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Abstract. This paper describes an adaptive chosen-ciphertext attack
on the Cipher Feedback (CFB) mode of encryption as used in OpenPGP.
In most circumstances it will allow an attacker to determine 16 bits of any
block of plaintext with about 2!° oracle queries for the initial setup work
and 2% oracle queries for each block. Standard CFB mode encryption
does not appear to be affected by this attack. It applies to a particular
variation of CFB used by OpenPGP. In particular it exploits an ad-hoc
integrity check feature in OpenPGP which was meant as a “quick check”
to determine the correctness of the decrypting symmetric key.
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1 Introduction

The OpenPGP Message Format is described in RFC 2440 [4]. It is a very popular
and commonly used format for signing and encrypting data files, particularly for
signing and encrypting email. The formats described in the OpenPGP RFC
have been implemented in a wide variety of popular freeware and commercial
encryption products. Symmetric encryption in OpenPGP is performed using a
variant of the standard Cipher-Feedback (CFB) Mode for block ciphers.

Adaptive chosen-ciphertext attacks on cryptographic protocols allow an at-
tacker to decrypt a ciphertext C, getting the plaintext M, by submitting a
series of chosen-ciphertexts C’ # C' to an oracle which returns information on
the decryption. The ciphertexts can be adaptively chosen so that information
on previous decryptions is available before the next chosen ciphertext is sub-
mitted. These attacks have been used in the past to attack the RSA PKCS
#1 v1.5 [12] encryption scheme [3], the Cipher-Block-Chaining (CBC) Mode
of encryption when used with certain exploitable redundancies (e.g. padding
schemes) [21[5,15,[16,[17] and the OpenPGP CFB mode [13,[11,[14] itself. The
attack on the OpenPGP CFB mode in [I3,[I1] was able to obtain the entire
plaintext using one oracle query which returned to the attacker the entire de-
cryption of C’ and the attacks in [14] were able to extend the previous attack to
adaptive scenarios.

This paper describes an adaptive chosen-ciphertext attack on the OpenPGP
CFB mode of encryption. However, the oracle required is much weaker than
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in traditional chosen-ciphertext attacks. Access to the complete decryption of
the oracle queries is not required. Only access to the validity of the ciphertext
is required. Since the oracle is weaker, we suggest calling this a chosen-cipher
validation attack. The attack requires an oracle that returns information on an
ad-hoc integrity check in the OpenPGP CFB mode. We show that this oracle
is likely instantiated in most applications that include OpenPGP. With about
215 oracle queries for an initial setup and about 2 queries for each block, the
attacker can determine the first two bytes of plaintext in each block. The attack
does require that the attacker also know the first two bytes of plaintext of any
one block to bootstrap the process, but we show how to likely obtain these bytes
in the majority of circumstances.

2 Cipher-Feedback (CFB) Mode

This section will first describe the standard Cipher Feedback (CFB) mode of
operation for block ciphers. The particular variant of CFB mode that is used in
OpenPGP will then be described.

The standard CFB mode, by itself, does not appear to be affected by the results
in this paper. However, if the data that has been encrypted using standard CFB
mode has also been padded to produce an integer number of blocks of plaintext
and there exists an oracle for determining when an encrypted message has been
correctly padded, the techniques introduced in this paper along with the ideas
in [2,[I5,16L17] can be used to decrypt part or all of any ciphertext block.

2.1 Standard CFB Mode

We describe the standard CFB mode of operation as described in ANST X9.52 [I]
and NIST Special Publication 800-38A [8]. We will assume that the block size
of the underlying block cipher, the block size of the CFB mode and the size of
the feedback variable are all b bytes, since this is the case for the variant used
by OpenPGP. We are doing this simply for ease of explanation and note that
nothing in this paper depends upon this fact.

