

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 18 – 32, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Formal Approach to Event-Based Architectures

José Luiz Fiadeiro1 and Antónia Lopes2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

jose@fiadeiro.org
2 Department of Informatics, Faculty of Sciences, University of Lisbon,

Campo Grande, Lisboa 1749-016, Portugal
mal@di.fc.ul.pt

Abstract. We develop a formal approach to event-based architectures that
serves two main purposes: to characterise the modularisation properties that re-
sult from the algebraic structures induced on systems by this discipline of coor-
dination; and to further validate and extend the CommUnity approach to archi-
tectural modelling with “implicit invocation”, or “publish/subscribe” interac-
tions. This is a first step towards a formal integration of architectural styles.

1 Introduction

Event-based interactions are now established as a major paradigm for large-scale dis-
tributed applications (e.g. [1,3,5,10,12]). In this paradigm, components may declare
their interest in being notified when certain events are published by other components
of the system. Typically, components publish events in order to inform their environ-
ment that something has occurred that is relevant for the behaviour of the entire sys-
tem. Events can be generated either in the internal state of the components or in the
state of other components with which they interact.

Although Sullivan and Notkin’s seminal paper [14] focuses on tool integration and
software evolution, the paradigm is much more general: components can be all sorts
of runtime entities. What is important is that components do not know the identity, or
even the existence, of the publishers of the events they subscribe, or the subscribers of
the events that they publish. In particular, event notification and propagation are per-
formed asynchronously, i.e. the publisher cannot be prevented from generating an
event by the fact that given subscribers are not ready to react to the notification.

Event-based interaction has also been recognised as an “abstract” architectural
style, i.e. as a means of coordinating the behaviour of components during high-level
design. The advantages of adopting such a style so early in the development process
stem from exactly the same properties recognised for middleware: loose coupling
allows better control on the structural and behavioural complexity of the application
domain; domain components can be modelled independently and easily integrated or
removed without disturbing the whole system.

However, in spite of these advantages and its wide acceptance, implicit invocation
remains relatively poorly understood. In particular, its structural properties as an
architectural style remain to be clearly stated and formally verified. One has to

 A Formal Approach to Event-Based Architectures 19

acknowledge the merit of several efforts towards providing methodological principles
and formal semantics (e.g. [14]), including recent incursions on using model-checking
techniques for reasoning about such systems [2,9]. However, we are still far from an
accepted “canonical” semantic model over which all these efforts can be brought
together to provide effective support and formulate methodological principles that can
steer development independently of specific choices of middleware.

This paper makes another contribution in this direction by investigating how event-
based interactions can be formalised in a categorical setting similar to the one that we
developed in [7] for i/o-communication and action synchronisation (rendez-vous)
around the language CommUnity. Our formalisation addresses the architectural prop-
erties, i.e. the discipline of decomposition and interconnection, not the notification
and subscription mechanisms that support them. More precisely, it serves two main
purposes. On the one hand, to characterise the modularisation properties that result
from the algebraic structures induced on systems by this discipline of coordination.
In particular, we justify a claim made in [14] about the externalisation of mediators:
“Applying this approach yields a system composed of a set of independent and visible
[tool] components plus a set of separate, or externalised, integration components,
which we call mediators”. Our interest is in investigating and assigning a formal
meaning to notions such as “independent”, “separate” and “externalised”, and in char-
acterising the way they can be derived from implicit invocation. On the other hand,
we wish to further validate and refine the categorical approach that we have been
developing to support architectural modelling by investigating how the “implicit in-
vocation” architectural style can be captured as a coordinated category [6]. This is a
first step towards a formal approach to the integration of architectural styles.

In section 2, we introduce our primitives for modelling publish/subscribe interac-
tions using a minimal language in the style of CommUnity [7]. In section 3, we de-
fine the category over which we formalise our approach. We show how the notion of
morphism can be used to identify components within systems and the way they can
subscribe events published by other components. In section 4, we show how event
bindings can be externalised and made explicit in configuration diagrams. In section
5, we give a necessarily brief account of how we can use the categorical formalisation
to bring several architectural styles together.

2 Event-Based Designs

We model components that keep a local state and subscribe to a number of events.
Upon notification that one such event has taken place, a component invokes one or
more services. If, when invoked, a service is enabled, it is executed, which may
change the local state of the component and publish new events.

We start discussing our approach by showing how we can model what is consid-
ered to be the “canonical” example of event-based interactions: the set-counter. We
start with the design of a component Set that keeps a set elems of natural numbers as
part of its local state. This component subscribes two kinds of events – doInsert and
doDelete – each of which carries a natural number as a parameter. Two other kinds of

20 J. L. Fiadeiro and A. Lopes

events – inserted and deleted – are published by Set. Each of these events also carries
a natural number as a parameter.

