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Abstract. In this paper we present an RSA backdoor that, for exam-
ple, can be used for a hardware-based RSA key recovery system. The
system is robust in the sense that a successful reverse-engineer is not
able to obtain previous nor future RSA private keys that have been/will
be generated within the key generation device. The construction employs
the notion of two elliptic curves in which one is the “twist” of the other.
We present a proof in the random oracle model that the generated RSA
key pairs that are produced by the cryptographic black-box are com-
putationally indistinguishable (under ECDDH) from “normal” RSA key
pairs, thus ensuring the integrity of the outputs. Furthermore, the se-
curity level of the key recovery mechanism is nearly identical to that of
the key pair being generated. Thus, the solution provides an “equitable”
level of security for the end user. This solution also gives a number of
new kleptographic applications.

Keywords: Key recovery, Diffie-Hellman, Decision Diffie-Hellman,
SETUP, tamper-resistance, RSA, black-box ciphers, elliptic curve cryp-
tography, twist on elliptic curves.

1 Introduction

The ability to be able to perform recovery is a necessity for large organizations
that need timely access to encrypted information assets. Conventional solutions
to the problem often involve the use of PKCS #12 files to store private keys for the
long-term in encrypted envelopes. For the RSA cryptosystem, it has been shown
that the transmission channel that exists in composites can be used to implement
a key recovery system that is transparent with respect to the end user [28], thereby
elimating the need for numerous PKCS#12 files and similar storage methods.

In this work we present a new and space efficient RSA [24] key recovery
system/backdoor in this transparent model that has a running time that is faster
than all previous approaches. Recall that a secretly embedded trapdoor with
universal protection (SETUP) in RSA key generation utilizes the public key of
the designer to “display” an asymmetric ciphertext in a channell in composites
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[9], thereby allowing an authorized escrow authority to access the RSA private
decryption key of the key owner. Furthermore, the reverse-engineer who breaches
the black-box and learns its internals is unable to factor the public keys of those
who used the key generation black-box.

The primary technical motivation of this work is the following. First, it is
a way to assess the consequences of elliptic curve (EC) technology in regards
to constructing hardware-based key recovery for RSA and related technologies.
The reason why current RSA SETUPs are deficient is the following. The first
RSA SETUP [28] in RSA-1024 that was presented in 1996 is no longer secure
since it requires that the designer’s embedded public key be 512-bits in size. The
security parameter of the designer’s public key is half that of the RSA key being
generated. So, the user’s 1024-bit key ends up being no more secure than RSA-
512 with respect to the reverse-engineer. This problem results from the fact that
a subexponential time algorithm is known that solves the integer factorization
problem and this leads to “bulky” embedded RSA ciphertexts (decryptable only
by the designer). Recall that in 1996 the 430-bit RSA composite for the RSA-
130 factoring challenge was solved [6] while the tougher challenges remained
unsolved A In December 2003, the 576-bit RSA composite RSA-576 was factored
[23]. So, whereas it was conceivable in 1996 that a 512-bit modulus provided
some security, this is certainly not the case now.

What this means is that there is currently no known way to implement a secure
SETUP in RSA-1024 key generation. In this paper we solve this practical prob-
lemB In fact, the use of a pair of twisted elliptic curves leads to a solution that
is so space efficient that it can be used to build a SETUP in RSA-768 key gen-
eration as well, provided that a sound cryptographic hash function is available.

Another technical motivation relates to run-time efficiency. It has been noted
that care must be taken to define the ensemble from which each of the RSA
primes p and ¢ is chosen and ensure that the SETUP conforms to this ensemble
[27,[8]. An approach to doing so was presented [27] and we follow this approach.
However, the expected number of primality tests in [27] is about O((log p)?) (due
to the Prime Number Theorem). So, a second technical motivation is to develop
a recovery system that produces primes drawn from the correct distribution
while achieving an expected number of primality tests that is about O(log p) as
in normal key generation. Our technical contributions are as follows:

1. We present the first strong SETUP that is secure for RSA keys as small
as 768 bits (given the current strengths of factoring and ECC and given a
suitable hash function) and that has O(log p) expected primality tests.

2. We present the first SETUP in RSASSA-PSS that permits a 20-bit mes-
sage to be securely transmitted within the 160-bit padding field. This is
more robust than a straightforward channel [25], since previously transmit-
ted messages remain confidential (they are asymmetrically encrypted) even
after reverse-engineering.