Let Ek(-) be encryption with the symmetric key K by the underlying block
cipher. Let & be bitwise exclusive-or. The plaintext message to be encrypted
will be M = (My, M, ..., M,) where each M; is b bytes long. A random b-
byte initialization vector IV is required in order to produce the ciphertext C' =
(Co, Cl, CQ, ey Cn) as

Co=1V
Cy = EK(IV) @ M,
Cy = Ex(Ch) ® M,

C; = Ex(Ciz1)® M;
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2.2 OpenPGP CFB Mode

The OpenPGP Message Format [4] uses a variant on the standard CFB mode.
The main difference with the OpenPGP variant is in the construction of the
initialization vector. A random block R is encrypted (described below) as the
first block of ciphertext, which serves as an IV for feedback. Two bytes of R are
then repeated in the second block in order to quickly check whether the session
key K is incorrect upon decryption. We note that this “quick check” is really
an integrity check on the key and it is this ad-hoc integrity mechanism, used in
a mode of operation that wasn’t designed to accommodate it, that allows the
attack.

Let 0 be the b-byte all zero block. By X, ; or [X];; we will mean the ith
and jth bytes of the block X and by X;_; or [X],—; we will mean the ith
through jth bytes of X. The concatenation operation will be represented by
[|. Then, using notation as introduced in the previous section, the ciphertext
C = (Cy,Cy,...,Chyiz) is computed ad]

Ci=FEx(0)®R
Cy=FEg(Ci)12® Ro—1
Cs = Ex ([C1]3-3]|C2) @ My
Cy = Ek(Cs) ® M,

C; = Ex(Ci—1) & Mo

Cn+2 = EK(Cn+1) @ M,.

We note here that Cs is not a full b-byte block, but instead consists of just 2
bytes. We will leave this slight abuse of notation as it will be useful later on.

The random number R is not sent to the receiver to use directly. Its purpose is
to provide a random initial value on which to apply the block cipher and encrypt
the first plaintext block M;7. Note though that repetition of the two bytes of
R in the computation of C; and Cy allows the recipient to quickly check, after
decrypting only blocks C; and Cs whether or not the session key is likely correct.
This is done by comparing the b+ 1st and b+ 2nd blocks with the b — 1st and bth
blocks. If they match, then the current key was likely the one used to encrypt the
data and the remaining blocks can be decrypted. If they don’t match, then the
key is likely in error, and decryption can be halted. The OpenPGP specification
(RFC 2440) describes this “quick check” and most implementations of OpenPGP
include it. However, this is really an ad-hoc integrity check that leaks crucial
information, as we shall see.

! We note that the description of the OpenPGP CFB mode is incorrect in [I3] where
they incorrectly describe how to compute Cs.
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3 Attacking the OpenPGP CFB Mode

This section will describe the attack in detail. First we will describe the oracle re-
quired and the information that can be obtained from a successful oracle query.
Then we will look at the format of the OpenP GP messages that are being decrypted
and show that certain bits of M; can be predicted. We will then use the oracle and
the known plaintext bits to determine 16 bits from any block of ciphertext.

3.1 The Oracle

This attack requires the presence of an oracle O that, when given a purported
ciphertext C” encrypted using the OpenPGP CFB mode of operation with a
given key, will correctly determine whether or not the integrity check described
in Section 2.2 was successful. We note that this oracle is likely to be implemented
in practical implementations of OpenPGP. RFC 2440 requires that implementa-
tions implement this check to prevent obviously incorrect ciphertexts from being
decrypted. Further details on the practical aspects of implementing this oracle
will be discussed in Section 3.3.

Let’s assume that such an oracle does, in fact, exist. Then if the oracle query
is successful we know that for the purported ciphertext C' = (Cy,C%, C%, .. ),

[Cllo-1,6 © [Ex (0)]p-1,6 = C5 © Ex(C)1,2- (1)

We note that C| and C, are known since they are part of the ciphertext C”. If we
knew Ex(C{)1,2, then we could determine [Ex (0)]p—1,5 and similarly if we knew
[Ek(0)]p—1,5, then we could determine Ex (C])1,2. The method for the attack is
now clear. We need to construct a message so that we know Ex (C])1 2, that will
allow us to obtain [Ek (0)]p—1,5- This value is the same for all messages encrypted
using K. Then, we can use that information to determine Ex (C])1,2 in specially
constructed messages, from which we will get the first two bytes of any plaintext
block.