As a component, Set can perform two kinds of services – insert and delete. These
services are invoked upon notification of events doInsert and doDelete, respectively.
When invoked, insert checks if the parameter of doInsert is already in elems; if not, it
adds it to elems and publishes an inserted event with the same parameter. The in-
vocation of delete has a similar behaviour.

design Set is

 publish inserted
 par which:nat

 publish deleted
 par which:nat

 subscribe doInsert
 par which:nat
 invokes insert

 handledBy insert? ∧
 which=insert.lm

 subscribe doDelete
 par which:nat
 invokes delete

 handledBy delete? ∧
 which=delete.lm

store elems: set(nat)

provide insert
 par lm:nat

 assignsTo elems
 guardedBy lm∉elms
 publishes inserted
 effects elems’={lm}∪elems ∧

 inserted! ∧ inserted.which=lm
provide delete

par lm:nat
 assignsTo elems
 guardedBy lm∈elms
 publishes deleted
 effects elems’=elems\{lm} ∧

 deleted! ∧ deleted.which=lm

Even if the notation is self-explanatory, we need to discuss some of its features:

• When declaring the events that a component subscribes, we identify under
invokes the services that may be invoked when a notification is received.
Under handledBy, we specify the different ways in which a notification is
handled, using s? to denote the invocation of service s.

• Parameter passing is made explicit through expressions within specifications.
For instance, the clause inserted.which=lm in the definition of the effects of
insert means that the event inserted is published with its parameter which
equal to the value of the parameter lm of insert.

• Under store we identify the state variables of the component; state is local in
the sense that the services of a component cannot change the state variables
of other components.

• Through assignsTo we identify the state variables that a service may change
and, through publishes, we identify the events that a service may publish.

• When specifying the effects of a service, v’ denotes the value that state vari-
able v takes after it is executed, and e! denotes the publication of event e.

• Through guardedBy we identify the enabling condition of a service, i.e. the
set of states in which its invocation is accepted and the service is executed.

• Designs can be underspecifed, leaving room for further design decisions to
be made during development. Therefore, we allow for arbitrary expressions
to be used when specifying how parameters are passed, events are handled
and services change the state.

Consider now the design of a system in which a counter subscribes inserted and
deleted to count the number of elements in the set:

 A Formal Approach to Event-Based Architectures 21

design Set&Counter is

 store elems: set(nat),
 value:nat

 publish&subscribe inserted
 par which:nat

 invokes inc
 handledBy inc?

 publish&subscribe deleted
 par which:nat

 invokes dec
 handledBy dec?

subscribe doInsert
 par which:nat
 invokes insert

 handledBy insert? ∧
 which=insert.lm
 subscribe doDelete
 par which:nat
 invokes delete

 handledBy delete? ∧
 which=delete.lm

provide insert
 par lm:nat

 assignsTo elems
 guardedBy lm∉elms
 publishes inserted
 effects elems’={lm}∪elems ∧

 inserted! ∧ inserted.which=lm
provide delete

par lm:nat
 assignsTo elems
 guardedBy lm∈elms
 publishes deleted
 effects elems’=elems\{lm} ∧

 deleted! ∧ deleted.which=lm
provide inc

 assignsTo value
 effects value’=value+1

provide dec
 assignsTo value
 effects value’=value-1

We can keep extending the design by bringing in new components that subscribe
given events. For instance, we may wish to keep a record of the sum of all elements of
the set by adding an adder that also subscribes inserted and deleted.

design Set&Counter&Adder is

 store elems: set(nat),
 value:nat, sum:nat

 publish&subscribe inserted
 par which:nat

 invokes inc, add
 handledBy inc?
 handledBy add? ∧
 which=add.lm

 publish&subscribe deleted
 par which:nat

 invokes dec,sub
 handledBy dec?
 handledBy sub? ∧

 which=sub.lm

 subscribe doInsert
 par which:nat
 invokes insert

 handledBy insert? ∧
 which=insert.lm

 subscribe doDelete
 par which:nat
 invokes delete

 handledBy delete? ∧
 which=delete.lm

provide insert
 par lm:nat

 assignsTo elems
 guardedBy lm∉elms
 publishes inserted
 effects elems’={lm}∪elems ∧

 inserted! ∧ inserted.which=lm
provide delete
 par lm:nat

 assignsTo elems
 guardedBy lm∈elms
 publishes deleted
 effects elems’=elems\{lm} ∧
 deleted! ∧ deleted.which=lm

provide inc
 assignsTo value
 effects value’=value+1

provide add
 par lm:nat
 assignsTo sum
 effects sum’=sum+lm

provide sub
 par lm:nat
 assignsTo sum
 effects sum’=sum-lm

provide dec
 assignsTo value
 effects value’=value-1

This example illustrates how we can declare more than one handler for a given
event subscription. For instance, the event inserted has two handlers: one invokes add