2 At that time RSA Inc. used decimal to title their challenges.
3 To eliminate any possible confusion: “the problem” is one that the designer faces.
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A strong SETUP in RSA key generation [29] permits the key generation
“devices” (either hardware or software) to be manufactured identically (there
is no need for unique identifier strings). Consider the setting in which some
fraction of the deployed RSA key generators have the SETUP in them. A strong
SETUP makes the following possible: even if one of the devices with a SETUP is
reverse-engineered it is still not possible, given only oracle access, to distinguish
the remaining devices that have been SETUP from the “good” ones[]

The SETUP is made possible by the use of the elliptic curve Diffie-Hellman
(ECDH) key exchange algorithm. To date there is no publicly known subex-
ponential algorithm for solving the elliptic curve discrete logarithm problem
(ECDLP) [14]. As a result an ECDH key exchange value is very small, partic-
ularly when point-compression is used. This allows us to overcome the bulky
ciphertext that results from “displaying” an RSA ciphertext in the channel in
RSA composites, thereby allowing us to build a secure SETUP in RSA-1024 key
generation. In a nutshell our SETUP carries out a ECDH key exchange between
the device and the designer to permit the designer to factor the RSA modulus
that is produced. To achieve the indistinguishability requirements of a strong
SETUP two elliptic curves are used, one which is a “twist” of the other.

2 Background, Definitions, and Notation

A number of SETUPs in RSA key generation have been presented [28,[29]27].
Also, approaches have been presented that emphasize speed [§]. This latter ap-
proach is intended to work even when Lenstra’s composite generation method
is used [20] whereas the former three will not. However, all of these approaches
fail when half of the bits of the composite are chosen pseudorandomly using
a seed [28] (this drives the need for improved public key standards, and forms
a major motivation for the present work). It should be noted that [§] does not
constitute a SETUP since it assumes that a secret key remains hidden even after
reverse-engineering.

We adapt the notion of a strong SETUP [29] to two games. For clarity this def-
inition is tailored after RSA key generation (as opposed to being more general).
The threat model involves: a designer, an eavesdropper, and an inquirer.

The designer builds the SETUP into some subset of all of the black-box key
generation devices that are deployed. The goal of the designer is to learn the
RSA private key of a user who generates a key pair using a device contained in
this subset when the designer only has access to the RSA public keys. Before the
games start, the eavesdropper and inquirer are given access to the SETUP algo-
rithm in its entiretyﬁ However, in the games they play they are not given access
to the internals of the particular devices that are used (they cannot reverse-
engineer them).

4 Timing analysis, power analysis, etc. are not considered here, but should be considered
in future work. Our goal is to lay the foundation for building a SETUP in RSA keys
wherein the security parameter of the user RSA key is at the lower end of being secure.

5 e.g., found in practice via the costly process of reverse-engineering one of the devices.
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Assumptions: It is assumed that the eavesdropper and inquirer are probabilis-
tic poly-time algorithms and that the RSA key generation algorithm is deployed
in tamper-proof black-boxes. It is traditional to supply an RSA key generator
with 1% where k is the security parameter (for theoretically meaningful run-
times). However, for simplicity we assume that the generator takes no input and
that the security parameter is fixed. It is straightforward to relax this assump-
tion. Let D be a device containing the SETUP mechanism.

Game 1: Let A and B be two key generation devices. A has a SETUP in it and
B does not (B is “normal”). One of these is selected uniformly at random and
then the inquirer is given oracle access to the selected machine. The inquirer
wins if he correctly determines whether or not the selected device has a SETUP
in it with probability significantly greater than 1/2.

Property 1: (indistinguishability) The inquirer fails Game 1 with overwhelming
probability.

Game 2: The eavesdropper may query D but is only given the public keys that
result, not the corresponding private keys. He wins if he can learn one of the
corresponding private keys.

Property 2: (confidentiality) The eavesdropper fails Game 2 with overwhelming
probability.

Property 3: (completeness) Let (y,x) be a public/private key generated using
D. With overwhelming probability the designer computes = on input y.

In a SETUP, the designer uses his or her own private key in conjunction with y to
recover x. In practice the designer may learn y by obtaining it from a Certificate
Authority.

Property 4: (uniformity) The SETUP is the same in every black-box crypto-
graphic device.

Property 4 implies that there are no unique identifiers in each device. The impor-
tance of a strong SETUP then, is that it permits the distribution of a compiled
binary program in which all of the instances of the “device” will necessarily be
identical without diminishing the security of the SETUP. In hardware imple-
mentations it simplifies the manufacturing process.

Definition 1. If an RSA key generation algorithm satisfies properties 1, 2, 3,
and 4 then it is a strong SETUP.