3.2 Obtaining Some Known Plaintext

In order for the attack described in this paper to work, the first two bytes of
any one message block M; must be known by the attacker. In this section, we
will describe how an attacker can plausibly determine the first two bytes of M;
in the majority of circumstances.

According to RFC 2440, the message M that is encrypted using the OpenPGP
CFB mode consists entirely of a complete OpenPGP message. Both GnuPG
(available at http://www.gnupg.org) and PGP Freeware (available at
http://www.pgp.com) compress data by default before encrypting it. Thus, in
the vast majority of circumstances, the encrypted message will consist of a com-
pressed data packet. We will examine this situation first.

When the data being encrypted is a compressed data packet, the first two bytes
of this packet are very predictable. The first byte consists of a “packet tag”, which
indicates the format of the packet contents. If the packet is compressed, then this
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packet tag will typically take the value 0xA3. The second byte indicates the
compression algorithm used. Typically this will be 0x01 to represent the ZIP com-
pression algorithm. Other common values for the second byte are 0x00 for uncom-
pressed data, 0x02 for ZLIB compression and 0x03 for BZip2 compression. Thus, if
the attacker knows that the encrypted data is compressed, then the first two bytes
will either be known or can be determined by trying a small number of possible val-
ues. If it is not known that the data is a compressed data packet, then the attacker
can reasonably guess that it has been and thus guess the first two bytes.

If it is known that the encrypted data is not a compressed data packet, then
there are a small number of choices for the first two bytes of M;. The first
byte will again be a “packet tag” to indicate the format of the packet contents.
There are only a small number of possible packet tags likely to be used (14 are
defined in the OpenPGP RFC). The second byte will either be the length of the
encrypted message, or a portion of the length, depending upon whether or not
more than one byte is required to represent the length. It is not unreasonable to
assume that the attacker may know, or be able to guess, the packet type of the
encrypted message and will likely be able to deduce the length from the message
itself. Thus, it is not unreasonable to assume that the attacker will know, or be
able to deduce the first two bytes of M;.

Once the attacker knows [Mi]q,2 then, from the definition of the OpenPGP
CFB mode, it immediately also knows [Ex ([C]3-5||C2)]1,2. In the general case,
if the attacker knows [M;41]1 2 for ¢ > 1 then it also knows [Ex (Cit2)]1,2- We
will assume that the attacker knows one of these values.

3.3 The Initial Setup Work

In this section we will describe how the attacker can determine [Ex (0)]p—1,5. We
will assume that the attacker has intercepted C' = Ex (M) and knows the first
two bytes of some plaintext block. As we saw in the last section, this is not an
unreasonable assumption. We will first consider the situation where the attacker
knows the first two bytes of M7, next we will consider the situation where the
attacker knows the first two bytes of M;,q for i > 1.

When the attacker knows the first two bytes of M7, the attacker will construct
a ciphertext C" = ([C1]3-s||C2, D, C5,Cl4,...) for particular values of D and
submit it to the oracle to determine whether or not it is a properly constructed
ciphertext. In other words, the oracle will determine whether or not the integrity
check in the OpenPGP CFB mode was successful. When it is successful, we can
use Equation (1) to determine [Ex (0)]p—1p-

In this situation, the attacker should use the following algorithm to determine
[Ex (0)]o-1,6-

1. Let D be a two byte integer representing the value 0.
2. Construct C' = ([C1]3-3||C2, D, C3,Cy, . ..).
3. Submit C” to the oracle O. If the oracle returns “success” then

[Ex(0)]p—1,0 = C2® D & [Ex([C1]3-b||C2)]1,2-
Otherwise, let D = D + 1 and goto Step 1.
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The correctness of this result follows immediately from Equation (1), the con-
struction of C” and the fact that we are exhausting over all possible values of D.
We note that from the previous section, the attacker knows [Ex ([C1]3-5||C2)]1,2
and thus can, in fact compute [Ex (0)]p—1p.

