
An Access Control Scheme for Partially Ordered
Set Hierarchy with Provable Security

Jiang Wu1,� and Ruizhong Wei2,��

1 School of Computer Science, University of Waterloo,
200 University Ave. West, Waterloo, ON, N2L 3G1, Canada

2 Department of Computer Science, Lakehead University,
955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada

Abstract. In a hierarchical structure, an entity has access to another
if and only if the former is a superior of the later. The access control
scheme for a hierarchy represented by a partially ordered set (poset) has
been researched intensively in the past years. In this paper, we propose
a new scheme that achieves the best performance of previous schemes
and is provably secure under a comprehensive security model.

1 Introduction

In many situations, the hierarchical systems can be represented by a partially
ordered set (poset). In such a hierarchy, all users are allocated into a number of
disjoint sets of security classes p1, p2, · · · , pn. A binary relation ≤ partially orders
the set P = {p1, p2, · · · , pn, }. The users in pj have access to the information
held by users in pi if and only if the relation pi ≤ pj held in the poset (P , ≤).
If pi ≤ pj, pi is called a successor of pj, and pj is called a predecessor of pi. If
there is no pk such that pi ≤ pk ≤ pj , the pi is called an immediate successor of
pj , and pj is called an immediate predecessor of Ci.

A straightforward access control scheme for poset hierarchy is to assign each
class with a key, and let a class have the keys of all its successors. The information
belonging to a class is encrypted with the key assigned to that class, therefore the
predecessors have access to the information of their successors. This is awkward
because the classes in higher hierarchy have to store a large number of keys. In
the past two decades, many schemes based on cryptography have been proposed
to ease the key management in the hierarchy. Generally, these schemes are aimed
to fully or partly achieve the following goals:

– Support any arbitrary poset. It is desirable that any arbitrary poset is sup-
ported. Some schemes only support special cases of poset such as a tree.
Such schemes are considered restrictive in application.

– Be secure under attacks. The schemes are supposed to withstand attacks.
For example, a user may try to derive the key of a class that is not his/her
successor. The schemes should be secure under all possible attacks.

� Research supported by NSERC PGS.
�� Research supported by NSERC grant 239135-01.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 221–232, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

222 J. Wu and R. Wei

– Require small storage space. Any scheme needs a user in a class to store a
certain amount of secret or public parameters for key derivation. All the
schemes tried to reduce the amount of parameters stored.

– Support dynamic poset structures. The structure of a hierarchy may change.
Classes may be added to or deleted from the hierarchy. In these cases the
users in the classes (not only the ones being added and deleted) need to
update the parameters they store. It is desirable that when a change takes
place, the number of classes involved in updating their parameters is as small
as possible.

Several hierarchical access control schemes have been proposed in the last two
decades. [1, 5, 4] are direct access schemes based on the RSA problem. In a direct
access scheme, a predecessor can derive the key of a successor directly from the
public parameters of that successor. The disadvantages of this group of schemes
include large storage spaces and lack of dynamics. [6, 10, 11] are indirect access
schemes. In these schemes, to derive the key of a successor, a predecessor has to
derive the key of each class between them. The indirect schemes achieve smaller
storage spaces and better dynamics than the direct schemes. However, none
of the above schemes provided formal security proof under a secure model that
covers all possible cryptographic attacks, except in [10] such a model was defined
and a proof sketch was given. Yet [9] indicated that a rigorous proof can not be
obtained directly from this proof sketch; some possible attack scenarios are not
covered by the proof sketch.

In this paper, we propose a new scheme that is superior to the previous
schemes in that it provides both good performance and provable security, and
is easy to implement. When we talk about security of the hierarchical access
control scheme, we refer to the following security model:

Definition 1. A hierarchical access control scheme for poset hierarchy is secure
if for any group of classes in the poset, it is computationally infeasible to derive
the key of any class that is not a member of that group, nor a successor of any
member of that group.

Our scheme is an indirect access scheme, which has similar performance in stor-
age and dynamics to other indirect access schemes. The significant part of our
scheme is its formal security proof under this comprehensive security model,
which the previous indirect access schemes did not provide.

The rest of this paper is organized as follows: Section 2 presents the scheme,
Section 3 analyzes its security, Section 4 compares the performance of the schemes,
and Section 5 concludes this paper.