A method for displaying asymmetric ciphertexts in a fashion that is indistin-
guishable from random bit strings was put forth in [29]. This is accomplished
using the probabilistic bias removal method which was also employed in [I]. Other
recent work in this area includes [21].

The present work utilizes the notion of a “twist” on an elliptic curve over IF,.
For typical elliptic curves used in cryptography (e.g., the curves in FIPS 186-2)
only about half of IF'; corresponds to x-coordinates on a given curve. However, by
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utilizing two curves—one which is a twist of the other, it is possible to implement
a trapdoor one-way permutation from IF, onto itself. The notion of a twist has
been used to implement these types of trapdoor one-way permutations which
have the (conjectured) property that inversion is exponential in the security
parameter [19]. For the RSA permutation inversion is subexponential in the
security parameter.

The notion of a twist has also been used to implement strong pseudorandom
bit generators and to achieve a simple embedding of plaintexts in the EC version
[I7I8] of ElGamal [I2]. Recently, twists have been shown to be useful in the
problem of implementing a PKCS in which the ciphertexts appear to be uni-
formly distributed bit strings [21]. In a related fashion, we use the notion of a
twist to produce Diffie-Hellman (DH) [10] key exchange values that appear to
be uniformly distributed bit strings.

The following is some notation that is used. Let A @ B denote the bitwise
exclusive-or of bit string A with bit string B where |A| = |B|. Let = y denote
that the integer x is approximately equal to y. Let x € S denote the selection
of an element x uniformly at random from set S. Uppercase is used to denote a
point on an elliptic curve and lowercase is used to denote the multiplicand. So,
P = kG denotes the EC point P that results from adding the point G to itself
k times. Let #E,3(IF;) denote the number of points on the elliptic curve Eq
that is defined over IF;. In the pseudocode that is provided, logical indentation
will be used to show flow-control (e.g., the body of an “if” statement is indented
to the right).

3 System Setup

The key generation algorithm utilizes a pair of binary curves. Each curve is de-
scribed by the Weierstrass equation E, j, given by y% +zy = 2%+ az?+b. Here the
coefficients a and b are in IFom and b # 0. We use the standard group operations
for binary elliptic curve cryptosystems. The value m should be an odd prime to
avoid the possibility of the GHS attack [13]. Also, these curves must provide a
suitable setting for the elliptic curve decision Diffie-Hellman problem (ECDDH).
We mention this since for certain elliptic curves, DDH is tractable [16].

It is well known that Hasse’s inequality implies that |[#E, p(IFom) —2" — 1| <
2 % 2™/2. Recall that if the trace Tr,.. /r,(a) # Trp,. /i, (a’) then E,; and
Eq b are “twists” of one another. When two such curves are twists of one another
then for every z € IFam there exists a y € IFam such that (x,y) is a point on
E,p or Ey 3. The two possibilities are as follows. Either (z,y) and (z,z +y) are
points on the same curve or (z,y) = (0, /) is on both curves.

The sum of the number of points on both curves is given by #Eq p(IFom) +
#E, p(IFom) which is equal to 2™+ + 2. Tt follows from Hasse’s inequality that
# By (Fom) ~ #Eq (Fam) ~ 27,

Since m is odd Trp,,, /¥, (0) = 0 and Tr,,, ;r,(1) = 1. So, we use Eyp and
E1 3 as a pair of twisted curves. It remains to choose suitable curves that resist
known cryptanalytic attacks (e.g., satisfying the MOV condition). Using point-
counting techniques it is known how to efficiently generate two curves Ey; and
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E1, with orders 4¢qp and 2q;, respectively, where gy and ¢; are prime. Ey; will
have a cofactor of 4 and F; ; will have a cofactor of 2.

Once two such curves are found, a base point GGy having order gg that is
on Epp(IFam) is found as well as a base point G having order ¢; that is on
E15(IFom). Using these base points, the designer generates the EC private key
xo €r {1,2,...,q0 — 1} and corresponding public key Yy = z¢Gy. The designer
also generates 1 €r {1,2,..,q1 — 1} and corresponding public key Y1 = 21G1.
The values (Go, G1, Y, Y1) are included in the RSA key generation device.

4 Building Blocks

By using point compression, the SETUP is able to make efficient use of space.
The ECC point will be embedded in the upper order bits of the RSA modulus
that is being SETUP using a well known channel in composites (see [28]). A
point (x,y) on the binary curve over IFom can be uniquely expressed using m + 1
bits [26]. The compressed point is (x, ybit) where ybit € {0,1}.