We will now consider the more general case when the attacker knows the first
two bytes of M;4; for ¢ > 1. This time the attacker will construct a ciphertext
C' = (Cit2,D,C5,Cy,...) and proceed as in the previous case. The attacker
would use the following algorithm to determine [Ex (0)]p—1..

1. Let D be a two byte integer representing the value 0.
2. Construct C' = (Cy42,D,C3,Cy4,...).
3. Submit C’ to the oracle O. If the oracle returns “success” then

[Ex(0)]p—1,6 = [Cit2]o—1 & D @ [Ex(Cit2)]1,2-
Otherwise, let D = D + 1 and goto Step 1.

Here we note that the attacker knows [Ex(Cit2)]1,2 from the results in the
previous section and thus can also compute [Ex (0)]p—1,5-

It is clear that in either of these situations the oracle will return “success”
for some value of D less than 2'6. Thus, we would expect that, on average, our
attacker would require about 2!° = 32, 768 oracle queries in order to determine
[Ek(0)]p—1.- Alternatively, all 216 oracle queries (corresponding to all possible
values of D) could be precomputed and submitted in parallel, thereby making
the attack non-adaptive.

3.4 Determining 16 Bits of Any Plaintext Block

Once our attacker has determined [Ex (0)]p—1,5, the first two bytes of any plain-
text block can be determined with about 2'® queries to the oracle. It is a simple
variation on the algorithms in the previous section that provides it to the at-
tacker.

In order to determine [M;11]1,2 for any ¢ > 1 the attacker should use the
following algorithm.

1. Let D be a two byte integer representing the value 0.
2. Construct C" = (Cy42,D,C3,Cy,...).
3. Submit C’ to the oracle O. If the oracle returns “success” then

[Ex(Cit2)]1,2 = [Cit2]o—1,6 D D & [Ex (0)]p—1,p-

Otherwise, let D = D + 1 and goto Step 1.
4. Then [Mi+1]172 = [EK(CiJ,-Z)]LZ S [Ci+3]1,2~

Again, the correctness of this result follows immediately from Equation (1), the
construction of C” and the fact that we are exhausting over all possible values of D.
Asin the previous section we would expect that the attacker would require on aver-
age about 2'° oracle queries to determine the first two bytes of any plaintext block.
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Also as in the previous section the attack can be made non-adaptive by computing
all 2'6 possible oracle queries and submitting them in parallel.

In the ¢ = 0 case, where the first two bytes of M; are not already known,
they can be obtained by a simple modification to the above algorithm by setting
i = 0 and replacing C;12 by [C1]3—s||Ca.

Thus, we see that under the reasonable assumption that an attacker can
determine the first two bytes of any one message block, with one-time initial
work of about 2'® oracle queries, the first two bytes of any other message block
can be determined with about 2!° oracle queries per message block.

3.5 The Attack Without Plaintext

We note that the attack can be implemented even if it is not possible to know
the first two bytes of some plaintext block. In this situation, we can simply
replace the assumed known value [M;]; 2 with an indeterminate, say Z and im-
plement the algorithms in Sections 3.3 and 3.4. Note that all of the formulae still
carry through, including the “®Z” term. Now instead of actually determining
[Mit1]1,2 for any ¢ > 1, we determine [M;11]1,2 & Z. For example, from the
definition of the OpenPGP CFB mode we get

[Ex([Ci]3=5||C2)]1,2 = [C3]1,2 ® Z.
Then, in Step 3 of the first algorithm in Section 3.3 we get
[Ex(0)]p—1 =Co® D & [Cs]120 Z.

