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Abstract. The benefits of design patterns are well-established. We ar-
gue that these benefits can be further amplified across the system life-
cycle. We present two contributions. First, we describe an approach
to complementing existing informal pattern descriptions with precise
pattern specifications. Our specification language captures the proper-
ties common across all applications of a pattern, while accommodating
the variation that occurs across those applications. Second, we describe
an approach to monitoring a system’s runtime behavior to determine
whether the appropriate pattern specifications are respected. The mon-
itoring code is generated automatically from the pattern specifications
underlying the system’s design. We conclude with a discussion of how
our contributions are beneficial across the software lifecycle.

1 Introduction

Design patterns [1-3] have become an important part of software practice, fun-
damentally impacting the design of commercial systems, class libraries, etc. Pat-
terns capture the distilled wisdom of design communities by describing a set of
recurring problems, proven solutions to those problems, and the conditions un-
der which the solutions can be applied. They are usually presented as part of a
catalog that includes a set of patterns relevant to a particular problem domain or
application area. When a designer is faced with a design difficulty, the relevant
catalogs provide guidance on how to address the difficulty. This idea continues
to gain influence; patterns are being discovered and applied in emerging areas
as diverse as wireless sensor network design and bioinformatics.

But the benefits of patterns are undercut by three important factors. First,
although the informal style used in current pattern catalogs has proven useful,
it creates a potential for ambiguity and misunderstanding that jeopardizes the
correct use of patterns. This is likely to be a serious problem for team-based
projects since different interpretations of a pattern are likely to manifest them-
selves as incompatibilities among different parts of a system. Second, there is
insufficient tool support to assist in discovering pattern implementation errors.
Again, these types of tools are especially relevant to team-based projects, where
they could be used to detect inconsistent pattern applications. Third, changes
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introduced during system evolution and maintenance may erode the pattern ap-
plications underlying the original design, compromising the design integrity of
the modified system. The goal of our work is to address these issues, amplifying
the benefits of design patterns across the software lifecycle.

We present two contributions. First, we present a pattern contract language
that captures the structural and behavioral requirements associated with a range
of patterns, as well as the system properties that are guaranteed as a result. In
addition, the contract language supports subcontracts, a form of contract refine-
ment that allows system designers to capture, in a precise way, the customiza-
tions made to particular patterns when they are applied. This language will be
used to develop contract catalogs that complement existing informal pattern cat-
alogs. Second, we present an approach to monitoring a system’s runtime behavior
to determine whether the system abides by the relevant pattern requirements.
The monitoring code for a given system is generated automatically based on the
pattern contracts and subcontracts underlying its design.

Before we proceed, it is important to consider a potential problem intro-
duced by developing pattern descriptions that are precise. One might argue that
existing descriptions are intentionally ambiguous to support flexibility in how
patterns may be applied. Precision and flexibility might be at odds here. As we
will see, this is not the case. Our approach makes it possible to achieve preci-
sion without compromising flexibility. Indeed, in our experience, the process of
developing precise descriptions often leads to the discovery of new dimensions of
flexibility that are not evident in the informal descriptions.

The rest of the paper is organized as follows. In Section 2, we present a simple
pattern-based system, and discuss the difficulties that might be encountered by a
software team developing this system. It serves as a running example throughout
the paper. In Sections 3 and 4, we present our contract language and contract
monitoring approach, respectively. In Section 5, we discuss elements of related
work. Finally, in Section 6, we conclude with a summary of our contributions,
their benefits to the system lifecycle, and provide pointers to future work.

2 A Pattern-Based Design

To motivate the problems that our work addresses, consider developing a basic
simulation of a hospital consisting of doctor, nurse, and patient objects. Each
patient is modelled as a quadruple consisting of the patient’s name, temperature,
heart rate, and a value indicating his/her level of pain medication. Each patient
is monitored by a single doctor and multiple nurses that must stay informed of
the patient’s vital signs. Based on the current readings, doctors and nurses can
respond to queries regarding the health of patients under their care. Doctors can
also adjust the level of pain medication prescribed to each patient.

The requirement that doctors and nurses stay informed of the current state
of their patients calls for the use of the Observer pattern. The intent of the pat-
tern is to keep a group of observer objects consistent with the state of a subject
object. In this case, the observer role is played by doctor and nurse objects, and
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1 public class Patient {

2 private String name; private int temp, hrtRt, medLvl;

3 private Set<Nurse> nurses; private Doctor doctor;

4 ...constructors, field accessor methods...