2 Proposed Scheme

2.1 Preliminary

Poset Representation. For a given hierarchy structure, its corresponding
poset (P , ≤) can be represented by a Hasse diagram, which is a graph whose

An Access Control Scheme for Partially Ordered Set Hierarchy 223

nodes are classes of P and the edges correspond to the ≤ relation (in the rest
of the paper we use “node” and “class” interchangeably)[7]. For distinct pj ∈ P
and pi ∈ P , an edge from pj to pi is present if pi ≤ pj and there is no pk ∈ P
such that pi ≤ pk and pk ≤ pj . When pi ≤ pj, pj is drawn higher than pi.
Because of that, the direction of the edges is not indicated in a Hasse diagram.
Fig. 1 shows an example of poset represented as a Hasse diagram.

1

2 3

4 5 6 7

8 9 10 11 12

Fig. 1. Example of a Hasse diagram

Auxiliary Function. We construct a function that will be used in our scheme
below. Let p = 2q + 1 where p, q are all odd primes. Let G be the subgroup of
Z∗

p of order q. We define a function f : G → [1, q] as follows:

f(x) =

{
x; x ≤ q

p − x; x > q
(1)

For any x ∈ Z∗
p, if x ∈ G, then −x /∈ G. So the above function is a bijection. If x

is a random variable uniformly distributed on G, f(x) is uniformly distributed
on [1, q].

2.2 Key Management

The key management of the scheme consists of two procedures: the key genera-
tion and the key derivation.

Key Generation

1. The central authority (CA) chooses a group Z∗
p, where p = 2q + 1, p and q

are both large primes. G is the subgroup of Z∗
p of order q.

2. From the top-level classes, the CA traverses the Hasse diagram of the hi-
erarchy with width-first algorithm. For each node pi, run the following key
assignment algorithm to assign its public parameters gi, hi,j and a secret
key ki:

224 J. Wu and R. Wei

Algorithm 1. Key Assignment
set gi to be a unique generator of G

if pi does not have any immediate predecessor then
set ki to be a number chosen from [1, q] at random

else if pi has only one immediate predecessor pj then
ki = f(gkj

i)
else

{comment: pi has more than one immediate predecessors}
let X be the set of keys of pi’s immediate predecessors
x =

∏
xi∈X xi

ki = f(gx
i)

for all xj ∈ X do
hi,j = g

x/xj

i

end for
end if

For example, the nodes in Fig. 1 will be assigned with the following secret key
and public parameters:

Node ID secret key public parameters
1 k1 -
2 k2 = f(gk1

2) g2

3 k3 = f(gk1
3) g3

4 k4 = f(gk2k3
4) h4,2 = gk3

4 , h4,3 = gk2
4

5 k5 = f(gk2
5) g5

6 k6 = f(gk3
6) g6

7 k7 = f(gk3
7) g7

8 k8 = f(gk4
8) g8

9 k9 = f(gk4k5
9) h9,4 = gk5

9 , h9,5 = gk4
9

10 k10 = f(gk4k5
10) h10,4 = gk5

10 , h10,5 = gk4
10

11 k11 = f(gk6k7
11) h11,6 = gk7

11 , h11,7 = gk6
11

12 k12 = f(gk7
12) g12

KeyDerivation. When a node needs to compute the key of one successor, it finds
a path from itself to the successor in the Hasse diagram of the hierarchy. Starting
from its immediate successor in the path, the node goes through the path, and
computes ki of every successor pi along the path with the following algorithm:

Algorithm 2. Key Derivation
if pi has only one predecessor pj then

ki = f(gkj

i)
else

{comment: pj is the predecessor of pi that is on the path}
ki = f(hkj

i,j)
end if

An Access Control Scheme for Partially Ordered Set Hierarchy 225

For example, in Fig. 1, node 1 is to derive the key of node 4. It finds the path 1
→ 2 → 4, and does the following computations:

k2 = f(gk1
2)

k4 = f(hk2
4,2)

The correctness of the scheme is easy to be verified by reviewing the proce-
dures in key generation and key derivation.