Let A= C5® D & [C5]1,2, which is a known value. In Step 3 of the algorithm in
Section 3.4 we get

[Ex(Ciz2)1,2 = [Cigalp-10 @D D AD Z.
Let B = [Ciy2]p—1,5 ® D @ A, which is also now a known value. So,
[Miti1)i2 =B ® Z @ [Citsi,2,

from which we can calculate [M;y1]1,2 @ Z for many values of 4.

If enough of these values are recovered and if the values of the [M;y1]1,2 can
be bounded, then Z can be determined, thus revealing the plaintext.

For example, if it is known that all of the M; are ASCII text, then it wouldn’t
take very many values of [M;11]12 @ Z to be recovered before Z could be
determined.

3.6 Extending the Attack to Other Modes

We note that this attack is not really an attack on CFB mode encryption, but
an attack on the two repeated bytes in the first two blocks of an OpenPGP
encrypted message. It is likely that similar attacks would be possible with any
non-authenticated encryption mode whenever the decryptor checks for repeated
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bytes. For example, Hal Finney has pointed out that a similar attack is possible
against CBC mode if the decryptor checks for such a plaintext stutter [9].

As with the attack on padding in CBC mode [I6], we note that in all of these
situations the decryptor is checking for a specific redundancy when using a non-
authenticated mode. This practice leaks too much information to the attacker.
Such checks should be disabled or an authenticated mode of operation should
be used whenever possible. (See also [15].)

4 The Attack in Practice

In previous sections we showed that if a certain oracle exists, then under reason-
able assumptions it is possible for an attacker to determine the first two bytes of
any plaintext block. This section will examine how likely it is that the required
oracle will exist in practice.

We first note that the required oracle O simply implements the integrity check
required in the OpenPGP standard. Thus it is not unreasonable to expect that
most implementations would leak this kind of information. This is not a very
“powerful” oracle in the sense that it is not leaking a great deal of information.
We contrast this with the oracle required in the attack on the OpenPGP CFB
mode described in [I3,[IT]. In that attack only a single oracle query is required to
determine the entire plaintext, however, the oracle must return the decryption
of the chosen ciphertext. In most environments it is not likely that the attacker
will actually have access to the decryption of the chosen ciphertext. It is not
unreasonable though to assume that error information is obtained either directly,
or through side-channels.

4.1 Non-server-Based OpenPGP Users

By a “non-server-based OpenPGP user” we refer to a human user interacting
with an OpenPGP-enabled application. This is, by far, the most common sce-
nario of OpenPGP-based applications. In this scenario it is not unreasonable to
assume that some error information regarding the decryption of any ciphertext
will be leaked to an attacker. However, it is not likely at all that a human user
will attempt to decrypt over 32,000 messages whose decryptions actually fail
without realizing that there is a problem and discontinuing.

Thus, we view an attack in this situation as unlikely and will not consider it
any further.

4.2 Server-Based OpenPGP Users

A “server-based OpenPGP user” is an automated process that responds to re-
quests that have been encrypted for it using OpenPGP. It attempts to decrypt
the request and respond to it appropriately. Few OpenPGP users are server-
based as compared with those in the previous section. In this situation, however,
it is more likely that information on errors (including decryption errors) will be
returned to the requester, which in this case could be an attacker.
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There are at least two ways in which an attacker could gain information that
would instantiate the oracle. The server could return an error directly to the
attacker that the integrity check in the OpenPGP CFB mode failed. As we will
see in the next section, some common OpenPGP toolkits do, in fact return error
codes which could allow server-based OpenPGP users to, unwittingly, instanti-
ate the oracle. Even if this error code is not returned, information on whether
or not the integrity check was successful can likely be obtained through timing
or other information. (See [5] for a similar attack that uses this kind of timing
information.) RFC 2440 says that the integrity check “allows the receiver to
immediately check whether the session key is incorrect”. Thus, most implemen-
tations would abandon the decryption process immediately if the check failed
thereby allowing timing attacks to determine the result of the check. As we will
see in the next section, this is what happens.

