A Software Implementation Progress Model

Dwayne Towell! and Jason Denton?

L Abilene Christian University,
Abilene TX 79699, USA
dwayne.towell@acu.edu
2 Texas Tech University,
Abilene TX 79602, USA
jason.denton@ttu.edu

Abstract. Software project managers use a variety of informal methods
to track the progress of development and refine project schedules. Previ-
ous formal techniques have generally assumed a constant implementation
pace. This is at odds with the experience and intuition of many project
managers. We present a simple model for charting the pace of software
development and helping managers understand the changing implemen-
tation pace of a project. The model was validated against data collected
from the implementation of several large projects.

1 Introduction

Modern software development practices rely on periodically collected software
metrics derived from a code base to provide management with feedback about
the project and the process used to develop it [IL[2]. Well-defined and proven
code metrics exist for some areas of software development [3[4L[5], however the
pace of implementation has no such established metrics based on code attributes.
Several alternative, non-code-based progress metrics, such as function points [6]
and earned value [IL[7], have been proposed and widely used. We believe it is
possible to leverage existing size metrics to directly monitor progress in a code
base, but to date such an approach has not been widely employed.

Here we propose implementation progress model based on development arti-
facts to interpret metrics and bridge the gap between concrete sampled data and
expectations or beliefs about the underlaying process. On a small scale, this type
of model may act as a predictor to set expectations over the next few data sam-
ples. This small-scale prediction helps provide timely feedback to management
on the state of a project. Viewing a whole project, a model provides a portrait
of the entire implementation process.

Without a formal, code-based implementation model management must rely
on evidence other than implementation artifacts when making decisions about a
project. In contrast, a formal implementation progress model based on implemen-
tation artifacts does not rely on external evidence yet establishes critical parame-
ters and allows objectively evaluation based on inherent artifact attributes. Here
we propose an implementation progress model based on implementation artifact
metrics that matches our intuitive understanding of implementation progress.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 93-[I06} 2006.
© Springer-Verlag Berlin Heidelberg 2006

94 D. Towell and J. Denton

The next section discusses supporting work. Section [3] describes the hypothe-
sis, proposed implementation progress model, and research process. Results from
actual projects are presented in Section[dl Finally, conclusions and directions for
future study are in Section Bl

2 Related Work

Schneidewind uses time-series metrics to create a method for evaluating process
stability [8]. Schneidewind asserts that metric trends are an indicator of the
underlying process and that monitoring the trends can support managing the
process. He suggests the shape of time-series data can be used to identify critical
moments within a project. To further quantify project trends, an indirect metric
based on time-series data is used. He defines a change metric as the difference
between consecutive measurements of a primary metric. The model proposed
here introduces a growth metric appropriate in the context of measuring project
progress.

While discussing project progress, McConnell defines code growth for a project
as the total size of project (source code) as a function of project time [2]. Code
growth of traditional iterative development contains three distinct phases. In the
first phase, architectural development and detailed design generate little code.
The second phase provides staged deliveries and includes detailed design, coding,
and unit testing. During this phase code growth is very high. Approaching initial
delivery, the third phase, code growth slows to a crawl. Typical phase transitions
occur at approximately 25% and 85% of the total implementation time for well-
managed projects [2]. Specific details are not provided about metrics, but source
lines of code, or a similar size metric, is assumed.

McConnell encourages the collection of time-series data to provide feedback
supporting project management. Specifically, he recommends that collected data
be viewed graphically since the shape can be used to diagnose project health. He
graphically depicts the typical code growth pattern for a well-managed project,
but acknowledges that its details varies to some degree. Our proposed progress
model provides an empirical representation of the overall project shape and
provides a specific interpretation of the three phases documented by McConnell.

3 Defining a Formal Progress Model

3.1 Informal Progress Models

Informal (non-mathematical) progress models already exist; as seen in project
vocabulary and assumptions. Informal models are commonly used to answer
project status queries, such as:

When will it be done, based on the current pace?

What was the size of the total effort for that project?

What fraction of the total effort has been spent?

A Software Implementation Progress Model 95

Such informal progress models capture another key attribute of implemen-
tation progress. The informal model acknowledges that project speed is not
constant throughout a project; projects “ramp up” and “slow down”. These
phrases refer to project speed and suggest the ability or desire to determine
implementation velocity. As envisioned by experienced project managers, this
velocity increases at the beginning and decreases near the end [2]. This is pos-
sibly an instance of the ”S” shape progress or growth curse which is observed
not only in projects but also in many other domains. A formal implementation
progress model should be informed by this experience and capture the variations
in velocity during implementation.