5 ...addNurse(n), removeNurse(n), setDoctor(d), unsetDoctor()...

6 public void checkVitals() { temp=...; hrtRt=...; notify(); }

7 public void adjustMeds (int newLvl) { medLvl = newLvl; }

3 private void notify () {...call update() on nurses and doctor...}

o public class Nurse {

10 private HashMap<Patient, Integer> vitals; ...constructors...

11 public void update (Patient p) { vitals.put(p, p.getTemp()); }
12 public String getStatus (Patient p) {

13 int t = vitals.get(p);

14 if ((t>90)&&(t<105)) return("good"); else return("bad"); } }

Fig. 1. Hospital Simulation Code (partial)

the subject role is played by patient objects. Key portions of the Java code for
this system are shown in Figure 1. When applying the Observer pattern, system
designers are guided by the pattern description presented in [1]. The style of
presentation used in this catalog is common, and consists of an informal descrip-
tion of the problem, a discussion of the properties of the prescribed solution,
and UML-like diagrams and code fragments that illustrate canonical applica-
tions. This type of description is useful in a number of ways. It is clear from
the discussion in [1], for example, that a subject object should provide attach(o)
and detach(o) methods for adding and removing an observer (o) from the set
of objects observing its state. It is also clear that the subject should provide a
notify() method that is invoked “whenever a change occurs that could make its
observer’s state inconsistent with its own.” notify() should in turn invoke update()
on each attached observer; update() will “reconcile its [the observer’s| state with
that of the subject.” But how will a subject determine whether a change is sig-
nificant enough to cause it to become inconsistent with its observers? Indeed,
what does it mean to say that a subject’s state is inconsistent with an observer?
Similar questions arise when applying other patterns, and are not addressed by
the informal descriptions. These are the types of ambiguities that can lead to
software defects.

As an example, consider Patient.addNurse(). When this method is invoked,
should notify() be called? After all, the execution of addNurse() modifies the state
of the patient by adding a new nurse to the patient’s set of attached observers.
But this modification involves portions of the patient’s state that are irrelevant
from the point of view of the doctors and nurses already attached to the patient.
Stated another way, the change is insignificant, and a call to notify() is unnec-
essary. Consider, however, the attaching nurse. Unless some action is taken, the
nurse will not have information about the state of the patient when addNurse() fin-
ishes. Hence, if a patient query were issued to this nurse immediately following the
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completion of addNurse(), the nurse might return random information about the
patient! To prevent this, the addNurse() method must include a call to the update()
method of the attaching nurse. This is a subtle issue that is not addressed in the
informal description.

Consider a modification to the system. In the new system, nurses are respon-
sible for monitoring vital signs and medication levels. The notion of consistency
will naturally be revised to require that each nurse be aware of the current value
of the patient’s medLvl field. Designers will presumably revise Nurse.update() to
save this information, and also revise Nurse.getStatus() to include the patient’s
medication level. But this is not sufficient! Changes made to a patient through
adjustMeds() will not trigger calls to notify(). As a result, calls to adjustMeds()
may leave nurses with inconsistent views of their patients. This is a surprisingly
subtle bug given the simplicity of the system. With respect to the pattern, the
only change dictated by the new requirements seems to be a redefinition of what
it means for the state of a nurse to be consistent with the state of a patient
— and the corresponding changes in Nurse.update() and Nurse.getStatus(). But
as we have seen, this is inaccurate. The change in the notion of consistency
demands a corresponding change in the notion of significant change. More pre-
cisely, a change in medLvl is now significant, and should therefore trigger a call to
notify(). In general, the concepts used in describing a pattern must often satisfy
relationships that are not clear from the informal descriptions. Our contracts are
designed to make these conditions clear to designers and implementers.

The types of ambiguities that lead to system defects in our hospital simulation
are the same types of defects that lead to failures in actual systems. Our pattern
specifications are designed to eliminate these ambiguities, while retaining the
flexibility present in the informal descriptions. In the event that an implemen-
tation error is introduced, our monitoring tools are designed to detect the error
before the system is deployed.