We define PointCompress(E, 1, P) to be a function that compresses the point
P = (z,y) on curve E,; and outputs (x || ybit) which is the compressed rep-
resentation of (x,y). Also, we define PointDecompress(E, ,,x || ybit) to be a
function that decompresses (z || ybit) and outputs (P, w). If w = 1 then P is the
decompressed point on the curve E, ;. If w = 0 then (x, ybit) is not a point on
the curve E, ; and P is undefined.

The following algorithm is used to generate the DH key exchange parameter
and the DH shared secret. The algorithm effectively conducts an ECDH key
exchange between the device and the designer wherein: the shared secret is used
to generate one of the RSA primes, and the public DH paramter is displayed in
the upper order bits of the published RSA modulus. The function below returns
the public and private strings that the device uses for this “key exchange.”

GenDHParamAndDHSecret():

Input: none

Output: Spup, Spriv € {0,137+

1. with probability 42‘,1,34:11 set a = 0 and with probability 22’{,1;11 set a =1

if £ =1 then set P = Q

if u € {2,3} then choose Q1 randomly such that Q = 2Q;
and set P = (4

9. if a =1 then

10.  if g€ {2,3} then set P = Q

11. set spyup = PointCompress(Eq 3, P)

12. set spriy = PointCompress(E, 5, kY,) and return (Spup, Spriv)

2. choose k uniformly at random such that 0 < k < ¢,
3. choose p € {0,1,2,3}

4. set P = kG,

5. solve for @ such that P = 2@ and @ has order 2q,
6. if a = 0 then

7.

8.
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The “public” DH key exchange value is sp,,. The shared secret is spri». The
following is used to recover the shared secret.

RecoverDHSecret(spup, o, 21):

Input: spup € {0,1}™F! and EC private keys xg, 21

Output: sy € {0,1}mH1

l.set v=0

2. (P1,w) = PointDecompress(Eq 1, Spub)

3. if (w = 0) then

4. compute (P1,w) = PointDecompress(E1 4, Spub)

5 set v =1

6. set P, = 2°P; where i € {0, 1,2} is the smallest value making P;
have prime order

7. compute P, = x,P;

8. return sppi, = PointCompress(E, 5, Ps)

Let T4 be the set of all permutations from {0, 1}? onto itself. We assume that
¢ is even. The SETUP utilizes the family of permutations 7 : {0,1}¢ — {0,1}¢
for i =1,2,3, ... where my is chosen randomly from ITy. We assume that mp and
Ty L are efficiently computable public functions (e.g., they are oracles). Given
a random oracle H this family can be constructed. (We assume the Random
Oracle model).

In practice this family can be heuristically implemented using strong cryp-
tographic hash functions. For instance, let H : {0,1}* — {0,1}'% and F :
{0,1}* — {0,1}15° be distinct cryptographic hash functions.

m320(7):

Input: z € {0,1}3%°

Output: y € {0,1}3%°

1. let x, and x, be bit strings such that x = x,, || 2¢ and |z, | = 160

2. return y = (2, @ Faxe D H(xy))) || (xe P H(zw))

320(2): ,

Input: y € {0,1}320

Output: z € {0,1}320

1. let y, and yg be bit strings such that y = y,, || y¢ and |y,| = 160

2. return = = (y, D F(ye)) || (ye D H(yu B F(ye)))

Note that the transformations (g, 7, 1) are similar to the padding scheme
used in RSA-OAEP [3].

The following defines the “public” specification of allowable RSA primes. This
definition requires that each of the two most significant bits be set to 1.

IsAcceptablePrime(e, len, p1):

Input: RSA exponent e, required bit length len of p;, candidate prime p;
Output: true iff p; is an acceptable prime, false otherwise

1. if (|p1| # len) then halt with false

2. if the two uppermost bits of p; are not 115 then halt with false
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3. if p; is composite then halt with false
4. if (ged(pr — 1,e) # 1) return false else return true

Let R : {0,1}* — {0,1}°° be a random oracle as defined in [2]. The function
GetBlock(str, i, £) returns ¢ consecutive bits of bit string str. The first such bit
is the bit at bit position ¢ of str. The bits are ordered from left to right starting
with 0. For example, if str = R(s) = 01101001... then GetBlock(str,0,4) = 0110,
GetBlock(str,1,4) = 1101, and GetBlock(str,4,4) = 1001.

GenPrimeWithOracle(s, len, e):

Input: s € {0,1}™"1 required bit length len, RSA exponent e.
Output: Acceptable RSA prime p; such that |p;| = len

l.set =0

. let u = GetBlock(R(s),j T, T)

. choose £ €p {0, 1}len=T

. let py be the integer corresonding to the bit string u || £

. if (IsAcceptablePrime(e, len, p1) = true) then output p; and halt
.set 7 =4+ 1 and goto step 2

S T W N

The RSA modulus of the user is n = p1q;1. We require that |n|/4 < T < len.
A selection for T is given in Section [5

5 Application 1: Elliptic Curve SETUP in RSA Key
Generation

N/2 is the size in bits of each prime in n and e is the RSA exponent (this
variable ¢ is different from the elliptic curve value ¢; and should be clear from
the context). For simplicity we assume that N is even.