3 Security Analysis

3.1 Preliminary

On the group G used in our scheme, two standard assumptions, the discrete
logarithm (DL) assumption and decisional Diffie-Hellman (DDH) assumption
are believed to hold [2]. Another assumption, named group decisional Diffie-
Hellman (GDDH) assumption is proven to hold based on DDH assumption on
G too [8, 3]. To be concrete, let g be a generater of G, a, b, c be random variables
uniform on [1, q], X be a set of random variables uniform on [1, q], l be the binary
length of q. Suppose |X | is polynomially bounded by l. Let

∏
(S) indicate the

product of all elements in the set S. For any probabilistic polynomial time (in l)
algorithms A, any polynomial Q, for l large enough, the three assumptions can
be formally expressed as follows:

DL assumption:

Pr[A(g, ga) = a] <
1

Q(l)
(2)

DDH assumption:

|Pr[A(g, ga, gb, gab) = 1] − Pr[A(g, ga, gb, gc) = 1]| <
1

Q(l)
(3)

GDDH assumption:

|Pr [A(g, g
∏

(X), g
∏

(S)|S ⊂ X) = 1] − Pr[A(g, gc, g
∏

(S)|S ⊂ X) = 1]| <
1

Q(l)
(4)

We give a simple example to explain GDDH intuitively. Suppose Alice, Bob
and Cathy are to negotiate a shared secret key among them, while all their
conversation are open to Eve. Alice chooses a secret number a for herself, in the
same way Bob chooses b and Cathy chooses c. They also choose a number g that
is known to all including Eve. First Alice computes and announces ga, Bob gb,
Cathy gc, then Alice computes and announces (gb)a, Bob (gc)b, Cathy (ga)c.
Now each of Alice, Bob and Cathy can computes gabc separately and use it as
their common secret key. The GDDH assumption says that, while Eve knows
g, ga, gb, gc, gab, gac, gbc, she cannot compute gabc; moreover, given with gabc and
a random number, Eve cannot even tell which one is the key and which one is
random. In this example, X = {a, b, c}, {

∏
(S)|S ⊂ X} = {a, b, c, ab, ac, bc}.

226 J. Wu and R. Wei

For convenience, we use the notation from [8] to simplify the expression of
(3) and (4), as well as other expressions that are of much greater length in the
following parts. When DDH assumption holds, we say that the probabilistic
distributions (g, ga, gb, gab) and (g, ga, gb, gc) in (3) are polynomially indistin-
guishable, and rewrite (3) as

(g, ga, gb, gab) ≈poly (g, ga, gb, gc).

Similarly, if GDDH assumption holds, we say (g, g
∏

(X), g
∏

(S)|S ⊂ X) and
(g, gc, g

∏
(S)|S ⊂ X) in (4) are indistinguishable, and rewrite (4) as

(g, g
∏

(X), g
∏

(S)|S ⊂ X) ≈poly (g, gc, g
∏

(S)|S ⊂ X).

3.2 Security Proof

The security of our scheme is based on the above three assumptions. In the
following parts, we prove the scheme is secure under Definition 1. We suppose
the number of nodes in P is polynomially bounded by l (the binary length of |G|),
and all the algorithms considered below are polynomial time (in l) algorithms.

We choose an arbitrary node pt ∈ P and suppose its secret key is kt. Let A
be the set of predecessors of pt. We need to prove that, even when all the nodes
in P −A−{pt} conspire, it is computationally intractable for them to derive kt.

We group the set P −A−{pt} into three subsets: B the set of nodes in P −A
which do not have predecessors in P −A, and which is not pt; D the set of nodes
that are immediate successors of pt; R = P − A − {pt} − B − D. The followings
relations between B, D and R are direct from their definitions:

– B ∪ D ∪ R = P − A − {pt}
– B ∩ D = ∅, R ∩ B = ∅ and R ∩ D = ∅
– the nodes in R are successors of the nodes in B, or D, or both

An example of the above partition is as follows: in Fig. 1, suppose node 4
is the one we choose as the node pt, then A = {1, 2, 3}, B = {5, 6, 7}, D =
{8, 9, 10}, R = {11, 12}.

First we consider when all nodes in B conspire, what information about kt

they can learn. Suppose the generator assigned to node pt is gt, X is the set of
secret keys of the immediate predecessors of node pt. Let

∏
(S) be the product

of all elements in the set S. Let x =
∏

(X), then kt = gx
t . The public parameters

of pt are

{gt, g
∏

(S)
t |S ⊂ X and |S| = |X | − 1}

The nodes bi ∈ B with generators gbi , i ∈ [1, n] may share the same predeces-
sors with node pt, thus may hold a subset of {g

∏
(S)

bi
|S ⊆ X} as their public

parameters or secret keys. We assume that

{gbi, g
∏

(S)
bi

|S ⊆ X , i ∈ [1, n]}

An Access Control Scheme for Partially Ordered Set Hierarchy 227

is all the information possibly held by nodes in B that is related to kt. So the
public parameters of pt, plus the information pertaining to kt held by B is a
subset of

{gt, g
∏

(S)
t |S ⊂ X} ∪ {gbi, g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]}

The following result formally shows that even all nodes in B conspire, with the
above information, they can not distinguish kt from a random number on [1, q].

