has the following recursive definition.

Definition 1. An RNA secondary structure M, 1, is regular if and only if M;, 1, = ¢
or3(i,j) € My, such that

= My ke = Mig,im1 U Migq j—1 UMjq1k, U{(i,7)} (No base-pairs cross the par-
titions).
— FEach UfMio,ifla M¢+1’j,1, MjJrLkO is regular.

Next, we can define the class of allowed pseudoknots ([[LO]).

Definition 2. M, ., is a simple-pseudoknot (see Figure [l{a)) if and only if M;, i,
is regular or 31,72 € N (ip < j1 < jo < ko) such that the resulting partition,
Dy = [ig, j1 — 1], D2 = [j1, j2 — 1], D3 = [j2, ko), satisfies the following:
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- M, 1, = (Sp. U SR), where S, = {(i,7) € Miy.kolt € D1,j € Do} and Sp =
{(Z J) € Mio,k‘o‘i S D27j S D3a}'
— S, and Sg are regular.

Definition 3. M;, i, is a standard-pseudoknot with degree d (d > 3, see Figure[l(b))
if and only if M, 1, is regular or 3j1, ..., ja—1 € N (io < j1 < ... < ja—1 < ko) which
divide [io,ko] into dparts, Dy = [io,jl — 1],D2 = [jl,jg — 1}, ‘..,Dd = [jdfl, k()],
and satisfy the following:

- My 1o == S, where Sy={(i, j) € Miy x,|i € D1, 5 € DypaYforall 1 < 1<d.
- Syis regularfor all1 <l <d,

Note that a simple-pseudoknot is a standard-pseudoknot of degree 3.

Definition 4. M;, 1, is recursive-standard-pseudoknot with degree d (d > 3, see Fig-
ure[lld)) if and only if M;, 1, is a standard pseudoknot of degree d or 3iq, k1, ..., 0, ki
EN (ip i1 < k1 <idg < ky < ... < iy <kt < ko,t > 1), which satisfy the
following:

- (Mig ko — Uj_y My, 1,) is a standard pseudoknot of degree < d.
- M;, x, (1 <1< t)is a recursive standard pseudoknot of degree < d.

A recursive-simple-pseudoknot is a recursive-standard-pseudoknot of degree 3 (Fig-
ure [[{c)). While we can devise algorithms to align recursive-standard-pseudoknots,
they are computationally expensive, and most known families have a simpler struc-
ture. Therefore, we will limit our description and tests to a simpler structure (with a
single level of recursion), defined as follows:

Definition 5. M;, 1, is embedded-simple-pseudoknot if and only if iy, k1, ..., 5,k €
N (ig <i1 <k <io <k <..<ip<ks<ko,t>1), which satisfy the following:

- (Miy ko — Uz 1 M, k) is regular.
- M;, 1, (1 <1 <t)is a simple-pseudoknot.

In the full version of the paper, we extend these algorithms to the case of standard-
pseudoknots. The full version of the paper will present the algorithm for the most gen-
eral case (recursive-standard-pseudoknot).

2.1 Structural Alignment Preliminaries

For alignment purposes, we do not distinguish between RNA and DNA, as every sub-
string in the genome might encode an RNA string. Let ¢[1 - - -m] and ¢[1 - - - n] be two
RNA strings over the alphabet >, = {A, C, G, U} where g has a known structure M.
An alignment of ¢ and ¢ is defined by a 2-rowd matrix A, in which row 1 (respectively, 2)
contains q (respectively, t) interspersed with spaces, and for all columns j, A[1, j] #" =’
or A[2,j] # —'.Forr 6 {1,2}, define ¢, [i] =i — |{l < is.t. A[r,]] =" —}|. In other

words, if A[l,i] #’ -/, it contains the symbol g[¢1[i]]. The score of alignment A is
given by
> (AL ], Al2,4]) + > 6(uld); ex[jl; eali], e2[4])
J ijs.t.(n i) EM
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The function v scores for sequence similarity, while § scores for conservation of struc-
ture. While this formulation encodes a linear gap penalty, we note here that alignments
of RNA molecules may contain large gaps, particularly in the loop regions, and we
implement affine penalties for gaps (details omitted). Naturally, we wish to compute
alignments with the maximum score.