22 J. L. Fiadeiro and A. Lopes

and the other invokes inc. Both invocations are independent in the sense that they can
take place at different times. This is different from declaring just one handler of the
form inc? ∧ add? ∧ which=add.lm; such a handler would require synchronous invo-
cation of both services. The latter is useful when one wants to make sure that separate
state components are updated simultaneously, say to ensure that the values of sum and
count apply to the same set of elements.

As a design of a system, Set&Counter&Add seems to be highly unstructured: we
seem to have lost the original Set; and where is the Counter? and the Adder? In the
next section, we show how Set&Counter&Add can be designed by interconnecting
separate and independent components, including mediators in the sense of [14].

3 Structuring Event-Based Designs

In order to discuss the structuring of event-based designs, we adopt the categorical
approach that we have been developing for architectural modelling [6,7]. In Category
Theory, the structure of objects such as the designs introduced in the previous section
is formalised in terms of morphisms. A morphism is simply a mechanism for recog-
nising a component within a larger system.

In the examples discussed in the previous section, we used a number of data types
and data type constructors. In order to remain independent of any specific language
for the definition of the data component of designs, we assume a data signature
Σ=<D,Ω>, where D is a set (of sorts) and Ω is a D*×D-indexed family of sets (of
operations), to be given together with a collection Φ of first-order sentences specify-
ing the functionality of the operations. We refer to this data type specification by Θ.

From a mathematical point of view, designs are structures defined over signatures.

Definition: A signature is a tuple Q=<V,E,S,P,T,A,B,G,H> where

• V is a D-indexed family of finite sets (of state variables).
• E is a finite set (of events).
• S is a finite set (of services).
• P assigns to every service s∈S and event e∈E, a D-indexed family of mutu-

ally disjoint finite sets (of parameters).
• T: E→{pub,sub,pubsub} is a function classifying events as published, sub-

scribed, or both published and subscribed. We denote by Pub(E) the set of
events {e∈E: T(e)≠sub} and by Sub(E) the set of events {e∈E: T(e)≠pub}.

• A: S→2V is a function returning the write-frame (or domain) of each service.
• B: S→2Pub(E) is a function returning the events published by each service.
• G: Sub(E)→2S is a function returning the services invoked by each event.
• H assigns to every subscribed event e∈Sub(E), a set (of handlers).

The mapping P defines, for every event and service, the name and the type of its pa-
rameters. Every variable and parameter v is typed with a sort sort(v)∈D. The sets
Vd∈D, E, S, Ps∈S and Pe∈E are assumed to be mutually disjoint. This is why the “offi-
cial” name of, for instance, parameter which of event inserted is inserted.which.

 A Formal Approach to Event-Based Architectures 23

We use T to classify events as pub (published only), sub (subscribed only) or pub-
sub (both published and subscribed). For instance, in Set&Counter&Adder (SCA):

• ESCA={inserted, deleted, doInsert, doDelete}
• TSCA(inserted)=TSCA(deleted)=pubsub; TSCA(doInsert)=TSCA(doDeleted)=sub
• SubSCA(E)={inserted, deleted, doInsert, doDelete}
• PubSCA(E)= {inserted, deleted}

And in Set (S) we have

• ES={inserted, deleted, doInsert, doDelete}
• TS(inserted)=TS(deleted)=pub; TS(doInsert)=TS(doDeleted)=sub
• SubS(E)={doInsert, doDelete}
• PubS(E)= {inserted, deleted}

Events are published by services. We declare the events that each service may
publish through the mapping B. For instance,

• BS(insert)=BSC(insert)=BSCA(insert)={inserted}
• BS(delete)=BSC(delete)=BSCA(delete)={deleted}

For every service s, another set A(s) is defined that consists of the state variables
that can be affected by instances of s. These are the variables indicated under assign-
sTo. For instance, AS(insert)={elems}. We extend the notation to state variables so
that A(v) is taken to denote the set of services that have v in their write-frame. Hence,
AS(elems)={insert,delete}.