Theorem 1. Suppose DDH and GDDH assumptions hold on the group G. Let
c be a random variable uniform on [1, q]. The two distributions

Vbn =
(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, {gbi , g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]}

)
and

V ′
bn

=
(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, {gbi , g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]}

)
are indistinguishable.

Proof. From GDDH assumption we have(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}

)
≈poly

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}

)
A polynomial time algorithm can choose z uniformly from [1, q] at random, and
reduce the above GDDH distribution pair to

Vb =
(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)x, {(gz

t)
∏

(S)|S ⊂ X}
)

V ′
im =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c, {(gz

t)
∏

(S)|S ⊂ X}
)

respectively. It follows that
Vb ≈poly V ′

im. (5)

Let c1 be a random variable uniform on [1, q]. Since zc1 is independent of z and
c, from DDH, we have

(gt, g
z
t , gc

t , g
zc
t) ≈poly (gt, g

z
t , gc

t , g
zc1
t)

A polynomial time (in l) algorithm can choose X that is a set of random variables
uniform on [1, q], and whose order is polynomially bounded by l, and reduce the
above DDH distribution pair to

V ′
im =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c, {(gz

t)
∏

(S)|S ⊂ X}
)

V ′′
im =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c1 , {(gz

t)
∏

(S)|S ⊂ X}
)

respectively. It follows that
V ′

im ≈poly V ′′
im (6)

228 J. Wu and R. Wei

Similarly, by choosing z and c uniformly from [1, q] at random, a polynomial
time (in l) algorithm can reduce the GDDH distribution pair(

gc1
t , {gt, g

∏
(S)

t |S ⊂ X}
)

≈poly

(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}

)
.

to
V ′′

im =
(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c1 , {(gz

t)
∏

(S)|S ⊂ X}
)

V ′
b =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)x, {(gz

t)
∏

(S)|S ⊂ X}
)

.

respectively. It follows that
V ′′

im ≈poly V ′
b (7)

From (5), (6) and (7), We conclude

Vb ≈poly V ′
b

i.e., (
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , {(gz
t)

∏
(S)|S ⊆ X}

)
≈poly

(
gc

t , {gt, g
∏

(S)
t |S ⊆ X}, gz

t , {(gz
t)

∏
(S)|S ⊆ X}

)
.

By choosing zi, i ∈ [1, n] uniformly from [1, q] at random, a polynomial time
algorithm can reduce Vb and V ′

b to(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, {gzzi

t , (gzzi
t)

∏
(S)|S ⊆ X , i ∈ [1, n]}

)
(
gc

t , {gt, g
∏

(S)
t |S ⊂ X , {gzzi

t , (gzzi
t)

∏
(S)|S ⊆ X , i ∈ [1, n]}

)
It follows that

Vbn ≈poly V ′
bn

.

This completes our proof
�
Then we consider when the nodes in B and D conspire, what information about
kt they can learn. The nodes di ∈ D assigned with generator gdi , i ∈ [1, m] may
hold a subset of the following information pertaining to kt:

{gdi, g
kt

di
|i ∈ [1, m]}.

The following theorem shows that even all nodes in B and D conspire, with the
information they hold, they can not derive kt:
Theorem 2. It is intractable for any polynomial time (in l) algorithm to derive
gx

t from

I = {gt, g
∏

(S)
t |S ⊂ X} ∪ {gbi , g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]} ∪ {gdi, g

f(gx
t)

di
|i ∈ [1, m]},

i.e., for any polynomial time (in l) algorithm A, any polynomial Q, if l is suffi-
ciently large, then

Pr [A (I) = f(gx
t)] <

1
Q(l)

.

Proof. For convenience, let

V = {gt, g
∏

(S)
t |S ⊂ X} ∪ {gbi, g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]}.