The key ideas are as follows: First, note that regular and pseudoknotted structures
have a recursive formulation. Therefore, the problem of structurally aligning an RNA
structure against a subsequence, can be decomposed into the problems of (recursively)
aligning its sub-structures against the appropriate sub-sequences, and combining the
results. For regular-structures, the structure is tree-like, and the recursion follows the
nodes of the tree. For simple-pseudoknots, the structure is more complex, and will be
described in Section M The structure for embedded-simple-pseudoknots is simply a
combination of the two (See Section[7)).

However, it is not sufficient to consider structural elements alone, as we wish to
score for sequence conservation as well. The recursive structure described only contains
a subset of the nucleotides that participate in structure. Therefore, we employ a second
trick of introducing spurious structural elements (base-pairs) to M. The augmented
structure M’ must have the following properties:

— Each nucleotide ¢ appears in M.
— |M’| = O(m), so that the size of the structure does not increase too much.
— The recursive structure of M is maintained.

Pseudoknots and regular structures have very different recursive structure, and require
different augmentation procedures. In Section3l we present chaining, a novel augmen-
tation procedure for simple pseudoknots. An augmentation for regular structures, bina-
rization was presented in [24], and is implicit in the covariance models used to align
regular RNA [25]. Here, we extend binarization to include chaining for embedded-
simple-pseudoknots (Figure [B). These augmentations are used in the alignment algo-
rithms for simple (Section ), and embedded-simple-pseudoknots (Section [3).

3 Chaining

Before describing the chaining procedure, we revisit the problem of aligning a simple
pseudoknot to a genomic sub-string. Unlike regular structures, we cannot partition the
genome into contiguous substrings, because of interweaving base pairs. Thus, we need
a new substructure for simple pseudoknot structures.

We start by defining a total ordering among the base pairs of a simple pseudoknot.
Recall (Definition [3) that a simple-pseudoknot structure M;, j, can be divided into 3
parts: D1 = [io, jo — 1], D2 = [jo, ) — 1], D3 = [}, ko] (See Figure 2l(a)) For each
base pair (i,j) € M, exactly one of ¢ and j is in Dy part. We define an ordering of
the base pairs in M by sorting the coordinate in Ds. Formally, define Ds(¢, 7) for all
(i,7) € M as follows: Da(i,5) = i if (4,7) € Sg, and D2(i,7) = j otherwise. For
each (i,7), (i',5') € M,

(i,5) =p (¢',5) iff D2(i, j) > Da2(i", j')
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Fig. 2. (a) Base pairs in a simple pseudoknot are ordered according to the index of the endpoint
along [jo, j0]. Therefore, (i1,51) > (i2,j2) > (j3,ks) > (ia,54) > (Js,ks) > (jo, ke) >
(é7, j7). (b) Subpseudoknot structure.

As distinct base-pairs do not share any coordinates, >, defines a total ordering on
the actual base-pairs, and can be used to define a partial order on substructures that
we can recurse on. Define a subpseudoknot P (i, j, k) as the union of two subintervals
P, j, k) = [io, i) U [4, k] (Figure[2l (b)). Denote the triple (7, j, k) as the frontier for
P(i, j, k). Note that i¢ is implicit from the context. Suppose that we are aligning frontier
(¢, 7', k") of the query against frontier (4, j, k) of the target, with the score represented
by Bli,j,k,i,j',k']. A naive algorithm would need to consider O(m?3n?) pairs of
frontiers. We improve this as follows: consider the special case of (i/,j') € M where
(7, 7") € SL. The following recursion gives the score for B (proof omitted).

Theorem 1
Bli, j, k4,5, k'] = max{ MATCH,INSERT, DELETE} (1)
MATCH = BJi — 1,5 + 1,k,i' — 1,5 + 1,k'] + 6(q[i'], a[§'], t[4], t[5])
+(ali], t[i]) +~v(als'], D), )

Bli — 1,5, k,i" = 1,5 + 1, k'] + ~(ql&'], t[i]) + ~(qli"], =),

DELETE = max < Bli,j+1,k,3' — 1,5 + LK +~v(qé'], =) +v(als'], tl3]),  (3)
[ 1=+ (ali’] =)

[
[
[

Bli,j k,i' — 1,7 + 1, k' + ~v(qfé
Bl[i — 1]ak ZaJ k} (7/ t[Z])v
INSERT = max { Bli,j+1,k, ¢, 5", k'] + (- t[]) (€]

]
Bli,j, k= 1,4, 5", k'] + ("', t[k])

Note that in every sub-case of MATCH and DELETE, we move from the query frontier
(#,7', k") to the frontier (i’ — 1,5’ + 1,k), because if either i’ or j' is not used, we
cannot score for the pair (¢, j'). In the INSERT case, we stay at the frontier (¢/, j/, k').
The situation is symmetric when (j', k") € S C M, but is not defined when (¢/, j') &
M A (3,k") € M. The key idea for the chaining procedure is that we can define a
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unique frontier to move to in all cases, and still ensure that each nucleotide is touched
by at least one frontier. By starting with a fixed frontier, and always moving to a fixed
child, we only have O(m) frontiers to consider.