When a notification that a subscribed event has been published is received, a com-
ponent reacts by invoking services. For every subscribed event e, we denote by G(e)
the set of services that may be invoked. For instance,

• GS(doInsert)=GSC(insert)=GSCA(insert)={insert}
• GSC(inserted)={inc}
• GSCA(inserted)={inc,add}

Notice that the functions A, B, and G just declare the state variables, events and
services that can be changed, published, and invoked, respectively. Nothing in a
signature states how state variables are changed, or how and in which circumstances
events are published or services invoked. In brief, signatures need to include all and
only the typing information required for establishing interconnections. Hence, for
instance, it is important to include in the signature information about which state
variables are in the domain of which services but not the way services affect the state
variables; it is equally important to know the structure of handlers for each subscribed
event but not the way each subscription is handled. This additional information that
pertains to the individual behaviour of components is defined in the bodies of designs:

Definition: A design is a pair <Q,∆> where Q is a signature and ∆, the body of the
design, is a tuple <η,ρ,γ,> where:

• η assigns to every handler h∈H(e) of a subscribed event e∈Sub(E), a propo-
sition in the language of V (state variables), the parameters of e, the services
declared in G(e) and their parameters.

24 J. L. Fiadeiro and A. Lopes

• ρ assigns to every service s∈S, a proposition in the language of V, the pa-
rameters of s, the primed variables in the domain of s, as well as the events –
B(e) – that may be published by the service and their parameters.

• γ assigns to every service s∈S, a proposition in the language of V (state vari-
ables) and the parameters of s.

By “the language of X” we mean the first-order language generated by using X as
atomic terms. Given this, the body of a design is defined in terms of:

• for every subscribed event e, a set – H(e) – of handling requirements ex-
pressed through propositions η(h) for every handler h∈H(e). For instance, in
Set&Counter&Adder, we have HSCA(inserted) given by two handlers whose
requirements are inc? and (add? ∧ inserted.which=add.lm). Every handling
requirement (handling for short) is enforced when the event is published.
Each handling consists of service invocations and other properties that need
to be observed on invocation (e.g. for parameter passing) or as a pre-
condition for invocation (e.g. in the case of filters for discarding notifica-
tions). A typical handling is of the form ψ ⊃ (s?∧ φ) establishing that s is
invoked with property φ if condition ψ holds on notification.

• for every service s, an enabling condition – γ(s) – defining the states in
which the invocation of s can be accepted. This is the condition that we
specify under guardedBy.

• for every service s, a proposition – ρ(s) – defining the state changes that can
be observed due to the execution of s. As shown in the examples, this
proposition may include the publication of events and parameter passing.
This is the condition that we specify under effects.

The language over which propositions used in η, γ and ρ are written extends that
used for the data type specification with state variables (and their primed versions in
the case of ρ) as nullary operators. Qualified parameters of events and services are
also taken as nullary operators. In the case of ρ(s) this extension also comprises the
events of B(s) as nullary operators that represent the publication of the corresponding
event. This is why ρSCA(insert) includes the expression inserted! indicating the publi-
cation of the event inserted. In the case of η(e) the extension includes services
a∈G(e) as nullary operators that represent their invocation, what we denote with a?.

As already mentioned, the structure of designs is captured through morphisms.
These are maps between designs that identify ways in which the source is a compo-
nent of the target. We define first how morphisms act on signatures:

Definition/Proposition: A morphism σ:Q1→Q2 for Q1=<V1,E1,S1,P1,T1,A1,B1,G1,H1>
and Q2=<V2,E2,S2,P2,T2,A2,B2,G2,H2> is a tuple <σst,σev,σsv,σpar-ev,σpar-sv,σhr-ev>
where

• σst: V1→V2 is a function on state variables that preserves their sorts, i.e.
sort2(σst(v))=sort1(v) for every v∈V1

• σev: E1→E2 is a function on events that preserves kinds, i.e. σev(e)∈Pub(E2)
for every e∈Pub(E1) and σev(e)∈Sub(E2) for every e∈Sub(E1), as well as in-
voked services, i.e. σsv(G1(e))⊆G2(σev(e)) for every e∈Sub(E1).

 A Formal Approach to Event-Based Architectures 25

• σsv: S1→S2 is a function that preserves domains, i.e A2(σst(v))=σsv(A1(v)) for
every v∈V1, as well as published events, i.e. σev(B1(s))⊆B2(σsv(s))

• σpar-ev maps every event e to a function σpar-ev,e: P1(e)→P2(σev(e)) that pre-
serves the sorts of parameters, i.e. sort2(σpar-ev,e(p))=sort1(p) for p∈P1(e)

• σpar-sv operates like σpar-ev but on service parameters
• σhr-ev maps every subscribed event e to a function σhr-ev,e: H1(e)→ Η2(σev(e)).