An Access Control Scheme for Partially Ordered Set Hierarchy 229

Step 1. Assume that there exist a polynomial time (in l) algorithm B, a poly-
nomial Q1 and a number L, for l > L

Pr[B(V , gd, g
f(gx

t)
d) = f(gx

t)] ≥ 1
Q1(l)

(8)

where gd is a generator of G.
Let c be a random variable uniform on [1, q], Q2(l) = 2Q1(l). Suppose l is

large enough. We consider the following two cases

– Case 1: Pr[B(V , gd, g
f(gc

t)
d) = f(gc

t)] ≥ 1
Q2(l)

Notice that c is a random variable independent of V . Let z ∈ [1, q], we define
the following algorithm C(gd, g

z
d):

Algorithm 3. C(gd, g
z
d)

choose a generator of G as gt

choose a set of n distinct generators of G as B
choose a set of random variables uniform on [1, q] as X
compute V with gt, B and X
return B(V, gd, gz

d)

The algorithm C is a polynomial time (in l) algorithm. Since z = f(gc
t) for

some c ∈ [1, q] (though we do not know c), we have

Pr[C(gb, g
z
b) = z] = Pr[B(V , gd, g

f(gc
t)

d) = f(gc
t)]

≥ 1
Q2(l)

.

This contradicts the DL assumption.
– Case 2: Pr[B(V , gd, g

f(gc
t)

d) = f(gc
t)] < 1

Q2(l)
From this inequality and (8), we have

Pr[B(V , gd, g
f(gx

t)
d) = f(gx

t)] − Pr[B(V , gd, g
f(gc

t)
d) = f(gc

t)]

≥ 1
Q1(l)

− 1
Q2(l)

=
1

Q2(l)
(9)

Algorithm 4. D(V , z)
choose a generator of G as gb

if B(V, gd, g
f(z)
d) = f(z) then

return 1
else

return 0
end if

Let z ∈ G, we define the algorithm D(V , z) in Algorithm 4.

230 J. Wu and R. Wei

D is a polynomial time (in l) algorithm. From (9), we have

Pr[D(V , gx
t) = 1] − Pr[D(V , gc

t) = 1]

= Pr[B(V , gd, g
f(gx

t)
d) = f(gx

t)] − Pr[B(V , gd, g
f(gc

t)
d) = f(gc

t)]

≥ 1
Q2(l)

.

That means D can distinguish the two distributions:

(V , gx
t) and (V , gc

t) .

This contradicts to Theorem 1.

Combining Case 1 and Case 2, we conclude that for any polynomial time (in l)
algorithm B, any polynomial Q, for sufficiently large l,

Pr

[
B(V , gd, g

f(gx
t)

d) = f(gx
t)

]
<

1
Q(l)

(10)

Step 2. Assume there exist a polynomial time (in l) algorithm A, a polynomial
Q and a number L such that for l > L,

Pr

[
A

(
V , {gdi, g

f(gx
t)

di
|i ∈ [1, m]}

)
= f(gx

t)
]

≥ 1
Q(l)

.

Let B(V , gd, g
f(gx

t)
d) = A(V , {gzi

d , g
zif(gx

t)
d |i ∈ [1, m]}) where z1, · · · , zm are ran-

dom variables uniform on [1, q], and m is polynomially bounded by l. We have

Pr

[
B(V , gd, g

f(gx
t)

d) = f(gx
t)

]
= Pr

[
A(V , {gzi

d , (gzi

d)f(gx
t)|i ∈ [1, m]} = f(gx

t)
]

≥ 1
Q(l)

This contradicts (10). Therefore for any polynomial time (in l) algorithm A, any
polynomial Q, for sufficiently large l,

Pr

[
A

(
V , {gdi, g

f(gx
t)

di
|i ∈ [1, m]}

)
= f(gx

t)
]

<
1

Q(l)
,

i.e.,

Pr [A (I) = f(gx
t)] <

1
Q(l)

.

This completes our proof.
�

Finally, we consider when all the nodes in B, D, and R conspire, whether they
are able to derive kp. Since all the nodes in R are successors of B or D or both,
the information held by R can be derived by a polynomial time (in l) algorithm
from the information held by B and D. Thus if B ∪ D ∪ R can derive kp, then
B ∪ D can derive kp. This contradicts to Theorem (2). Therefore we conclude
that the scheme is secure under the security model defined in Definition (1).