From Definition 2] there exist indices j1, jo which divide the simple pseudoknot
structure into Dy, Do and Ds. We choose (j1 — 1, j1, ko) as the root frontier. Note
that P(j1 — 1,71, ko) represents the entire simple-pseudoknot (See Figure Bla)). We
maintain the invariant that if (¢, j, k) is a frontier and j participates in a base-pair, then
the base-pair must be "below’ or within the frontier. In other words, if (i, j) € Si,
then i < 4. Likewise, if (4, k') € Sg, then k¥’ < k. For a frontier (¢, j, k), we have
different cases: for example, if (i’,j) € Sr, we add spurious base pairs (4, 5), (i —
1,7),...(i',j). These base pairs define an ordered set of frontiers (¢,7,k) > (i —
1,5,k) > ..., ,j,k) > (¢’ — 1,5+ 1,k). Likewise, if (4, k") € Sg, we add spurious
base-pairs (4, k), (j,k — 1),...,(J, k'), which define the frontiers (¢,j,k) > ... >
(i, + 1,k" — 1). The chaining algorithm, with a complete listing of cases is described
in Figure Bl The output of chaining is a directed path of ’frontiers’. The number of
nucleotides in a frontier (i, j, k) is given by the expression ((i —ip+1)+(k—j+1)) <
m. Further, this number decreases by at least 1 for each adjacent frontier. Thus the

CHAINING(%, 7, k)

1 ifi=49—1landj >k

2 then return NIL

3 if(i,5) €S

4 thenv = CHAINING(i — 1,5 + 1, k);

5 return CREATENODE(%, j, solid, move(1, 1, 0), v)

6 if(j,k) e S

7 then v = CHAINING(Z,5 + 1,k — 1);

8 return CREATENODE(j, k, solid, move(0, 1, 1), v)

9 ifjeVy

10 then v = CHAINING (7 — 1, 7, k);

11 return CREATENODE(%, j, empty, move(1,0,0), v)

12 ifj e Vg

13 then v = CHAINING(4, j, k — 1);

14 return CREATENODE(j, k, empty, move(0, 0, 1), v)

15 ifie Vg

16 then v = CHAINING(¢, j + 1, k);

17 return CREATENODE (¢, j, empty, move(0, 1,0), v)

18 ifk € Vg

19  thenv = CHAINING(%,j + 1, k); (b) P(i-Lj1. ko)
20 return CREATENODE(J, k, empty, move(0, 1,0), v) P(-1.,j; ko-1)
21 ifi > o P(j1-1.j1 ko-2)
22 thenv = CHAINING(i — 1, j, k); PG- 1) ko)
23 return CREATENODE(%, j, empty, move(1,0,0), v) ’
24 ifi=ig P(ji-1j; ko4)
25 then v = CHAINING(z — 1,5 + 1, k); P@i-1,j;+1 ko-5)
26 return CREATENODE(%, j, empty, move(1,1,0), v) PGi-2,i1+1 kg-5)

27 ifi=1i9—1
28  thenv = CHAINING(Z,j + 1, k);
29 return CREATENODE(j, k, empty, move(0, 1, 0), v)

P(1-3.j1+2 ko-5)

Fig. 3. The chaining procedure on a simple pseudoknot structure M, k. (a) Solid base pairs are
the actual base pairs, dotted ones are the spurious base pairs. (b) Chain structure representing
the simple pseudoknot structure Mj, x,. Solid nodes represents a sub-pseudoknot with frontier
(4,4, k) where (4,7) or (j, k) is an actual base pair. Empty nodes represents a sub-pseudoknot
with frontier (¢, j, k) where neither (4, j) nor (j, k) is an actual base pair.
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(a) ALIGN-SP (M, t[1...n])

1 // M’ is the chain representing the simple pseudoknot region to be aligned in query ¢

2 for allintervals (49, ko) in ¢[1...n]