Signatures and their morphisms constitute a category SIGN.

A morphism σ from Q1 to Q2 is intended to support the identification of a way in
which a component with signature Q1 is embedded in a larger system with signature
Q2. Morphisms map state variables, services and events of the component to corre-
sponding state variables, services and events of the system, preserving data sorts and
kinds. An example is the inclusion of Set in Set&Counter&Adder.

Notice that is possible that an event that the component subscribes is bound to an
event published by some other component in the system, thus becoming pubsub in the
system. This is why we have TS(inserted)=sub but TSCA(inserted)=pubsub.

The constraints on domains imply that new services of the system cannot assign to
variables of the component. This is what makes state variables “private” to compo-
nents. As a result, we cannot identify components of a system by grouping state vari-
ables, services and events in an arbitrary way. For instance, we can identify a counter
as a component of Set&Counter&Adder as follows. Consider the following design:

design Counter is

 subscribe doInc
 invokes inc
 handledBy inc?

 subscribe doDec
 invokes dec
 handledBy dec?

 store value: nat

 provide inc
 assignsTo value
 effects value’=value+1

 provide dec
 assignsTo value
 effects value’=value-1

It we map doInc to inserted and doDec to deleted, we do define a morphism be-
tween the signatures of Counter and Set&Counter&Adder. Indeed, sorts of state
variables are preserved, and so are the kinds of the events. The domain of the state
variable value is also preserved because the other services available in
Set&Counter&Adder do not assign to it.

Components are meant to be “reusable” in the sense that they are designed without
a specific system or class of systems in mind. In particular, the components that are
responsible for publishing events, as well as those that will subscribe published
events, are not fixed at design time. This is why, in our language, all names are local
and morphisms have to account for any renamings that are necessary to establish the
bindings that may be required. For instance, the morphism that identifies Counter as a
component of Set&Counter&Adder is not just an injection. Do notice that the binding
also implies that inserted and deleted are subscribed within Set&Counter&Adder. As
a result, our components are independent in the sense of [14]: they do not explicitly
invoke any component other than themselves.

In order to identify components in systems, the bodies of their designs also have to
be taken into account, i.e. the “semantics” of the components have to be preserved.
We recall that we denote by Φ the specification of the data sorts and operations.

26 J. L. Fiadeiro and A. Lopes

Definition/Proposition: A superposition morphism σ:<Q1,∆1>→<Q2,∆2> consists of
a signature morphism σ:Q1→Q2 such that:

1. Handling requirements are preserved: for every event e∈Ε1 and handling
h∈H1(e), Φ |–η2(σhr-ev,e(h))⊃ σ(η1(h))

2. Effects are preserved: Φ |– (ρ2(σsv(s))⊃ σ(ρ1(s)) for every s∈S1

3. Guards are preserved: Φ |– (γ2(σsv(s))⊃ σ(γ1(s)) for every s∈S1

Designs constitute a category DSGN. We denote by sign the forgetful functor from
DSGN to SIGN that forgets everything from designs except their signatures.

Notice that the first condition allows for more handling requirements to be added and,
for each handling, subscription conditions to be strengthened. In other words, as a
result of being embedded in a bigger system, a component that publishes a given
event may acquire more handling requirements but also more constraints on how to
handle previous requirements, for instance on how to pass new parameters.

It is easy to see that these conditions are satisfied by the signature morphisms that
identify Set and Counter as components of Set&Counter&Adder. However, in gen-
eral, it may not be trivial to prove that a signature morphism extends to a morphism
between designs. After all, such a proof corresponds to recognising a component
within a system, which is likely to be a highly complex task unless we have further
information on how the system was put together. This is why it is important to sup-
port an architectural approach to design through which systems are put together by
interconnecting independent components. This is the topic of the next section.

4 Externalising the Bindings

As explained in [7], one of the advantages of the categorical formalisation is that it
supports a design approach based on superposing separate components (connectors)
over independent units. These separate components are called mediators in [14]: for
instance, Set as used for connecting a Counter and independent components that pub-
lish insertions and deletions. Morphisms, as defined in the previous section, enable
the definition of such a design approach by supporting the externalisation of bindings.