3 Design Pattern Contracts

The partial grammar of our contract language is shown in Figure 2. A contract
begins with a declaration of the auzxiliary concepts used throughout its body
({concepts)). Each specifies a relation involving one or more states of the ob-
jects that play roles in the pattern being specified. Their purpose is to capture
points of variation that occur across different applications of the pattern. Each
includes a concept identifier ({(cold)) and the list of roles over which the con-
cept is defined ({rIds)). The Observer contract, for example, declares the concept
Consistent(Subject, Observer) to capture the notion of consistency between a sub-
ject and an observer. Since the meaning of consistency varies from one system
built using the Observer pattern to another, the contract defers the definition
of Consistent() to the subcontract corresponding to a particular application. By
expressing our contracts in terms of auxiliary concepts, but deferring their defi-
nitions to subcontracts, we achieve descriptive precision without compromising
pattern flexibility. As we saw, however, arbitrary flexibility should not be allowed;
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1 {(contract) — pattern contract (pId) {

2 (conceptBlock) (instantiation) (invariant) (roleContracts) }
3 {(conceptBlock) — concepts: (concepts) (constraints)

1 (concept) — (coId)({r1ds));

5 {(constraints) — constraints: ...predicate on auziliary concepts...

¢ (instantiation) — instantiation: (rId).(mId)({args)) { (cond) };
7 lead: (target|source|{arg)]|...code...);

s (invariant) — invariant: ...assertion on roles and concepts...

o (roleContract) — [lead] role contract (rId) {

10 (fields) (methods) (others) (enrollment) (disenrollment) }

1 (field) — ...role field declaration...

12 (method) — ...standard method specification...

13 {(others) — others: ...standard method specification...

14 (enrollment) — ...analogous to instantiation...

15 enrollee: (target|source|(arg)|...code...);

16 (disenrollment) — ...analogous to instantiation...

Fig. 2. Grammar of Pattern Contracts (partial)

the concept definitions corresponding to a particular system must often satisfy
conditions to ensure that the intent of the pattern is not violated. Hence, the
pattern contract also specifies constraints that must be satisfied by the concept
definitions supplied in any subcontract ({constraints)).

The next element specifies the conditions that must be satisfied to instantiate
a new instance of the pattern ((instantiation)). Pattern instantiation is associated
with the invocation of a particular role method or constructor specified in the
pattern contract ({rId).(mId)({args))). The contract specifies any state conditions
that must be satisfied upon termination of the method, as well as the object
that will serve as the lead object of the newly created pattern instance. The lead
object serves as a handle to refer to its corresponding pattern instance in other
portions of the contract. The lead object may be specified as the target of the
invocation (target), the source of the invocation (source), one of the arguments
to the invocation ({(arg)), or some other object specified using a code fragment.

The next element specifies a pattern invariant that captures the behavioral
guarantees that should be expected if the contract requirements are satisfied
((invariant)). These properties are expressed using an assertion involving the
objects enrolled in the pattern instance, and the auxiliary concepts defined by
the contract. This assertion will be satisfied whenever control is outside of the
participating objects. In effect, this portion of the contract captures the “defined
properties” discussed in [2]: the system behaviors that result when the pattern
is used correctly.

The final portion consists of role contracts that specify the requirements asso-
ciated with objects enrolled to participate in the pattern ({roleContracts)). One of
these roles will be flagged as the lead role, indicating that its instances may serve
as lead objects. The Observer contract, for example, specifies Subject and Ob-
server role contracts, corresponding to the two types of objects that participate
in the pattern. The Subject role is flagged as the lead role. Each role contract
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begins by specifying the role fields to which an object’s state must be mapped
when it plays the corresponding role ({fields)). Similarly, it specifies the role
methods that an enrolled object must provide, given the appropriate interface
mappings in a subcontract, including pre- and post-condition specifications of
the method behaviors ({methods) ). These specifications are expressed in terms of
role fields and auxiliary concepts. In addition, since an enrolled object may pro-
vide methods that do not correspond to any of the role methods, the role contract
specifies conditions that prevent these other methods from violating the intent
of the pattern ({others)). Finally, the role contract specifies the conditions that
must be satisfied for an object to enroll or disenroll ({enrollment),{disenrollment)).
These clauses are defined analogously to the pattern instantiation clause. The
only difference in the enroliment clause is that in addition to specifying the lead
object (to identify the pattern instance into which the object will enroll), it
specifies the enrolling object. The disenroliment clause is analogous.

3.1 Special Notations

Before turning to an example, there are two special notations used in our pat-
tern contracts and subcontracts that are important to consider. The first is the
keyword players, used to denote the sequence of player objects enrolled in a pat-
tern instance. The order of the objects within the sequence corresponds to the
order in which the objects enrolled. We use indexing notation to refer to a par-
ticular object or subsequence of objects. players[0], for example, refers to the
first enrolled object, and players[1:] refers to the subsequence of enrolled objects
beginning at the second object.