A formal implementation model should serve the same purpose as the informal
model. The model must help answers questions about implementation speed and
progress of current projects and provide a framework for making predictions
about the future of the project. For example, changes in the rate of progress in
an otherwise stable environment may indicate the project has transitioned to a
new phase. This assumes the rate of progress is dependent on the project state.

3.2 Requirements for a Formal Progress Model

The interpretive power of an implementation progress model is important to
consider. Interpretation of metric data relies on some understanding of our belief
about the underlying process. In general, model parameters should be few in
number, directly interpretable, and measured in existing units. These properties
give the model parameters the most meaning and thus give the model the most
explanatory power.

An implementation progress model should approximate actual project data
collected. Figure [1l shows accumulated source lines of code sampled from the
implementation phase of one project studied. The data in Figure[Ilis very similar
to the S-like curve described by McConnell [2].

This graph demonstrates the important characteristics of typical progress
data. Overall progress is not linear with time; the fastest pace occurs during the
middle of the project, while the ends are slower paced. The slope of the progress
curve indicates the speed of progress.

3.3 Formal Implementation Progress Model

The primary goal of software implementation is creation of artifacts which con-
tribute to delivering a working system. Implementation progress can be measured
as change in an artifact. Progress over time can be measured as the sum of in-
dividual changes. We define implementation progress as the accumulated effort
captured in code, which will eventually be delivered to the customer. For environ-
ments and development phases that emphasize code as the primary engineering
delivery, we feel this is an appropriate definition.

Implementation metrics, traditionally used to measure size, can be employed
to measure progress. Here we define a growth metric as the absolute difference
between consecutive samples of a size metric, as shown in ().

96 D. Towell and J. Denton

60000

50000 /-'
40000 /

30000 /‘J

20000 /
10000 /
0]

0 50 100 150 200 250
days

Fig. 1. Accumulated source lines of code changed for a sample project by day

A, = |my —my1| (1)

Where 4A,,, is the growth in a metric m at time ¢.

Also useful is the idea of implementation velocity [9]; the rate at which
progress is being made on a project. Evidence suggests implementation velocity
begins and ends at zero while being at its highest in the middle. The simplest im-
plementation velocity graph, consistent with experience, consists of three linear
segments. Implementation velocity begins at zero. It increases linearly until the
maximum sustainable velocity for implementation has been reached. The veloc-
ity remains constant until near the end of implementation when it begins to de-
crease. Then, implementation velocity constantly decreases until it reaches zero.

Figure 2l shows the idealized implementation velocity for a project as a func-
tion of time. The horizontal, center phase represents the steady, efficient devel-
opment observed in the middle of the implementation phase. The positive slope
at the left represents increasing velocity as implementation “gathers speed”. The
negative slope at the end of the graph shows the implementation phase decreas-
ing speed as the end approaches.

The idealized graph shown here is symmetric; however, symmetry is not com-
mon in practice and is not required by the model presented. The idealized ve-
locity as a function of time (v;) can be described using three parameters.

st 0<t<t,
P
w=q ty <t <tg (2)
t—t
Sy i tg<t<ty

In @) the velocity is given as a function of time, where s is the maximum
sustained velocity, t, and t, are the times of the phase transitions, and ¢y is

A Software Implementation Progress Model 97

-

velocity
progress

project time project time

Fig. 2. Idealized implementation velocity as a function of time

the time at the end of implementation. Time may be measured in any real unit,
such as days. Velocity is measured in size of metric change per time unit, such
as lines of code per day.

Integration of the idealized velocity for a project produces idealized progress
as a function of time (p;).

t2
1,0 0<t<t,
pp = { st— Lstp, ty <t <tg (3)
(P —2tpt+t2+tpty—tpty)
R

The idealized implementation progress curve as a function of time is shown in
@). Progress is measured in accumulated metric growth to date, such as total
lines of code changed.

4 Model Validation

We examined several size metrics as the basis for the growth metric used in
our model [10]. Source lines of code (SLOC) is frequently used for estimating
resources needed and should be readily available in most development environ-
ments [6,1TL12,[T3]. In this study, lines containing only white space and lines
consisting of comment characters without any alphabetic characters were not
counted. In addition, physical lines containing both code and comments were
counted as two lines.