3 dofor all (4,7, k),ip <i < j < k < ko

4 do for all nodes v € M’

5 doifv € My,
Bli — 1,5 + 1, k, child(v)] + &(q[lv], g[my], t[d], £[5])

+(alls], t[a]) + v(glm. ], t[5]),

6 then B[i, j, k,v] = max § Bli — 1,5, k, child(v)] + y(q[lu], tli]) + v(alm.]," =),
Bli, j + 1, k, child(v)] + v(q[l]," =) + v(alm.], t[j]),
Bli, j, k, child(v)] + v(q[lo],” =) +v(glmo], -

7 ifve M
o Bli.j + 1,k — 1, child(w)] + 5(alm,]. alr.]. ¢3], tK)
+(almo], tli]) + v (alro], tlk]),
8 then B[i, j, k,v] = max { B[i, j, k — 1, child(v)] + v(q[m+],” =) + v(q[ro], t[K]),
Bli, j + 1, k, child(v)] + v(g[m.], tl5]) + v(q[r.],” =),
B[l Jﬁk chlld(v)] +(glmo],” =) +v(alrs],” =)
9 ifv € Mg and move(v) = (1,
Bzfl i, k, child(v)] + ly], t
10 then Bli, j, k, v] = max {B{z j,kjchlld )](+)7](q[7(]q[ ]) (i),
11 ifv € Mg and move(v) = (0,0, 1)
Bli, j, k — 1, child(v)] + ], tk]),
12 then Bli, j, k, v] = max {B{i,g’,k,child(v)](Jr)y](q[:fi[/ 7],) (k])
13 if v € Mg and move(v) = (0, 1,0)
. Bli,j+ 1, k, child(v)] + moy], tlk
14 then B[4, §, k, v] = max {B{Z_ g’,k,child(v)] (+)W](q[7n(v][ 7]) (k]),
g%’”’f ol 44—, il
. i — sk, vl + =", tle]),
15 Bli, j, k,v] = max {B[z +{ k, ] +j/(’7',t[j]),
6 Bli,j, k — 1,v] + v('~', t[k])

17 Bsplio, ko, isp, ksp] = maxj—it1,k=ky { B(%, j, k, RooT(M"))}

(b) IMPROVED ALIGN-SP ()
1 for allv € M’
2 doforip =1ton —1
dofori =190 —1ton — 1
doforj =n + 1downtoi + 1
dofork=j5—1ton
do Compute Bli, j, k, v]

[N B SO

Fig.4. (a) Align-SP procedure for alignment of a simple pseudoknot structure to a target se-
quence t[1...n]. (b) Improved Align-SP procedure.

number of nodes in the chain is O(m). We still need to consider O(n?) target frontiers
in aligning, for a complexity of O(mn?).

4 Alignment Algorithm for Simple-Pseudoknots

Figure [(a) describes the algorithm ALIGN-SP for aligning a simple-pseudoknot to a
DNA substring. Its input is a chain of query sub-pseudoknots, which is aligned to all
sub-pseudoknots P(i, j, k) of the target sequence ¢[1 ... n]. Let M, (respectively Mp)
be the set of solid nodes representing subpseudoknots P(i, j, k) where (i,j) € SL
(respectively, (j,k) € Sg). Let Mg be set of the nodes representing subpseudoknots
P(i, j, k) where neither (¢, 7) &€ Sr, and (j, k) & Sg.

As an example, suppose we are aligning sub-pseudoknot P (4, j, k) in ¢ to the sub-
chain rooted at v. Let BJi, j, k, v] be the score of the optimal alignment. First, we have
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BINARIZE-SP(%, j) @
1 if (4, j) is a simple pseudoknot structure a
2 then return CHAINING (¢, j, pseudo — node, Nil);
3 ifi=3j
4 then return CREATENODE(%, 7, empty, Nil);
5 if(i,j) e M
6 then v = BINARIZE-SP(7 + 1,5 — 1);
7 return CREATENODE (¢, j, solid, v);
8 if (k,j) € M forsome i < k < j
9

then
10 vl = BINARIZE-SP(i, k — 1);
11 vr = BINARIZE-SP(k, j); (b) a
12 (A empty node with 2 children, vl and vr.) b
13 return CREATENODE(%, j, empty, vl, vr);
14 ifi<j ¢
15 then v = BINARIZE-SP(¢,7 — 1); » d
16 return CREATENODE (¢, j, empty, v);