For instance, using a graphical notation for the interfaces of components – the
events they publish and subscribe, and the services that they can perform – we are
able to start from separate Set and Counter components and superpose, externally, the
bindings through which Counter subscribes the events published by Set:

Set

 !deleted

 !inserted

Counter

?doDec

?doInc

Like in [6], we explore the “graphical” nature of Category Theory to model inter-
connections as “boxes and lines”. In our case, the lines need to be accounted for by
special components that perform the bindings between the event published by one
component and subscribed by the other:

 A Formal Approach to Event-Based Architectures 27

design Binding_0 is

 publish&subscribe event

The binding has a single event that is both published and subscribed. The intercon-
nection between Set, Binding_0 and Counter is performed by an even simpler kind of
component: cables that attach the bindings to the events of the components.

design CableP is
 publish ·

design CableS is
 subscribe ·

Because names are local, the identities of events in cables are not relevant: they are
just placeholders for the projections to define the relevant bindings. Hence, we repre-
sented them through the symbol •. The configuration given above corresponds to the
following diagram (labelled graph) in the category DSGN of designs:

In Category Theory, diagrams are mathematical objects and, as such, can be ma-
nipulated in a formal way. One of the constructs that are available on certain dia-
grams internalises the connections in a single (composite) component. In the case
above, this consists in computing the colimit of the diagram [6], which returns the
design Set&Counter discussed in section 2. In fact, the colimit returns the morphisms
that identify both Set and Counter as components of Set&Counter.

Bindings can be more complex. Just for illustration, consider the case in which we
want to count only the even elements that are inserted. Instead of using Binding_0 we
would use a more elaborate connector Filter defined as follows:

design Filter is

 publish&subscribe target

 provide service
 publishes target
 effects target!

 publish&subscribe source
 par n:nat
 invokes service
 handledBy iseven(n) ⊃ service?

This connector is made explicit in the configuration as a mediator:

Set
 ! deleted

 ! inserted

Counter

?doDec

?doInc

Filter

!target
 ? source

Filter
!target

 ? source

CableP CableS

Binding_0

Set Counter

Binding_0

CableP CableS

inserted←•→event event←•→doInc

deleted←•→event event←•→doDec

28 J. L. Fiadeiro and A. Lopes

The same design approach can be applied to the addition of an Adder:

design Adder is

provide add
 par lm:nat
 assignsTo sum
 effects sum’=sum+lm

provide sub
 par lm:nat
 assignsTo sum
 effects sum’=sum-lm

 store sum:nat

 subscribe doAdd
 par which:nat

 invokes add
 handledBy add? ∧ which=add.lm
 subscribe doSub

 par which:nat
 invokes sub
 handledBy sub? ∧ which=sub.lm

The required configuration is:

Set
!deleted

!inserted

Counter
?doDec

?doInc

Adder
?doSub

?doAdd

We abstain from translating the configuration to a categorical diagram. The colimit
of that diagram returns the design Set&Counter&Adder discussed in section 2 and the
morphisms that identify Set, Adder and Counter as components.

5 Combining Architectural Styles

Another advantage of the categorical formalisation of publish/subscribe is that it al-
lows us to use this style in conjunction with other architectural modelling techniques,
namely synchronous interactions as in CommUnity [6]. For instance, consider that we
are now interested in restricting the insertion of elements in a set to keep the sum
below a certain limit LIM. Changing the service add of Adder to

provide add
 par lm:nat
 assignsTo sum

 guardedBy sum+lm<LIM
 effects sum’=sum+lm

does not solve the problem because Adder subscribes to inserted which is published
after the element has been inserted in the set. What we need is to strengthen the ena-
bling condition of insert in Set with sum+lm<LIM and ensure that sum is updated by
insert and delete. However, to do so within DSGN we would have to redesign the
whole system. Ideally, we would like to remain within the incremental approach
through which we superpose separate components to induce required behaviour.

One possibility is to use action synchronisation and i/o communication as in Com-
mUnity [6]. More precisely, the idea is to synchronise Set and Adder to ensure that
sum is updated when insertions and deletions are made, and superpose a regulator to
check the sum before allowing the insertion invocation to proceed.

 A Formal Approach to Event-Based Architectures 29

Consider the synchronisation of Set and Adder first. In CommUnity, actions cap-
ture synchronisation sets of service invocations, something that is not intrinsic to
implicit invocation as an architectural style and, therefore, cannot be expressed in the
formalism presented in the previous sections. Our first step is to extend the notion of
design with synchronisation constraints and communication channels.

Definition: We call an extended signature Q I,O a signature Q together with two
D-indexed families I and O of mutually disjoint finite sets (of input and output chan-
nels, respectively). An extended design over Q I,O is a tuple <η,ρ,γ,β,χ> where
<η,ρ,γ> is a design for Q in which I can be used in the languages of ρ and γ, and:

• β is a proposition establishing what observations of the local state (variables)
are made available through the output channels.