The second notation allows us to impose conditions on the method calls made
by a method during its execution. Addressing such requirements is important
since many patterns call for particular methods to be invoked under various con-
ditions. To achieve this, we use the notion of a call sequence (or “trace”), and use
the symbol 7 to denote the call sequence associated with a method invocation.
Each element within 7 represents a method call, and records (i) the name of
the method invoked, (i) the target of the invocation, and (éi¢) any arguments
to the call. We use dot notation to denote the projection associated with calls
to particular methods of particular objects. 7.0.m, for example, represents the
subsequence of calls to method m() on object o. |7| denotes the number of calls
recorded in the call sequence 7.

3.2 The Observer Contract

Consider the partial contract for the Observer pattern shown in Figure 3. The
contract declares the auxiliary concepts Consistent() and Modified(). As explained
earlier, Consistent() captures the notion of consistency between a subject and an
observer. Modified() captures the notion of significant change within a subject.
The latter concept is later used to express the requirement that every significant
change within a subject result in a call to notify(). The former concept is used
to require that Observer.update() appropriately update the observer’s state. The
constraint imposed on these concepts requires that if a subject’s state changes



220 J.O. Hallstrom, N. Soundarajan, and B. Tyler

pattern contract Observer {
concepts:
Consistent (Subject, Observer) ; Modified (Subject, Subject) ;
constraints: Vsl,s2,0l::: (—~Modified(sl,s2) A Consistent(sl,ol))

= (Consistent(s2,01)
instantiation: Subject.Subject() { obs=0 }; lead: target;
invariant: Subject (players[0]) A Observer (players[l:]) A ... A
Vob:ob € players[1:]::Consistent(players[0],ob)

[ - AT - B R

Fig. 3. Observer Pattern Contract (partial)

from s1 to s2, and the change is deemed insignificant, then any observer state
consistent with s1 must also be consistent with s2. This constraint prevents
the types of incompatible concept definitions that lead to software defects in
our hospital system. More precisely, it prevents definitions of Modified() and
Consistent() that would allow a subject to omit a call to notify() after a change
that could lead to inconsistency with one or more of its observers.

The instantiation clause specifies that a new instance of the pattern is created
each time a new subject object is created. Further, it requires that at the point of
instantiation, the subject’s obs set be empty (since no observers have yet enrolled).
Finally, it states that the newly created subject will serve as the lead object of
the pattern instance.

The invariant clause captures the intent of the pattern, the “defined properties”
that may be expected if the contract requirements are met. It states that the
first object to enroll in a pattern instance will play the role of Subject and all
other enrolled objects will play the role of Observer. Most important, it states
that whenever control is outside of the participating objects, all of the enrolled
observers will be in states that are consistent with the current state of the subject.

The partial Subject role contract is shown in Figure 4, and specifies the state
components and method behaviors that must be provided by objects playing
the Subject role. To benefit from the pattern invariant, these requirements must

1 lead role contract Subject {

2 Set<Observer> obs;

3 void attach (Observer ob):

4 pre: ob ¢ obs

5 post: (ob=#o0b) A —~Modified (#this, this) A (obs=(#obsU{ob}))
6 A (|7]=1) A (|7.ob.update|=1) ...detach(ob)...

7 void notify():

8 post: (obs=#obs) A - Modified(#this, this) A (|7|=|obs]|) A
o Vob:ob € obs:: (|7.ob.update|=1)

10 others:

11 post: (obs=#obs) A ((—Modified(#this, this) A (|7]=0)) V
12 (|7.this.notify]|=1))

Fig. 4. Subject Role Contract (partial)
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be satisfied under the field and interface mappings specified in the relevant sub-
contract. (We will discuss these mappings shortly.) The role contract states that
each subject must provide a Set component, which will be used to store the set
of attached observers. It also includes specifications for the attach(), detach(),
and notify() methods. In the post-conditions of these methods, we use the #
notation to denote the pre-conditional value of an object. Hence, the attach()
method is required to preserve the reference to the attaching observer (ob), to
leave the subject unmodified, and to add the attaching object to the set of at-
tached observers (obs). Further, the call sequence conditions require that update()
be invoked on the attaching object. This requirement guarantees — given the
specification of Observer.update() (omitted) — that the observer will be in a state
that is consistent with the current state of the subject when attach() terminates.
Again, this condition is important to prevent the types of inconsistency defects
encountered in our hospital system. detach() is defined analogously, but omits the
call sequence conditions. The final method, notify(), is required to preserve the
set of attached observers, and to leave the subject unmodified. The call sequence
conditions require that the method invoke update() on each attached observer.