Two variations on the SLOC metric were considered. The simplest form counts
the SLOC change (SLOCC) for each file. SLOCC is the absolute difference in
SLOC between source files consecutively committed to the project repository;
it counts SLOC added or deleted from the previous version. This assumes the
correct removal of code artifacts is equivalent in terms of effort as correctly
adding to the code base. We realize this may not strictly be the case, but it is
difficult to determine what an appropriate weighting factor should be. To avoid
introducing a weighting factor for this study, we assume all changes represent
equal effort.

98 D. Towell and J. Denton

The second form measures the number of lines actually changed between
submissions by comparing the files. This second measure is sometimes referred
to as code churn (CHURN) [14]. CHURN is the count of source lines inserted,
deleted, or changed between consecutively committed source files. It is probably
a better change metric than SLOCC since CHURN captures more effort.

4.1 Alternative Models

Parameterized models provide an approximation of the sampled data for a par-
ticular data set. The model curve which most closely fits the data is considered
the best; it introduces the least error. Model fit can be measured using the
squared residual after subtracting the model curve from the sample data. To
allow comparisons between models the average squared residual error (R2) is
used. The model with the lowest R? for a particular data set provides the closest
approximation.

In addition to the proposed implementation progress model, three alternative
models were chosen to provide a context for evaluating the fit of the proposed
model.

The first model was a linear approximation. The linear model curve is given
by). Linear approximation, with only two parameters, represents a practical
lower-bound on the number of model parameters and the model with the highest
expected R2.

linear, = at + b (4)

The second alternative model chosen was a multiphase, piecewise parabolic
approximation. It contains eleven parameters; its model curve is shown in (&]).
This model was chosen to represent a practical lower-bound on R2.

at?’ +bt+c, 0<t<t,
multiphase, = § dt? +et+ f, t, <t<t, (5)
gt +ht+i, ty<t<ty

The multiphase model was chosen to provide an highly data-conforming
model. The proposed model is a special case of ([&]).

The third model was a third-degree polynomial approximation, with four
parameters as shown in (@). A third-degree polynomial approximation provides
just enough flexibility to model the S-curve observed. It also provides a model
of approximately the same number of parameters as the proposed model.

polynomial; = at® + bt> + ct +d (6)

4.2 Experimental Data

Seventeen projects from a single company were studied. All projects were devel-
oped using the same iterative process. They were six weeks to eighteen months in
length and involved one to eight engineers. All projects produced entertainment
and education oriented software designed to be marketed to consumers for use

A Software Implementation Progress Model 99

with Microsoft® Windows® and on Macintosh® personal computers between
1995 and 2002. In this environment, before the prevalence of the Internet, once
this type of consumer product was released to manufacturing, no maintenance
changes were possible due to economic considerations. Manufacturing and dis-
tribution costs meant the projects had clear delivery dates after which no work
was to be done. This is unlike other environments, where software is delivered
in near real-time or deployed, and implementation evolves into a continuous
cycle of maintenance. The progress model studied is expected to be meaningful
when applied to each release of on-going projects, however additional studies will
be needed to establish this. We expect results from this homogeneous group of
projects will apply to initial development efforts of iteratively developed projects
and to projects without maintenance phases.

4.3 Model Fitting Results

Evaluations of both metrics for each project were performed. The three alter-
native models described above and the proposed model were used. A numerical
fitting routine was used to find parameter values that minimized R2.

Figure Blshows progress measured via accumulated SLOCC and model curves
for a project. As expected, the linear model provides a poor fit for the data and
the multiphase model fits the data very accurately. Both the polynomial and
proposed models provide fits between the linear and multiphase models.

The polynomial model exhibits wild “swings” near the ends. These swings
are typical of polynomial curves which tend to favor data points near the center
rather than the ends. In this case, the polynomial model suggests a “negative”
amount of accumulated work had been accomplished until about day forty of the
project. Similarly, it indicates reverse-progress begins to occur around day 220.
In almost all cases, these polynomial model swings suggest negative progress
occurs at the beginning and end of the project.

The multiphase model includes discontinuities, occurring on day 72 and 138.
These discontinuities represent an instantaneous change in speed, which is incon-
sistent with an intuitive understanding of the process. In general, small changes
in a data set may radically change the location and size of the discontinuities,
which suggests the model does not accurately represent the implementation
process.