GetPrimesn e(Spub, Spriv):

Input: Spup, Spriv € {0, 1} !

Output: A pair of acceptable RSA primes (p1,q1)

1. set p1 = GenPrimeWithOracle(spriv, N/2,¢€)

. choose sg € {0,1}0~(m+1)

. compute t = mg(so || Spus)

. choose 12 € {0, 1}V

.set ne=(t || re)  /* 0+ |ra] bits long */

. solve for (q1,r.) in n. = q1p1 +r.  /* find quotient ¢; */
. if (IsAcceptablePrime(e, N/2, ¢1) = false) then goto step 2
. output (p1,¢1) and halt

00 J O Ui W N

Since algorithm KleptoKeyGeny ¢ is deployed in this exact form in all black-
box devices, Property 4 of a strong SETUP holds.

KleptoKeyGenp e():
Input: none
Output: A pair of acceptable RSA primes (p1,q1)
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1. (Spubs Spriv) = GenDHParamAndDHSecret()
2. output (p1,¢1) = GetPrimesn e(Spub, Spriv) and halt

Once p; is found in step 1 it does not change. From the Prime Number
Theorem it follows that the expected number of primality tests is O(log n), the
same as in normal RSA key generation. Coppersmith showed that if the |n|/4
significant bits of p; are known then n = p1¢; can be efficiently factored [7]. For
typical RSA key generation we can use T = |n|/4 in the SETUP. So, we use
Coppersmith’s method to factor n given the resulting upper order bits.

The value M AX is used to prevent the recovery algorithm from running for
too long when it is supplied with an RSA private key that was not generated
using the SETUP (e.g., a normal RSA key). By taking M AX = [];' * 160+In 2]
it follows that if the SETUP was used then the factorization will be found with
overwhelming probability.

KleptoRecoveryKeyn e(n, 2o, 1):

Input: the user’s RSA modulus n and EC private keys (zq, z1)
Output: Factorization of n = py1q; or “failure”

1. let ns be n represented as a binary string

2. let t = GetBlock(ns, 0,6)

3. let ty be the integer corresponding to ¢

4. for B =0 to 1 do:

5. set to =ty + [ mod 2¢

6. let t3 be the bit string corresponding to to

7. set spup = GetBlock(m, ! (t3),0 — (m +1),m + 1)

8. s = RecoverDHSecret(spup, To, 1)

9. set 7 =0

10.  let u = GetBlock(R(s),j «T,T)

11.  Attempt to factor n = p1q1 by supplying (u,n) to Coppersmith’s

algorithm [7] and halt with the factorization if it is found
12. setj=j5+1
13. if j < M AX then goto step 10
14. output “failure” and halt

The reseason that 3 is used is to account for a potontial borrow bit being taken
from the upper order bits in n, during the computation of n = n,—r. = q1p1. A
possible configuration of the attack is N = 768, m = 191, and 6 = 320. Observe
that 768/2 — 320 = 64. So, it is not likely that ¢ will have a borrow bit taken
from it. It is not hard to see that Property 3 holds. The security of the SETUP
is proven in Appendix [Al

6 Application 2: Hardware Based Key Escrow

The strong SETUP from Section [l can be used to implement a lightweight
hardware-based key escrow system. The EC private keys (zg, z1) are retained by
a key recovery authority or may be shared using threshold cryptography among
a set of trusted key recovery authorities.
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The SETUP is implemented in the hardware devices of the users. The presence
and details of the SETUP is publicly disclosed. To recover a given user’s RSA
private key, the escrow authority or authorities need only obtain the public key
of the user to derive the corresponding private key.

7 Application 3: SETUP in RSASSA-PSS

We now present a SETUP in RSASSA-PSS [22] when RSASSA-PSS utilizes
SHA-1. Recall that the RSASSA-PSS signature scheme is a Provably Secure
Signature (PSS) scheme [4] that constitutes a Signature Scheme with an Ap-
pendix (SSA). This scheme is compatible with the IFSSA scheme as amended
in the IEEE P1363a draft [15].

For concreteness we set m = 139. The use of IF9139 is based on the fact that the
most recently solved binary EC discrete-logarithm challenge was ECC2-109 [1%
and currently one of the easiest open challenges from Certicom is ECC2-131
So, we are admittedly cutting it close.