An Access Control Scheme for Partially Ordered Set Hierarchy 231

4 Performance Analysis

4.1 Storage Requirement

Our scheme is an indirect access scheme, and has similar storage requirement
with other indirect schemes. In a hierarchy with N nodes where each node has
at most M direct predecessors, an indirect scheme assigns each node with one
secret key and at most M public parameters. For the direct schemes, to store
the public information of one node, the maximum storage is about N numbers,
or the product of the N numbers. In a real situation, N would be much greater
than M , and N will increase as the scale of the hierarchy increases, while M
usually keeps limited, therefore the indirect schemes tend to require less storage
than the direct schemes.

4.2 Dynamics

As an indirect hierarchical access scheme, the operation of adding, deleting a
node or link in our scheme is similar to other indirect access schemes. When
a node is added or deleted, or a link is added to or deleted from a node, only
the nodes that are successors of that node will be affected, i.e., the secret key
and public parameters of those nodes need to be updated. The direct schemes
are quite different. In Akl-Taylor scheme, when a node is added or deleted,
all the nodes except for its successors have to update their secret keys and
public parameters. In Harn-Lin scheme, when a node is added or deleted, all its
predecessors will be impacted. In addition, for these two schemes, to prevent a
deleted node to access its former successors, the keys of these successors have to
be changed too. In a practical hierarchy, there are much more low level nodes
than high level nodes, and it is more likely that the low level nodes will change.
Therefore in an indirect scheme, less nodes are affected than in a direct scheme
when the hierarchy structure changes. The indirect schemes are more suitable
than direct schemes for a dynamic hierarchy.

4.3 Performance Summary

In summary, in view of performance in storage and dynamics, although our
scheme does not improve previous indirect schemes, it inherits their perfor-
mances, which are better than those of the direct schemes.

5 Conclusion

In this paper we proposed a new access control scheme for poset hierarchy. This
scheme is concrete and practical for implementation. It supports any arbitrary
poset, achieves the best performance of previous schemes in storage and dynam-
ics, and provides a formal security proof under a comprehensive security model.
None of the previous schemes achieved all the properties as fully as ours does.
Our scheme provides a solution with both practical and theoretical significance
for the hierarchical access control problem.

232 J. Wu and R. Wei

Acknowledgment

The authors wish to thank David Wagner and Kristian Gjøteen for their helpful
discussions on the security proof of the scheme. The authors also would like to
thank the anonymous referees for their useful comments.

References

1. Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem of access
control in a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, 1983.

2. Dan Boneh. The decision diffie-hellman problem. In ANTS-III: Proceedings of
the Third International Symposium on Algorithmic Number Theory, pages 48–63.
Springer-Verlag, 1998.

3. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. The group diffie-
hellman problems. In Selected Areas in Cryptography, 9th Annual International
Workshop, SAC 2002, volume 2595 of Lecture Notes in Computer Science, pages
325–338. Springer, 2003.

4. L. Harn and H.-Y. Lin. A cryptographic key generation scheme for multilevel data
security. Comput. Secur., 9(6):539–546, 1990.

5. Stephen J. MacKinnon, Peter D. Taylor, Henk Meijer, and Selim G. Akl. An
optimal algorithm for assigning cryptographic keys to control access in a hierarchy.
IEEE Trans. Comput., 34(9):797–802, 1985.

6. Ravi S. Sandhu. Cryptographic implementation of a tree hierarchy for access
control. Inf. Process. Lett., 27(2):95–98, 1988.

7. Steven Skiena. Implementing Discrete Mathematics: Combinatorics and Graph
Theory With Mathematica. Perseus Books, 1990.

8. Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-hellman key distribu-
tion extended to group communication. In CCS ’96: Proceedings of the 3rd ACM
conference on Computer and communications security, pages 31–37. ACM Press,
1996.

9. Jiang Wu. An access control scheme for partially ordered set hierarchy with prov-
able security. Master’s thesis, Lakehead University, Thunder Bay, ON, Canada,
2005.

10. Y. Zheng, T. Hardjono, and J. Pieprzyk. The sibling intractable function family
(siff): notion, construction and applications. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Science., E76-A(1):4–13, 1993.

11. Sheng Zhong. A practical key management scheme for access control in a user
hierarchy. Computers & Security, 21(8):750–759, 2002.

	Introduction
	Proposed Scheme
	Preliminary
	Key Management

	Security Analysis
	Preliminary
	Security Proof

	Performance Analysis
	Storage Requirement
	Dynamics
	Performance Summary

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