The average squared residual error (R?) for each model is given in the legend
of Figure Bl The values agree with a visual assessment of the fit except in the
case of the polynomial model. While the lower R2? for the polynomial model
is more desirable, the polynomial fit suffers extensively from undesirable swings
near the ends. These swings violate a basic expectation of accumulated progress,
that is, it should be monotonically increasing. While the proposed model has a
larger R2, it is monotonically increasing and behaves as expected. This behavior
appears to support in-project predictions better than the polynomial model.

In this project, most of the proposed model R? can be seen to occur in the first
third of the project. Each of the other three metrics show similar results; this
may indicate early efforts are not as efficiently captured by the metrics as later

100 D. Towell and J. Denton

60000 ;7 —— 7 [[-
e "‘.'é;_:’mm_f_.mj
,zy’iﬂ” BN
50000 ‘&," >
40000
30000
20000
+ measured progress

10000 —— linear (38 1,596,000)

- - - polynomial (35,019,000)

------ proposed (66,508,000)

- -—-multiphase (6,711,000)

0+ — T T
0 30 60 90 120 150 180 210 240

days

Fig. 3. Progress measured via accumulated source lines of code change (SLOCC) for
project nine and progress model curves (with R?)

efforts. It could also indicate that during the later part of the project, the pace
was unpredictably high (in violation of the implied model). Without additional
information about the project, or its context, a determination cannot be made.

4.4 Data Analysis

The R? for each metric is given in Tables [l and Bl Figures [and [show R2
relative to the linear model R2 for each project. To improve viewing, projects
are ordered by polynomial model relative R2.

In all cases the proposed model reduces R? compared with the linear model, as
expected, since the proposed model has an additional parameter. In many cases
the proposed model substantially reduces R? when compared with a linear model.
In a few of these cases the reduction in R? is almost to the level achieved using
the multiphase model. In these conforming cases the proposed model provides a
meaningful interpretation of the data.

Consider the proposed model R? compared with the linear model R2. In cases
where the proposed model substantially reduces R2, the model gave improved
results with the addition of a single parameter. This substantial improvement
suggests the data conforms to the model and the results may be relied upon to

Project

Project

A Software Implementation Progress Model 101
Table 1. R? measuring source lines of code changed (SLOCC)

Model R? (in millions)

samples linear polynomial proposed multiphase
129 0.0667 0.0482 0.0434 0.0094
1408 1.8269 1.6747 1.1458 0.4171
406 3.8133 0.9391 0.6371 0.0762
1394 1.0997 0.5958 0.6843 0.1176
90 0.0316 0.0108 0.0094 0.0021
1455 8.6590 2.0236 2.4551 0.2863
2204 12.3603 3.0171 4.0937 0.7440
138 0.0915 0.0245 0.0239 0.0028
1555 11.3106 1.1201 2.1672 0.2127
481 0.4575 0.0738 0.0386 0.0147
164 0.0111 0.0043 0.0037 0.0017
1274 2.4112 0.8349 0.8790 0.1589
715 0.4516 0.1139 0.1331 0.0181
723 0.1256 0.1215 0.1074 0.0210
827 2.9719 1.1158 1.2222 0.2215
967 6.3210 2.6441 1.7401 0.2475
1214 1.9231 0.3513 0.1566 0.0414

Table 2. R? measuring code churn (CHURN)

Model R? (in millions)

samples linear polynomial proposed multiphase
129 0.3485 0.2205 0.1601 0.0289
1408 22.0988 8.2642 15.6206 1.7608
406 19.6692 4.9855 3.4455 0.2821
1394 2.6183 1.7401 2.0264 0.5516
90 0.2008 0.0530 0.0590 0.0119
1455 19.7174 5.3214 5.7359 0.8605
2204 36.1142 9.8627 12.7864 1.9951
138 0.2487 0.0674 0.0549 0.0087
1555 49.1829 4.7964 9.3587 0.8686
481 8.9162 2.8376 3.0023 0.0517
164 0.0362 0.0203 0.0155 0.0077
1274 9.4001 3.9973 3.2209 0.7597
715 1.7914 0.4591 0.5131 0.0593
723 0.4844 0.4684 0.4064 0.0814
827 11.0583 3.1825 3.3451 0.7040
967 20.5449 8.5899 5.9072 0.5758
1214 7.8927 1.7450 0.8902 0.1993

102 D. Towell and J. Denton

Fig. 4. Source lines of code change (SLOCC) average squared residual error (R?2) rel-
ative to linear R?