The encryption and decryption algorithms utilize the cryptographic hash
function H : {0,1}* — {0,1}?°. The plaintext space is {0,1}?° and the cipher-
text space is {0,1}16°. The asymmetric encryption algorithm Ejg0(m) operates
as follows. Let m € {0,1}?° be the plaintext message. First, E169 computes the
value (Spub, Spriv) = GenDHParamAndDHSecret(). It then hashes spri, by com-
puting pad = H (Spriv). The asymmetric ciphertext is ¢1 = (spup || (pad @ m)).

The decryption algorithm Digo(c1) operates as follows. It extracts spyp from
the asymmetric ciphertext c;. Algorithm Dy then computes the value sp,;, =
RecoverDHSecret(spup, €0, x1). It then computes pad = H(sprip). This pad is
then XORed with the 20 least significant bits of ¢; to reveal m.

The following is the SETUP in RSASSA-PSS. The signing algorithm can be
used to transmit any 20 bits of information m (e.g., bits of the RSA private key,
bits of a symmetric key, etc.) through RSASSA-PSS. It does so by computing
¢1 = E1e0(m) and using ¢; as the random 160-bit “salt” in RSASSA-PSS. The
salt/ciphertext is pseudorandom and can be recovered by anyone that is able
to perform digital signature verification. However, only the designer who knows
(zo, 1) can decrypt the salt and recover m.

Note that (E160, D16o) is malleable and so does not achieve rigorous notions of
security for a PKCS. To see this note that an active adversary can flip plaintext
bit ¢ where 0 < i < 19 by XORing “1” with the corresponding ciphertext bit.

However, for many applications this asymmetric cryptosystem may provide
sufficient security. In the SETUP in RSASSA-PSS, an active adversary that
changes a bit as such will with overwhelming probability invalidate the signature.
So, in this application of E169 non-malleability is achieved.

This SETUP differs in a fundamental way from most channels since confiden-
tiality of m holds even if the cryptographic black-box is opened and scrutinized.
Also, the approach of [2I] cannot be used to implement this since it involves a

5 There is an open Koblitz curve challenge called ECC2K-130 as well.



138 A. Young and M. Yung

hash field. This hash makes security against chosen ciphertext attacks possible,
but causes the minimum-length ciphertext to exceed 160 bits.

This SETUP applies equally well to the padding field in RSA-OAEP. In that
scenario the designer must solicit an encrypted message from the user (since
in general OAEP padding is not publicly obtainable). In this scenario, when
a message is signed and encrypted using PKCS #1, it is possible to transmit
20 + 20 = 40 bits in a SETUP. This is enough transmit a 64-bit key used by the
user to secure other communications. Also, if the channel is repeated a constant
number of times many cryptographic secrets can be transmitted (while being
protected against reverse-engineering).

8 Conclusion

We presented a key recovery system for factoring based cryptosystems that uses
elliptic curve technology. Specifically, we updated SETUP algorithms for use
with RSA-1024. The SETUP achieves the notion of a strong SETUP and employs
the notion of twisted elliptic curves in a fundamental way. Finally, we showed a
SETUP in RSASSA-PSS and pointed out that the RSA digital signatures that
result have the added advantage of providing non-malleability of the SETUP
ciphertexts.
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A Security

In this section we prove that indistinguishability and confidentiality holds. Not
surprisingly, indistinguishability holds under the ECDDH assumption. The re-
duction algorithms utilize point halving (where we are interested in halving point
B to obtain a point C' having composite order where B = 2C).

A.1 Indistinguishability

The proof below randomizes 3-tuples (see [5]).

Claim 1: (Random Oracle Model) If ECDDH is hard then the SETUP produces
prime pairs that are computationally indistinguishable from RSA prime pairs.
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Proof: (Sketch) It will be shown that if the SETUP produces primes that are
computationally distinguishable from pairs of RSA primes then ECDDH is easy.
So, let D be a distinguisher that distinguishes pairs of primes from the SETUP
from pairs of normal RSA primes.