Fig. 5. Binarization procedure revised for embedded-simple-pseudoknots and an illustration. (a)
An embedded-simple-pseudoknot with spurious base pairs added. (b) Resulting binary tree. Solid
nodes correspond to actual base pairs while empty (circular) nodes correspond to spurious base
pairs. A 0O’ represents a pseudonode and subtree rooted at a pseudonode is formed by Chaining
procedure.

cases involving insertion of target nucleotides: t[i], t[j], and t[k], as described by the
recurrence in Figure f(a)(Line 15). Next, we have the cases corresponding to match
or deletion of v. We consider the case v € M, corresponding to the subpseudoknot
P(ly, my,Ty) in g. The following cases can occur

1. (t[d], t[4]) is a pair in ¢ corresponding to the pair (g[l,], ¢[m.,]) in g.
2. q[ly] is substituted with ¢[¢] and g[m,] is deleted.
3. g[m,] is substituted with t[j] and ¢[l,] is deleted.
4. q[l,] and g[m,] are both deleted.
The corresponding recurrences are shown on Line 6 of the procedure. The other
cases are handled in an analogous fashion and are described in Figure @l

5 Alignment Algorithm for Embedded-Simple-Pseudoknots

We consider now the special case of aligning recursive-simple-pseudoknots in which
simple-pseudoknots are embedded in a regular structure. This is by far the most com-
mon occurrence of pseudoknots. While it is relatively easy to extend our algorithms to
handle the full generality of recursive-pseudoknots, the complexity increase makes the
algorithms untractable for real problems. Thus, this special case offers a compromise
between generality and practicality.

The first step in the procedure is to binarize the query RNA, so that every nucleotide
is in a base-pair, and can be represented by a binary tree of size O(m) [24]]. The main
difference is that we invoke the chaining procedure whenever a simple-pseudoknot is
encountered. Thus, in the binary tree, the simple pseudoknot substructure appears as a
chain rooted at a pseudo-node.
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After the binary tree structure M’ of query sequence q is created, target sequence
t is aligned to this tree. The following procedure ALIGN aligns a given subsequence
(t[¢...7]) in target sequence to a subtree of M’. The scores of optimal alignments are
stored in matrix A. The entry A[i, j, v] keeps the optimal alignment of the subproblem
of aligning a subsequence (t[i], t[;]) to the subtree rooted at the node v, in other words
to the subinterval (¢[l,], ¢[r,]) of the query sequence.

6 Complexity

In Align-SP, lines 3 — 15 runs in O(n?) time to align all subpseudoknots in target to a
node. Those lines are executed for each subinterval (i, ko) in target and for each node
in the query tree. Then, time complexity of procedure Align-SP becomes O(mn?).
However, we do not need to compute O(n?) scores for each subinterval (i, ko). Since
ko does not appear in the recurrences of Align-SP procedure and B[i, j, k] does not
depend on BJi’, 5/, k'] such that ' > k, Bl[i,j, k] does not depend on k¢. Thus, it
is enough to compute O(n?) scores for each i as shown in Figure E{(b). Then, total
running time of Align-SP is O(mn?).

In Align procedure in Figure[6] we first call Binarization-SP procedure which runs
in O(m) time. We also call Align-SP procedure whenever we encounter with a pseudo-
node in the binary tree formed. Let m, be the length of the pseudoknot regions in
q[1---m], m; and mgy be the number of the nodes with one child and two children in
the binary tree of g representing the regions with regular structure. Then, the total run-
ning time of Align procedure will be O(m,n* +min? +man?). It is useful to note that
very often, m,, ma € o(m), and so the true complexity is better than the worst case
complexity. Also, in computing good alignments, we can often bound the gap-lengths.

ALIGN (g[1...m], ¢[1...n])
1 M’ = BINARIZE-SP(Q)
2 for allintervals (7, ) in t and all nodes v in M
3 doifwv isNIL )
4 then Ali, j, NTL] = S0, ~(tl1), =)
5 if v is a pseudo node
6 then A[é, j, v] = return ALIGN-SP (3, j, v)
7 ifveM
Afi+ 1,5 — 1, child(v)] + 8(¢[d], t[4], q[lv], q[rv])
A[Zs.] - 15 'U] + 7(/7/’ t[]])
Al +1,4,v] + (=", t[i])
Ali 41, §, child(v) + v (q[lv], ¢[]) + ~v(a[rv], =)
Ali, j — 1, child(v)] + y(g[lv],” =) + v (q[rv], t[5])
Ali, g, v] + v(g[tv],” =) + v(qlrv],” =)
9 ifv € M’ — M and v has one child
Ali, j — 1, child(v)] + v(g[rv], ¢[5])
Alé, 7, child(v)] + v (q[rv]," ")
10 then A[i, j,v] = max { Afi,j — 1,v] +~v('=', t[4])
Al + 1,4, v] + (=", t[i])