The others clause imposes requirements on the methods provided by a player
beyond those that map to attach(), detach(), and notify(). All of these other
methods are required to preserve the set of attached observers. Further, if one
of these methods makes a significant change in the subject (i.e., Modified(#this,
this) is true), it must include a call to notify(). As we have seen, this method
will in turn invoke update() on each attached observer, ensuring their consistency
with the new state of the subject.

The Observer role contract is defined in the same manner as the Subject role
contract. observer objects are required to maintain a reference to their subject,
and to provide an update() method. The post-condition of update() requires that
it leave the observer in a state that is consistent with the current state of the
observer’s subject. The others clause imposes similar requirements to ensure that
the pattern invariant is respected.

3.3 Pattern Subcontracts

A subcontract specializes a pattern contract for use, customizing its requirements
and behavioral guarantees to the needs of a particular system. This specialization
mechanism is essential for preserving the flexibility of our pattern contracts.
The partial grammar of our subcontract language is shown in Figure 5. Each
subcontract begins by specifying a set of role maps that characterize the manner
in which particular system classes can be viewed as their corresponding role
types ({roleMaps)). The Hospital subcontract, for example, defines role maps that
allow us to view a patient as a subject, a nurse as an observer, and a doctor
as an observer. Each role map consists of a state map and an interface map
((stateMap) ,(interfaceMap)). A state map defines functions that map an object’s
fields to the fields defined by its role ({rfld)). These functions are written in
the form of code fragments to simplify the expression of the mappings, and to
simplify the task of generating the appropriate monitoring code. Similarly, an
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(subcontract) — subcontract (sId) specializes (pId) {
(roleMaps) {(concDefBlock) }

(roleMap) — rolemap (cId) as (rIid) {
(stateMap) (interfaceMap) }

(stateMap) — state: (fieldMaps)
(fieldMap) — (rf1id) = {...code...}
(interfaceMap) — methods: (methodMaps)
(methodMap) — (rmId) ({rmArgs)) : (classMethods)
(classMethod) — (cmId)({cmArgs)) [{{argMaps)}]
10 (concDefBlock) — auxiliary concepts: (concDefs)
11 (concDef) — (coId)({coArgs)) {...code...}

Fig. 5. Grammar of Pattern Subcontracts (partial)

interface map specifies mappings from the class methods and arguments to their
corresponding role methods and arguments ((methodMaps),(argMaps)). As we will
see, multiple class methods may be mapped to a single role method.

The final element of a subcontract provides auziliary concept definitions ap-
propriate to the given system ({(concDefs)). Each auxiliary concept is written as
a code fragment expressed over the classes mapped to the concept arguments.
Each concept returns a boolean value indicating whether the relation is sat-
isfied given the states of the objects passed as argument. When the auxiliary
concept definitions and role maps are substituted into the contract being spe-
cialized, the resulting specification characterizes the pattern requirements and
behavioral guarantees specific to the system in question.

3.4 The Hospital Subcontract

As an example, consider the partial subcontract for our hospital system shown
in Figure 6. The subcontract begins by defining the role map that allows us
to view a patient as a subject. Under this view, the state map specifies that
the subject’s obs field is realized as the set containing all of the elements in
nurses, plus the object referenced by doc, if any. The interface map specifies
that both addNurse(n) and setDoctor(d) play the part of attach(o). In both cases,
the argument to the class method corresponds directly to the argument to the
role method. removeNurse(n) and unsetDoctor() are defined analogously, except
that in the case of unsetDoctor(), which takes no arguments, the argument to
detach(ob) is played by the patient’s doc field. Patient.notify() corresponds directly
to Subject.notify(). The Nurse as Observer, and Doctor as Observer role maps are
defined in a similar manner.

The definition of Modified() specifies that any change in patient.temp or pa-
tient.hrtRt is considered a significant change. The two definitions of Consistent()
are more interesting. Since each nurse and each doctor may be involved in mul-
tiple pattern instances, each may store information about multiple patients. Or
more generally, each observer may store information about multiple subjects. In
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1 subcontract Hospital specializes Observer {

2 rolemap Patient as Subject {

3 state: obs = { Set<Observer> obs =

new HashSet<Observer> (nurses) ;

'S

5 if (doc!=null) obs.add(doc); return(obs); }
6 methods:

7 attach (Observer ob) :addNurse (ob), setDoctor (ob)

8 detach (Observer ob) :removeNurse (ob),

) unsetDoctor () {ob=doc} ...notify()...
10 ...Nurse/Doctor as Observer rolemaps...