Let t = GetBlock(ns,0,0) where ng is p1q1 represented as a binary string.
Consider s = GetBlock(m, ' (t),0 — (m+1),m+1). Note that s is on exactly one
of the two twisted curves. There are 3 possibilities. Either,

1. D distinguishes with non-negligible advantage for such points s on Eg ,(IFam)
but with negligible advantage when such points s are on Ej (IFgm ), or

2. D distinguishes with negligible advantage for such points s on Eg ;(IFam)
but with non-negligible advantage when such points s are on Eq ,(IFom ), or

3. D distinguishes with non-negligible advantage for such points s that are on
Eo’b(ﬂ:—“gm) or El’b(IFQm).

Without loss of generality suppose that case (1) holds (a similar reduction ar-

gument holds for case (2)). For case (1) it follows that D distinguishes with

probability greater than é + t‘}l for some fixed a7 > 0 and sufficiently large ¢;.
1

Consider machine M that takes as input an ECCDH problem instance given
by (A1, As, Gy, m,b) = (a1Go, a2Go, Go, m, b) where G has order ¢p and a1, a2 €
{1,2,...,q0 — 1}. The problem is to compute aja2Gy.

Ml(Al, AQ, G(), m, b)
Input: points A;, Ay each having order go that are on curve Eg p(IFgm ),
base point Gy, EC parameters m and b
Output: point P having order gy on curve Eg j(IFam)
choose uy,uz €r {1,2,...,q0 — 1} and p € {0,1,2,3}
set (Bl,BQ) = (U1A1,U2A2)
set C1 = B;
solve for Cy in By = 2C5 such that Cs has order 2qq
choose C3 in Cy = 2C5 randomly (C3 has order 4qq)
if £ =1 then set C; = Cy
if u € {2,3} then set C1 = Cs
set Yo = Bs
set Spup = PointCompress(Ey 3, C1)
0. choose spriy to be a random compressed point on Eg p(IFam )
having order qo
11. randomly choose a base point G having order ¢; that is on E 5(IFam)
12. choose 21 € {1,2,...,q1 — 1} and set Y; = 1G4
13. compute (p1,q1) = GetPrimesy e(Spup; Spriv)
14. set L to be the empty list
15. step through the operation of D(p1, ¢1, Go, G1, Yo, Y1, m, b) while trapping
all calls to R, and for each call to R, add the argument to R to L
16. if L is non-empty then
17. choose s €r L and compute (P, w) = PointDecompress(Ey p, )
18. if (w=1) then

200N Ok =
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19. if P has order gy then output (ujuz)~!P and halt
20. output a random point with order gy on Eg,(IFom) and then halt

Clearly the running time of M;j is efficient. Note that D makes at most a
polynomial number of calls to random oracle R. So, the number of elements in
L is at most pa(m) where po is polynomial in m.

Consider the algorithm My that takes as input an ECDDH problem instance
(A1, As, As, Go,m,b) = (a1Go, a2Go, asGo, G, m,b) where Gy has order ¢y and
ai,as,as € {1, 2, ...,q0 — 1}.

Mg(Al, Ag, Ag, Go, m, b)
1. choose uy,uz,v €g {1,2,...,q0 — 1} and p € {0,1,2,3}
2. set (Bl,BQ,Bg) =
(UAl + UlGo, As +usGo, VA3 + u1 As + vus Ay + 7.L1U2G0)
3. set C1 = By
4. solve for C in By = 2C5 such that Cy has order 2qq
5. choose C3 in Co = 2C5 randomly (C5 has order 4qy)
6. if =1 then set C; = Cy
7. if p € {2,3} then set C1; = Cs
8. set Yy = By
9. set spup = PointCompress(Ey 5, Ch)
10. set Sppiy = PointCompress(Ey p, Bs)
11. randomly choose a base point G having order ¢; on curve Eq ,(IFom )
12. choose 1 €r {1,2,...,q1 — 1}
13. set Y7 = 1G4
14. compute (p1,q1) = GetPrimesy e(Spups Spriv)
15. return D(p1, q1, Go, G1, Yy, Y1, m,b) and halt

Clearly the running time of My is efficient. Observe that if (A, As, A3) is
an EC Diffie-Hellman triple then (B, B2, Bs) is an EC Diffie-Hellman triple. If
(A1, As, Ag) is not an EC Diffie-Hellman triple then (Bj, B2, Bs) is a random
3-tuple. If the input is not an EC Diffie-Hellman triple then with probability
(I —=~1(m)) the tuple (By, Be, B3) will not be an EC Diffie-Hellman triple. Here
~1 is a negligible function of m. Thus, with overwhelming probability (B1, Ba, B3)
matches the input 3-tuple in regards to being a DH triple or not.

Let 1 — vo(ko) denote the probability that s (recall that we are considering
case (1)) corresponds to the EC Diffie-Hellman key exchange value[] Here 7 is
a negligible function of kg.