8 then A[i, j, v] = max

11 ifv € M’ — M and v has two children
12 then Afi, j,v] = infli({A[Z’ k — 1, left child(v)] + Ak, j, right child(v)]}
1SRST

Fig. 6. Alignment Algorithm for aligning an embedded-simple-pseudoknot g[1...m] to a target
sequence t[1...n]
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To take advantage of this, we employ a banding procedure (details not shown). A dis-
cussion of scoring matrices and gap penalties is deferred to the full-version of the paper.

7 Alignment Algorithm for Standard Pseudoknots

It is possible to extend the algorithm for aligning a simple pseudoknot to an alignment
algorithm for a standard pseudoknot with degree d > 3. In the full version of the paper,
we present an extension of our algorithm for standard pseudoknot structures with degree
4, and achieve the following result:

Theorem 2 The optimal alignment for a standard pseudoknot with degree 4 can be
computed in O(mn*) time which is identical to the degree 3 case (simple pseudoknots).
In general, standard pseudoknots of degree 2k — 1 and 2k can be aligned in O(mn?*)
time.

8 Results

A C++ implementation of the algorithm given for simple pseudoknots (PAL) is done.
PAL takes an RNA query and target sequence, and returns all high scoring structural
local alignments in the target sequence. All tests were performed on a PC (3.4 Ghz,
1 GB RAM) unless otherwise stated. The structure of the target sub-sequence is in-
ferred from the alignment (Ex: Figure[8). In order to assess the performance of PAL, we
tested 6 RNA families from Rfam database: UPSK, Antizyme, Parecho CRE, Corona-
FSE, Corona-pk3 and IFN-gamma. Each of these families has an embedded-simple-
pseudoknot structure. General information about these families are shown in Table [1l

Table 1. 6 Simple Pseudoknotted RNA families. Avg Id stands for the average sequence identity
between two seed members, n for the number of seed members, L for the length, Lp for the
length of the pseudoknot region and ¢ for the average time PAL takes for the alignment of a pair.

RNA Family RfamId Avgld n L Lp  t(sec)
UPSK RF00390 92.78% 4 23 —23 ~ 22 0.0
Antizyme RF00381 83.07% 13 57— 59 ~ 54 12.8
Parecho CRE RF00499 81.99% 5 102—-115 ~ 33 1.4
Corona-FSE ~ RF00507 67.44% 18 79—-85 ~T76 315
Corona-pk3 ~ RF00165 69.42% 14 62—-64 ~56 199
IFN-gamma RF00259 89.83% 5 166 —169 ~ 113 51.7

8.1 Predicting Structure with PAL

To test structural inference, we select a pair of members from a family as the query
and target. PAL is used to align the query to the target. The inferred structure of the
target is compared against the annotated structure in the Rfam database. We evaluate
the predicted structure by computing 7P (true positives), FP (false positives) and FN
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(false negatives), defined as follows: TP is the number of base pairs in inferred target
structure that are correct: FP is the number of base pairs in the inferred structure that
are not in the true structure, and FN is number of base pairs in the true structure that
are not inferred. We define Specificity = TP / (TP + FP) and Sensitivity = TP / (TP +
FN). Good performance is indicated by both being close to 1. Table [2| summarizes the
result of testing each pair in the 6 families. As the results show, PALis a strong predictor
of structure, with mean sensitivity and specificity of 0.95. We also investigated the few
cases in which the prediction was away from the mean. In most of those cases, the target
had stem loops that were longer than the query. As they were not aligned to the query
structure, they were not inferred. In practice, we would augment the inferred structure
by a local extension of stem loops in both directions. A second source of errors was
incorrect annotation in Rfam. Other than these two scenarios, the structure inference
was essentially correct.

There is a second caveat in these results which is not apparent. Many (but not all)
of the sequences have high sequence similarity, which might be making the alignment
task easier. We believe this is because a sequence search tool like Blast is used to fish
out candidates, which are then manually aligned, and experimentally validated. We will
show in the following sections that our tool can pick out candidates that BLAST cannot
find, and also align them structurally. Also, in the cases where there isn’t high sequence
similarity, the structure inference was just as good.