• χ is a proposition in the language of services and their parameters establish-
ing dependencies that need to be observed on execution.

As an example, consider the following revision of Set&Counter&Adder:

design syncSet&Counter&Adder is

 store elems: set(nat),
 value:nat, sum:nat

 output mysum:nat

 publish&subscribe inserted
 par which:nat

 invokes inc
 handledBy inc?

 publish&subscribe deleted
 par which:nat

 invokes dec
 handledBy dec?

 subscribe doInsert
 par which:nat
 invokes insert

 handledBy insert? ∧
 which=insert.lm

 subscribe doDelete
 par which:nat
 invokes delete

 handledBy delete? ∧
 which=delete.lm

 synchronise insert≡add ∧
 insert.lm=add.lm ∧
 sub≡delete ∧
 sub.lm=delete.lm

 convey mysum=sum

provide insert
 par lm:nat
 assignsTo elems

 publishes inserted
 guardedBy lm∉elms ∧ lm+sum<LIM
 effects elems’={lm}∪elems ∧

 inserted! ∧ inserted.which=lm
provide delete
 par lm:nat
 assignsTo elems

 publishes deleted
 guardedBy lm∈elms
 effects elems’=elems\{lm} ∧
 deleted! ∧ deleted.which=lm

provide inc
 assignsTo value
 effects value’=value+1

provide add
 par lm:nat
 assignsTo sum
 effects sum’=sum+lm

provide sub
 par lm:nat
 assignsTo sum
 effects sum’=sum-lm

provide dec
 assignsTo value
 effects value’=value-1

Through synchronise we provide a proposition that defines the synchronisation sets
of service activation that can be observed during execution. For instance, through
a≡b, we can specify that two given services a and b are always activated simultane-
ously. Hence, in the example, insert and add are always performed synchronously.

Through convey we establish how the output channels relate to the state variables.
In the example, we are just making the sum directly available to be read by the envi-

30 J. L. Fiadeiro and A. Lopes

ronment through mysum. Notice that we have also strengthened the guard of insert
with the condition lm+sum<LIM.

It remains to show how we can externalise the extension. The following design
captures the synchronisation:

design sync is

 synchronise a≡b
 ∧ a.p=b.p

 provide a
 par p:nat

 provide b
 par p:nat

For strengthening the guard of insert we need a component that reads the state of
Adder to determine if insert can proceed:

design control is
 input i:nat

 provide s
 par n:nat

 guardedBy n+i<LIM

This leads us to the following configuration:

Notice that syncAdder is given by the following design:

design syncAdder is

provide add
 par lm:nat
 assignsTo sum
 effects sum’=sum+lm

provide sub
 par lm:nat
 assignsTo sum
 effects sum’=sum-lm

 store sum:nat

 output mysum:nat

 convey mysum=sum

 A Formal Approach to Event-Based Architectures 31

The proposed extension is supported by the following notion of morphism:

Definition: A morphism σ between extended signatures <V1,E1,S1,P1,T1,H1,I1,O1>
and <V2,E2,S2,P2,T2,H2,I2,O2> is a morphism between signatures <V1,E1,S1,P1,T1,H1>
and <V2,E2,S2,P2,T2,H2> together with σin:I1→I2∪O2 and σout:O1→O2.

That is, as in CommUnity [6], input channels may become output channels of the
system but not the other way around.

Definition: A morphism between <η1,ρ1,γ1,β1,χ1> and <η2,ρ2,γ2,β2,χ2> is a mor-
phism between <η1,ρ1,γ1> and <η2,ρ2,γ2> such that the observation and synchroni-
sation dependencies are preserved: Φ |–β2⊃σ(β1) and Φ |–χ2⊃σ(χ1).

Notice that this is an extension of the previous notion, i.e. morphisms between de-
signs that do not involve communication channels and synchronisations are as before.
Further details on this extension, including the way it relates to CommUnity, can be
found in a companion paper.

6 Conclusions and Further Work

In this paper, we presented a formalisation of the architectural style known as “pub-
lish/subscribe” or “implicit invocation”. Full details on the mathematics involved as
well as the semantics of publication and notification can be found in a companion
paper. This formalisation allowed us to further validate the approach to software ar-
chitecture introduced in [7].

Other formal models [e.g., 4,9] exist that abstract away from concrete notions of
event and related notification mechanisms. However, they address the computational
aspects of the paradigm, which is necessary for supporting, for instance, several forms
of analysis. Our work addresses primarily the architectural properties of the paradigm,
i.e. what concerns the way connectors can be defined and superposed over compo-
nents to coordinate their interactions.