Let pirqp denote the probability that D calls R with the DH shared secret
corresponding (Bi, Bz). There are two possible cases. Either, (1) pyrap > t;12

for some fixed ap > 0 and sufficiently large ta, or (2) pgep < y(m) where 7

is a negligible function of m. If it is case (1) then M; solves the elliptic curve

Diffie-Hellman problem with probability at least (é + til ) o (1m) (1=0(ko)) t'}Q .
1 2

If it is case (2) then My solves the ECDDH problem with probability at least

" A borrow bit can be taken and prevent s from being the correct point.
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(1 —~(m)) (1 —~9(ko)) (1 —~1(m)) (é + til ) So, at least one of the machines
1
in the set {M;,M32} can be used to solve ECDDH efficiently. o

Claim 1 proves that Property 1 holds.

A.2 Confidentiality

Claim 2: (Random Oracle Model) If the factorization and the EC Computa-
tional Diffie-Hellman (ECCDH) problems are hard then confidentiality of the
SETUP holds.

Proof: (Sketch) It will be shown that if the confidentiality of the SETUP does
not hold then factoring or ECCDH is easy. Let A be an algorithm that foils the
confidentiality of the SETUP with non-negligible probability. More specifically,
with probability greater than t%l for some fixed a1 > 0 and sufficiently large ¢4,

A(n, Gy, G1,Y0, Y1, m,b) returns a prime factor p; that divides n.
Consider the following efficient algorithm.

M170(A1, AQ, G, m, b)
Input: points Ay, Ay with order ¢o on curve Eyp(IFam ), base point Gy having
order gy on curve Ep (IFom), EC parameters m and b
Output: A point P on Ey ,(IFom ) having order ¢o
choose uy,uz €r {1,2,...,q0 — 1} and p € {0,1,2,3}
set (B1,Bg) = (ulAl,UQAg)
set C1 = B;
solve for Cy in By = 2C5 such that C5 has order 2¢q
choose C5 in Cy = 2C5 randomly (Cj5 has order 4q)
if £ =1 then set C; = Cy
if u € {2,3} then set C, = Cj3
set Yo = Bs
set Spup = PointCompress(Ey 3, C1)
0. choose spri, to be a random compressed point
on Eg(IFam) having order g
11. randomly choose a base point G having order ¢; on curve Eq ,(IFom )
12. choose 1 € {1,2,....,q1 — 1}
13. set Y7 = 1G4
14. compute (p1,q1) = GetPrimesy e(Spups Spriv)
15. set n = p1¢q; and let L be the empty list
16. step through the operation of A(n, Gy, G1, Yo, Y1, m,b) while trapping
all calls to R, and for each call to R, add the argument to R to L
17. if L is non-empty then

25 © 0N Ot WD

18. choose s €r L and compute (P, w) = PointDecompress(Eg 3, s)
19. if (w = 1) then
20. if P has order gy then output (ujuz)~!P and halt

21. output a random point on Ej ;(IFom) having order go and then halt

The size of list L is at most pa(m) where py is polynomial in m. A similar
reduction algorithm M ; can be constructed for the elliptic curve in which
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the value a = 1. The remainder of this proof considers EC Diffie-Hellman over
Ey »(IFom) unless otherwise specified. Now consider the following algorithm.

Mg(n):

1. randomly choose a base point G having order ¢o on curve Eg ,(IFom )
. randomly choose a base point Gy having order ¢; on curve Eq ,(IFom )
. choose xg €R {1,2,...q0 — 1} and choose 21 € {1,2,...,q1 — 1}

. compute Yy = zoGo and Y] = 21 Gy

. output A(n,Go, G1, Yy, Y1, m,b)

Tk W N

Clearly the running time of My is efficient.

Let t = GetBlock(ns,0,0) where ng is p1q1 represented as a binary string.
Consider s = GetBlock(r, ' (t),0 — (m + 1),m + 1). Let 1 — vo(ko) denote the
probability that s corresponds to the EC Diffie-Hellman key exchange value.
Here g is a negligible function of k.

Let ptrap denote the probability that A calls R with the DH shared secret
corresponding to (Bi, Bz). One of the following must occur: (1) pirap > t§2 for

some fixed a2 > 0 and sufficiently large t2, or (2) pirap < 7y(m) where v is a

negligible function of m. If it is case (1) then My o (or M 1) solves ECCDH with

probability at least tall t(}Q (1 = ~o(ko)) m(lm). If it is case (2) then My factors
1 2

with probability at least (1 —~(m)) ,a, that is equal to &, — Wt(l?). It follows
1 1 1
that ECCDH or factoring is efficiently solvable. o

Claim 2 proves that Property 2 of a strong SETUP holds. So, we have:

Theorem 1. (KleptoKeyGeny e, KleptoRecoverKeyy ) is a strong SETUP.
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