Table 2. Pairwise tests: Statistics for Specificity and Sensitivity values. Mean is the average of
Specificity (Sensitivity) values and median is the mid-point of Specificity (Sensitivity) values
over all seed member pairs in an RNA family.

Specificity Sensitivity
RNA Family Mean StdDev Median Range Mean StdDev Median Range
UPSK 1.000 0.000 1.000 (1.000-1.000) 1.000 0.000 1.000 (1.000-1.000)

Antizyme  0.991 0.020 1.000 (0.941-1.000) 0.991 0.020 0.941 (0.941-1.000)
Parecho 0.951 0.052 0.976 (0.848-1.000) 0.938 0.053 0.952 (0.844-1.000)
Corona-FSE 0.944 0.100 1.000 (0.737-1.000) 0.937 0.105 1.000 (0.737-1.000)
Corona-pk3 0.971 0.053 1.000 (0.765-1.000) 0.968 0.056 1.000 (0.722-1.000)
IFN-gamma 0.937 0.092 1.000 (0.782-1.000) 0.934 0.093 1.000 (0.782-1.000)

8.2 Searching for Structural Homologs

In this test, we use one of the members of an RNA family as a query, and look for
its homolog in a large random sequence, with the other members inserted. Figure [7[(a)
shows the results for the Corona-FSE family, in which 17 members were embedded in
a 19kb random sequence. The windowed scores are shown by solid lines. The actual
positions of the remaining 17 members are denoted by ’*’. We note that the true hits
are easily the highest scoring regions along the sequence, and that all true positives
score higher than all the false hits. The lowest scoring TP has a score of 988 and the
highest scoring FP has a score of 606. Moreover, the random sequence scores do not
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Corona FSE Family Member Search
T T T T

2500 : : :
PAL Search Scores
+  Blast Search Results
2000+ *  Actual Positions B
# Found
15001 | |RNA Family| BLAST PAL
UPSK 3 3
% 1000k | |Antizyme 12 12
@ Parecho CRE| 4 4
500k | |Corona-FSE 4 17
”M Corona-pk3 5 13
or 1 |IFN-gamma 4 4
+ + + +
R T T S S S S S S S S N T T T 2
_50 . . . . . . . . .
0 02 04 06 08 1 12 14 16 18 2
Position X 104
(a) (b)

Fig.7. Use of PAL as a pseudoknot RNA search tool (a) Score plot for Corona-FSE homologue
search. *’ denotes actual positions of the members and '+’ denotes the members located by
Blastn. (b) Comparison against BLAST on other families.

show a large variation. We do not compute P-values on the hits, but in future work,
we will use the distribution of scores on random, or genomic sequence (with differing
GC-content) to compute the P-value. In general, the distribution is not understood, and
we will either use a non-parametric value such as the Chebyshev’s inequality [26]], or
perhaps the Gumbel distribution, which has been shown to be a good approximation
to the actual distribution [[L1]. In contrast, Blastn (E-value 10, Word-size 7) is able to
locate only 4 of the members. These results also show the significance of the secondary
structure for searching homologue in addition to the primary structure. We repeat the
same experiment for RNA families, UPSK, Antizyme, Parecho, Corona-FSE, Corona-
pk3 and IFN-gamma. In all cases, PAL locates all members as the topmost hits (See
Figure[Z(b)). We agree that Blast is not the most appropriate tool for comparison as other
tools such as RSEARCH, and our own tool FastR can search for structural homologs
of RNA [[11}126]. However, these other tools cannot align psuedoknotted RNA and the
search must be followed up with a correct alignment to determine homologs. Also, the
complexity of these methods often force a use of Blast to determine initial candidates.
In the next section, we show that our tool used in conjunction with RNA filters can
efficiently search large genomes.