Fig. 5. Code churn (CHURN) average squared residual error (R?) relative to linear R?

correctly interpret the data. In the non-conforming cases, where the reduction
is less significant, the model may not be appropriate and the results should only
be used judiciously. Based on the available projects, we suggest the proposed
model may be relied upon when the R? is at most half that of the linear model.

A Software Implementation Progress Model 103

Projects may fail to conform to the model for a number of reasons. Almost
all projects exhibit “pauses” corresponding with weekends when developers do
no work. Some projects also include larger periods when no apparent progress
is made during a holiday break. Both of these phenomena can be seen clearly
in projects la and 15. Using work days instead of calendar days would elimi-
nate a major cause of time-related noise. Several projects include substantial,
sudden, and anomalous progress. In all cases where these events were examined
closely, the anomaly has proven to be the result of an unfortunate side-effect
of the specific data collection procedure used. For example, a renamed file was
detected as a combination of a substantial deletion and a subsequent addition. A
commitment to collect the needed data during the project could reduce noise by
allowing anomalies to be detected and corrected while any additional required
information is still available.

TablesBland @ show the model parameters for each project and metric, ordered
by R2 relative to linear R2. With only seventeen projects and no independent
data available, few definite conclusions can be reached, however several items
are worth noting.

In about half of all cases, the model indicates ¢, and ¢, are essentially the
same. In these cases, the model ¢, —1, is close to zero, suggesting steady progress
did not occur; implementation was either accelerating or decelerating. This could
indicate development under a tight schedule or a process that could be improved.
It is also interesting to note that in these cases the model was able to substan-
tially reduce R? while effectively using only two parameters.

Table 3. Source lines of code change (SLOCC) progress model parameters and R?
relative to linear R?

Model parameters

Project relative R? s tp tq ty
20 0.081 289.8 64.2 64.3 187.1
10 0.084 156.9 30.6 30.7 132.0
3 0.167 376.0 48.9 49.0 120.3
9 0.192 480.4 109.8 109.8 246.7
8 0.262 42.5 17.2 17.5 128.9
19 0.275 501.7 108.1 108.4 164.8
6 0.284 361.9 57.5 126.1 248.0
14 0.295 91.8 21.3 97.8 238.2
5 0.297 92.0 14.9 14.9 48.8
7 0.331 183.9 93.4 288.9 555.2
11 0.336 48.9 27.5 62.4 70.9
13 0.365 250.5 93.8 213.9 220.8
17 0.411 268.4 6.3 1104 181.0
4 0.622 215.6 24.1 138.5 201.7
1b 0.627 303.1 28.9 220.2 248.3
la 0.650 183.8 14.0 14.1 44.9

15 0.855 92.3 4.5 140.9 163.9

104 D. Towell and J. Denton

Table 4. Code churn (CHURN) progress model parameters and R? relative to linear
R2

Model parameters

Project relative R2 s tp tq ty
20 0.113 560.6 68.2 68.3 187.1
3 0.175 820.9 45.7 45.7 120.3
9 0.190 1028.0 110.6 110.7 246.7
8 0.221 75.9 21.5 21.8 128.9
14 0.286 170.6 23.2 92.4 238.2
19 0.288 882.7 111.8 112.0 164.8
6 0.291 631.7 43.4 136.4 248.0
5 0.294 211.3 17.5 214 48.8
17 0.302 538.3 10.7 109.3 181.0
10 0.337 412.6 16.7 16.8 132.0
13 0.343 548.8 87.9 211.6 220.8
7 0.354 325.9 85.2 298.6 555.2
11 0.427 100.9 204 59.2 70.9
la 0.459 365.8 14.5 14.5 44.9
1b 0.707 667.8 54.1 238.3 248.3
4 0.774 386.7 17.5 148.2 201.7
15 0.839 181.7 0.5 139.7 163.9

In conforming cases where t,—t, is much larger than zero, the model indicates
steady, sustained implementation occurred between ¢, and ¢,. In these cases, the
implementation velocity (s) can be stated with great confidence. Velocity is a
surrogate for productivity in the dimension measured by the specific metric.
For example, Table B shows project six averaged over 360 lines of new code per
calendar day between project days 58 and 126.

In the projects studied, implementation velocity (s) varies by more than an
order of magnitude. While part of this variation is due to the number of engineers
assigned to the project, likely some is due to proficiency. This is consistent with
studies showing individual programmer productivity varies by as much as an
order of magnitude [15].