In fact, timing attacks can be made more feasible by constructing the cipher-
text C’ (in step 2 of Sections 3.3 and 3.4) so that the decryption process will
necessarily take a large amount of time. For example, after the fourth block of C’
the value of the ciphertext does not affect the values required for the attack and
the ciphertext can be as long as possible. Thus, if the attacker lets C5, Cg, . . . be
an extremely large number of random blocks, then decrypting C’, in the event of
a succesful oracle query, will take a relatively large amount of time. This would
make detecting a successful oracle query more feasible in some applications.

We also need the oracle to use the same symmetric key K each time that it
is invoked. This is not difficult to do. After constructing the ciphertext C’ as
described in previous sections, this ciphertext should simply be packaged in a
standard OpenPGP message. The Public-Key Encrypted Session Key Packet in
this message should always contain the same value as in the original OpenPGP
message that is being attacked. This packet will contain the key K encrypted for
the victim. Each time that the chosen ciphertext is sent to the victim, he/she
will decrypt and thus use the same key K each time.

4.3 Common Toolkits May Instantiate the Oracle

To determine the likelihood of this oracle being instantiated we looked at two
common toolkits that implement the OpenPGP RFC. We considered GnuPG
1.2.6 [10] and Cryptix OpenPGP [7]B

In GnuPG 1.2.6, the integrity check is performed in the decrypt data() func-
tion call. If the integrity check is not successful, then the error GIOERR BAD KEY
is returned and decryption is abandoned. Thus, it is not unreasonable to expect
that some server-based applications based upon this toolkit would leak this error
information either directly, or based upon timing information.

In the Cryptix OpenPGP toolkit, the PGPEncryptedDataPacket.decrypt ()
method performs the integrity check. If the integrity check is not successful then

2 We note that later versions of these toolkits than the ones examined here have since
incorporated countermeasures mentioned in the next section and thus no longer
instantiate the oracle. In fact, most implementations of OpenPGP have now incor-
porated these countermeasures.
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an exception is thrown with “No good session key found” and decryption doesn’t
proceed. Thus, again, it is not unreasonable to expect that some server-based
applications based upon this toolkit would leak this error information either
directly, or based upon timing or other information.

4.4 Implementing the Attack

We implemented the attack on GnuPG 1.2.4. As it turns out, GnuPG is very
helpful in that it appears to display the error “decryption failed: bad key”
if and only if our oracle does not return success.

We encrypted data with compression turned off and without MDC (see next
Section). This was only for ease of implementation, as we have seen (and shall
see) this is not required. We then implemented the algorithms in Sections 3.3
and 3.4 as batch scripts cycling through all possible values of D. When we did
not get a “decryption failed: bad key” we knew that the integrity check
was successful and could utilize the given formulae to produce the plaintext. We
note that in all of our experiments we only received one value of D that did not
give a “decryption failed: bad key” error.

Implemented on a 1.8 GHz Pentium M processor running Windows XP Pro-
fessional, it took under 2 hours to exhaust all values of D. Thus, with less than
4 hours of work an attacker could obtain the first two bytes of any plaintext
block. The first two bytes of additional plaintext blocks could be obtained with
an additional 2 hours each.

4.5 The Effect of Compression

When 64-bit blocks are used an attacker can obtain at most 25% of the plaintext
and when 128-bit blocks are being used at most 12.5%. If the plaintext is uncom-
pressed data this would be devastating. However, typically plaintext OpenPGP
data is compressed. In this situation it is not clear if obtaining even 25% of the
compressed data will compromise any of the uncompressed data. This is a big
mitigating factor against the attack in practice.