9 Searching Genomes for Pseudoknots

While PAL is accurate in fishing for structural homologs, it is computationally inten-
sive, making genome scale searches intractable. However, there has been much recent
research (including our own work) on computational filters for RNA, which quickly
eliminate much of the database, while retaining the true homologs [27,26]. We used
PAL in conjunction with sequence based filters [28] to search genomes, for the 3 most
interesting families.
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Query: Human chromosome 12, minus, 66839786 - 66839618
Subject: Mouse chromosome 10, plus, 118018890-118019061

,,,,,,, AAAAANA<<<<<<<< L <<, . <KL L, L L <<,
Query: CAUUGUUCUGAUCAUCUGAAGA-------—— UCAGCUAU--U--AGAAGAGAAAGAUCAGUUA
H 4R Kpp pRpkppgk ‘|+***+ | EE | * kKKK |
Sbjct: CA----- GAGAGGUGCAGGCUAUAGCUGCCAUCGGCUGACCUAGAGAAG--ACACAUCAGCU-
....... AAAAAAASKKKKK<K< L n e .. WSS, L L L L L <KL, L L L <K<,
<<<, . <<<<,...0830080A .+ ... SS5> 55335 53553> L (33333 . 553>3>> ., ., . >
Query: AGUCCUUUGGACCUGAUCAG-CUUGAUACAAGAACUACUGAUUUCAACUUCUUUGGCUUAAUU
++*||****|| I Hl” ‘**++|++* P *| *k Kk pokkky *
Sbjct: GAUCCUUUGGA--CCCUCUGACUUGAGACAGAAGUUCUGGGCUUCUCCUCCUGCGGCC----U
<<<L . <<<<, .. .33303338 . e e 00 .. SEZ> . EEEEEEE5> . L 3>3>> . >3>>> L L L >
>> . >>3>55>5KL, ., <K<K ... S555> ., . <<<K<K L L. .233> L. S5>>>>>
Query: CUCUCGGAAACGAUGAA--AUAUACAAGUUAUAUCUUGGCUUUUCAGCUCUG---CAUCGUU
++‘**+**+ *Jr***‘l * +a<‘| * 4 x H‘****ll |****H *kkypk K
Sbjct: AGCUCUGAGACAAUGAACGCUACACA--CUGCAUCUUGGCUUUGCAGCUCUUCCUCAUGGCU
>> . 55555<<<<<<< L L L L <<<<< L L. S>>>>, L <<<<L L L.33>> ... >>>>>>>

Start codon

Fig. 8. Structural alignment of the Human Interferon-y pseudoknot against mouse upstream ge-
nomic DNA. The structure of the query is denoted by parenthesis <,>" , and "A,a” for the
pseudoknot. The symbols describe the conservation: (*) sequence and structure is conserved. (+)
structure is conserved but not sequence. (|) sequence is conserved, but not structure.

The Corona-FSE family (RF00507) is a conserved pseudoknot in Coronaviruses
which can promote ribosomal frameshifting [29]. We searched the entire Viral genome
(79 Mb) for homologs of this family in 33.8 CPU hours on 1.6GHz AMD Opteron
Grid, and identified 11 novel members of the sub-family. Like other known members,
these are found in coronaviruses, murine hepatitis virus, and Avian flu viruses. Only 2
of the 11 were similar enough in sequence to be identified by BLAST. The alignments
can be retrieved from (http://www.cse.ucsd.edu/~bdost/RF00507.htm). A similar result
was obtained for Corona-pk3. This family has a conserved ~ 55nt pseudoknot structure
which has been shown to be necessary for viral genome replication [30]. We identified
20 novel members of this family with significant scores (See http://www.cse.ucsd.edu/
~bdost/RF00165.htm). Only 1 of the 20 was similar enough in sequence to be identified
by BLAST.

The Interferon-gamma family is an interesting example of a pseudoknot that is
found in the 5°UTR of the Interferon-gamma gene. It regulates translation of the down-
stream gene by binding to the kinase PKR, a known regulator of IFN-gamma trans-
lation [31]]. After its discovery in 2002, the pseudoknot was found to be conserved in
many mammals. Its presence in rodents was speculated, but the homolog was not lo-
cated. We searched in mouse and rat genomic DNA, and in the complete gene of gerbil.
In all 3 species, we clearly identified the homologs as the top-scoring alignment. The
alignment of human and mouse pseudoknots are shown in Figure [l The conserved
location in the two species, just upstream of the start codon, and conservation of key el-
ements validates the hit. We are working with collaborators on experimental validation,
and to locate more members of this family.

In conclusion, we demonstrate that the algorithm for aligning pseudoknots, imple-
mented as PAL represents a viable tool for searching for novel homologs, and for struc-
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tural inference. We hope that our tool will help increase the impact and influence of
pseudoknotted RNA in cellular function. PAL and supplemental data are available upon
request.
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