In particular, our formalisation allowed us to characterise key structural properties
of the architectural style in what concerns the externalisation of bindings and media-
tors previously claimed in papers like [14]. These properties derive from the fact that
the (forgetful) functor that maps the category of designs to that of signatures has the
strong structural property of being coordinated, as explained in [6]. We should stress
that these structural properties result from the nature of the morphisms that we de-
fined in section 3, which may leave some readers who are not aware of the complex-
ity of the mathematics involved somewhat disappointed and wishing to have seen
more results… It is true that, in this paper, we have “only” defined a category and a
(forgetful) functor, but both satisfy very strong properties that can be used for further
exploring implicit invocation as an architectural style.

Furthermore, the proposed categorical semantics allows us to investigate how this
style can be used in conjunction with other architectural techniques. In section 5, we
addressed the way implicit invocation can be used together with synchronous forms
of interconnection as previously formalised through the language CommUnity [6].
CommUnity itself has been extended in other ways, for instance with primitives that
capture distribution and mobility [8] as well as context awareness [11]. Further work

32 J. L. Fiadeiro and A. Lopes

is going on towards exploiting this categorical framework to support the integration of
several architectural styles.

Acknowledgements

This work was partially supported through the IST-2005-16004 Integrated Project
SENSORIA: Software Engineering for Service-Oriented Overlay Computers. We
would like to thank the reviewers for having provided so much feedback.

References

1. J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, M. Spiteri (2000)
Generic support for distributed applications. IEEE Computer 33(3):68–76

2. J. Bradbury, J. Dingel (2003) Evaluating and improving the automatic analysis of implicit
invocation systems. In: ESEC/FSE’03. ACM Press, pp 78–87

3. A. Carzaniga, D. Rosenblum, A. Wolf (2001) Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer Systems 19:283–331

4. J. Dingel, D. Garlan, S. Jha, D. Notkin (1998) Towards a formal treatment of implicit in-
vocation. Formal Aspects of Computing 10:193–213

5. P. Eugster, P. Felber, R. Guerraoui, A-M. Kermarrec (2003) The many faces of pub-
lish/subscribe. ACM Computing Surveys 35(2):114–131

6. J. L. Fiadeiro (2004) Categories for Software Engineering. Springer, Berlin Heidelberg
New York

7. J. L. Fiadeiro, A. Lopes (1997) Semantics of architectural connectors. In: M. Bidoit,
M. Dauchet (eds) TAPSOFT: Theory and Practice of Software Development. LNCS, vol
1214. Springer, Berlin Heidelberg New York, pp 505–519

8. J. L. Fiadeiro, A. Lopes (2004) CommUnity on the move: architectures for distribution and
mobility. In: M. Bonsangue et al (eds) Formal Methods for Objects and Components.
LNCS, vol 3188. Springer, Berlin Heidelberg New York, pp 177–196

9. D. Garlan, S. Khersonsky, J. S. Kim (2003) Model checking publish-subscribe systems. In:
T. Ball, S. Rajamani (eds) Model Checking Software. LNCS, vol 2648. Springer, Berlin
Heidelberg New York, pp 166–180

10. D. Garlan, D. Notkin (1991) Formalizing design spaces: Implicit invocation mechanisms.
In: S. Prehn, W. J. Toetenel (eds) VDM’91: Formal Software Development Methods.
LNCS, vol 551. Springer, Berlin Heidelberg New York, pp 31–44

11. A. Lopes, J. L. Fiadeiro (2005) Context-awareness in software architectures. In: R. Morri-
son, F. Oquendo (eds) Software Architecture. LNCS, vol 3527, Springer, Berlin Heidelberg
New York, pp 146–161

12. R. Meier, V. Cahill (2002) Taxonomy of distributed event-based programming systems.
In: Proceedings of the International Workshop on Distributed Event-Based Systems. IEEE
Computer Society, Silver Spring, MD, pp 585–588

13. D. Notkin, D. Garlan, W. Griswold, K. Sullivan (1993) Adding implicit invocation to lan-
guages: three approaches. In: S. Nishio, A. Yonezawa (eds) Object Technologies for Ad-
vanced Software. LNCS, vol. 742, Springer, Berlin Heidelberg New York, pp 489–510

14. K. Sullivan, D. Notkin (1992) Reconciling environment integration and software evolu-
tion. ACM TOSEM 1(3):229–268

.

	Introduction
	Event-Based Designs
	Structuring Event-Based Designs
	Externalising the Bindings
	Combining Architectural Styles
	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