5 Conclusions

Interpreting implementation progress measurements is difficult. A simple model
is needed to provide a framework to help interpret the data. We have developed
a piecewise approximation based on a three-phase model of linear implementa-
tion velocity. The model corresponds well to our intuition of how project progress
occurs. It identifies project phase boundaries as well as the velocity of implemen-
tation during each phase. Furthermore, the progress model allows comparisons
of project velocity between projects and easily supports estimating.

The progress model fits the available sample data better than a linear model.
With only one additional parameter, the model produces fits with approximately

A Software Implementation Progress Model 105

two-thirds less error than a linear fit. When compared with a polynomial fit, the
progress model performs at least as well as a polynomial model which has one
additional parameter.

Any model is only as good as the data on which it is based. Errors were
discovered in both dimensions of the sample data. Spurious data entries were
occasionally introduced due to the check-in process used. Similarly, using project
work days, instead of calendar days, could have improved the quality of data in
the time dimension.

5.1 Future Work

This work provides a sound basis for further study in this area. The progress
model presented here only considers non-maintenance implementation. Projects
with clear delivery dates, after which continuing development is not planned,
fall into this category. Projects in maintenance or under continuous development
may not exhibit phases similar to projects with firm end dates and deserve to
be investigated, although this would require further work.

The stability of the model suggests it could be used to make predictions.
Estimating project parameters such as final size, delivery date, development
pace, etc. during implementation should be investigated. Similarly, comparisons
of teams or projects based on model parameters could be studied.

Investigation of other metrics as a basis for measuring progress should be
undertaken. If a size metric for object-oriented software were developed, investi-
gating its use as a basis for a growth metric would be very valuable. Variations
of existing metrics better tuned to capture change should be studied. One ex-
ample of this type of metric is the sum of cyclomatic complexity of all changed
functions, rather than simply the change in cyclomatic complexity of a source
artifact.

References

1. Boehm, B.W.: Software Engineering Economics. Prentice-Hall (1981)

2. McConnell, S.: Software Project Survival Guide. Microsoft Press, Redmond, WA
1998

3. %‘entoil, N.E.: Software Metrics: A Rigorous Approach. Chapman and Hall, London
1991

4. %(afur)a, D., Canning, J.: A validation of software metrics using many metrics and
two resources. In: Proceedings of the 8th International Conference on Software
Engineering. (1985) 378-385

5. Fenton, N.E., Neil, M.: Software metrics: roadmap. In: Proceedings of the confer-
ence on The future of Software Engineering, ACM Press (2000) 357-370

6. Albrecht, A.J., John E. Gaffney, J.: Software function, source lines of code, and
development effort prediction: A software science validation. IEEE Transactions
on Software Engineering 9(6) (1983) 639-648

7. Humphrey, W.S.: A Discipline for Software Engineering. Addison-Wesley (1994)

8. Schneidewind, N.F.: Measuring and evaluating maintenance process using relia-
bility, risk, and test metrics. IEEE Transactions on Software Engineering 25(6)
(1999) 761-781

106

9.

10.

11.

12.

13.

14.

15.

D. Towell and J. Denton

Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(1999)

Towell, D.: An implementation progress model. Master’s thesis, Texas Tech Uni-
versity (2004)

DeMarco, T.: Controlling Software Projects - Management, Measurement and
Estimation. Yourdon Press, Inglewood Cliffs, NJ (1982)

Lind, R.K., Vairavan, K.: An experiemental investigation of software metrics and
their relationship to software development effort. IEEE Transactions on Software
Engineering 15(5) (1989) 649-653

Jorgensen, M.: Experience with the accuracy of software maintenance task effort
prediction models. IEEE Transactions on Software Engineering 21(8) (1995) 674—
681

El-Eman, K.: A methodology for validating software product metrics. Technical
Report NRC/ERB-1076 44142, National Research Council Canada, Institute for
Information Technology (2000)

H. Sackman, W. J. Erikson, E.E.G.: Exploratory experimentation studies com-
paring online and offline programming performance. Communications of the ACM
1(1) (1968) 3-11

	Introduction
	Related Work
	Defining a Formal Progress Model
	Informal Progress Models
	Requirements for a Formal Progress Model
	Formal Implementation Progress Model

	Model Validation
	Alternative Models
	Experimental Data
	Model Fitting Results
	Data Analysis

	Conclusions
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