5 Attack Prevention

In this section we examine two potential methods for avoiding this attack. One
method does not work, the other does.

5.1 Integrity Protected Data Packet Doesn’t Work

The OpenPGP RFC is currently up for revision [6] and a new packet type will
be included that provides additional integrity protection for encrypted data.
GnuPG also implements this additional packet type, called the Symmetrically
Encrypted Integrity Protected Data Packet. Encryption using this packet type
differs from the non-integrity protected version in two ways. First, the OpenPGP
CFB mode of encryption as described is not used. Instead b + 2 random bytes,
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with the b+ 1st and b+ 2nd bytes matching the b— 1st and bth bytes, are prefixed
to the message and then the standard CFB mode is used to encrypt the prefixed
message. As previously, the repeated bytes should be checked and decryption
abandoned if they do not match. Second, the entire plaintext message, including
the prefix is hashed. The hash value, known as an MDC, is appended to the
message and encrypted using CFB mode as well.

Let us first consider the modified CFB mode of operation. We note that, in
general, the attack described still works with slight modifications (e.g. replace
Cy with [C3]1,2). However, it will likely now become more difficult for an attacker
to obtain the first two bytes of a plaintext message block in order to bootstrap
the attack. Notice that now the suggested known plaintext will be in bytes 3
and 4 of the plaintext corresponding to Cs. If the first two bytes of any plaintext
message block is known, however, the attack will still be valid.

The purpose of the hash is to detect modifications of the message by the at-
tacker. The attack described in this paper involves modifications to the message
and the hash will, in fact, detect it. However, since the check of the hash occurs
after the decryption of the entire plaintext and the ad-hoc integrity check of
the bytes in C; and C5 occurs before the decryption of the entire plaintext,
it is still likely that information that instantiates the oracle will be leaked. In
fact, since a hash will now need to be computed before determining whether or
not the plaintext is valid in addition to decrypting the message, it is likely that
timing attacks to determine the information will be more effective. We note that
GnuPG implements this new packet type and still returns different error codes
for the two errors and abandons decryption if the repeated bytes do not match.

Thus, this packet type, by itself, will not prevent this attack, although it may
make it more difficult to start.

5.2 The Solution

One obvious solution to prevent this attack is to switch to a true authenticated
mode of operation instead of CFB. However, assuming that PGP designers wish
to continue using CFB mode, the only method that appears to always work in
thwarting this attack is to not instantiate the required oracle. Thus, implemen-
tations should not do the check that the repeated bytes in the first two blocks
match. If the non-integrity protected packet type is being used, then the data
should all be decrypted and an attempt should be made at parsing it. If the
integrity protected packet type is being used, then the entire ciphertext should,
again, be decrypted and the hash calculated and checked. If it doesn’t match,
then an error can be thrown.

Unfortunately, for backwards compatibility with the substantial installed user-
base it is not possible to remove these random repeated bytes from the encrypted
data format. However, future versions should simply ignore these bytes.

If a similar “quick check” that would allow OpenPGP users to quickly de-
termine whether or not the given symmetric key is correct is required, then one
possible solution is to include a cryptographic hash of the symmetric key with the
ciphertext. The message recipient could then compute the hash of the purported
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symmetric key and compare it with the given value before decrypting. Note that
this solution would not provide an integrity check on the entire message and
would require changes to the OpenPGP RFC.

6 Conclusion

We have described an attack on the OpenPGP CFB mode of operation. This
attack works under reasonable assumptions about the knowledge of certain plain-
text bytes and requires an oracle which is likely instantiated in most applications
using OpenPGP. However, since the attack requires 2'° oracle queries, on aver-
age, for the initial setup and 2'® oracle queries to determine the first two bytes
of any plaintext block, it likely won’t effect applications with human end users.
Server-based applications would be more vulnerable to attack though. In order
to thwart this attack, future implementations should not perform the ad-hoc
integrity check in the OpenPGP CFB mode.
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