11 auxiliary concepts:

12 Modified (Patient pl, Patient p2) {

13 return((pl.temp!=p2.temp) || (pl.hrtRt!=p2.hrtRt)); }
14 Consistent (Patient p, Nurse n) {

15 return (p.hrtRt == n.vitals.get(lead)); }

16 ...Consistent(Patient, Doctor) concept definition...

Fig. 6. Hospital Subcontract (partial)

reasoning about a particular pattern instance, it must be possible to project
out those portions of an observer’s state relevant to the pattern instance (and
therefore the subject) in question. This is achieved using the lead object (a sur-
rogate pattern instance identifier) as an index into the observer’s state. The lead
keyword refers to the lead object in a way that is analogous to the use of the
this keyword in object-oriented languages. Hence, in the definition of Consistent()
corresponding to nurse objects, the lead object is used to retrieve the patient in-
formation corresponding to the pattern instance in question. The case involving
doctor objects is analogous.

4 Pattern Contract Monitors

In addition to having pattern contracts that are both precise and flexible, it
is important to have supporting software tools that can assist in determining
whether the requirements specified by a contract are satisfied. To achieve this,
we have developed a monitor generation tool based on our pattern contract lan-
guage. Given the pattern contracts and subcontracts underlying a particular
system design, our tool generates runtime monitoring code that signals any vi-
olations of the contract requirements. Given that the assertions to be checked
are crosscutting, we chose to use an aspect-oriented approach. Our current im-
plementation targets Java-based systems, and generates aspects in Aspect.J [4]!.
The monitor generation process is illustrated in Figure 7.

The monitoring code produced for a given contract/subcontract pair consists
of one abstract aspect and one concrete subaspect. The abstract aspect contains

! The tool, including source code, documentation, and system examples, is available
for download at: hitp://www.cse.ohio-state. edu/~tyler/MonGen/
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Fig. 7. Monitor Generation Process

checking logic common across all specializations of the contract, and the sub-
aspect tailors this logic to the particular specialization specified by the subcon-
tract. Consider, for example, the abstract aspect generated from the Observer
contract (Figures 3 and 4) shown in Figure 8. The aspect begins by declaring
interfaces for each of the roles defined in the pattern contract (Line 2). These
interfaces are mapped to the appropriate system classes in the subaspect based
on the role maps included in the subcontract. The subaspect generated from
the Hospital subcontract (omitted), for example, maps the Subject interface to
the Patient class using AspectJ’s declare parents construct. This effectively forces
the Patient class to implement the (empty) Subject interface. Similar mappings
are defined for Nurse and Doctor. This allows methods defined in the abstract
aspect, which are defined in terms of Subject and Observer objects, to work with
Patient, Nurse, and Doctor objects.

The aspect next defines state components required to monitor multiple pat-
tern instances (Lines 3-4). The first of these components is a pattern instance
map (instanceMap) that maintains a mapping from each lead object to its corre-
sponding Patterninstance object. Each Patterninstance stores information about a
single pattern instance, including references to the enrolled objects and the roles
that these objects play. This information is required to check certain instantia-
tion, enrollment, and disenrollment conditions — such as those that make use
of the players keyword. The instance map is updated when a pattern instance is
created or destroyed, and when an object enrolls or disenrolls.

The second state component is the trace stack (traces), which stores call se-
quence (1) information about each of the active role methods. This information
is required to check the call sequence conditions specified in the pattern contract.
The trace stack is updated before and after every role method invocation.

The aspect next declares pointcuts corresponding to each of the role methods
specified in the pattern contract (Lines 5-6). The advice bound to these point-
cuts is responsible for checking the appropriate role method requirements, as
well as for updating the pattern instance map and trace stack. Since, however,
the mapping between class methods and role methods varies from application to
application, the pointcuts are declared abstract. Pointcut definitions are supplied
in the subaspect based on the interface maps specified in the relevant subcon-
tract. The subaspect generated from the Hospital subcontract, for example, maps
the sub attach() pointcut (corresponding to Subject.attach()) to the execution of
either Patient.addNurse() or Patient.setDoctor(). Similar pointcuts are used to
capture pattern instantiation, object enrollment, and disenrollment. Pointcuts



Amplifying the Benefits of Design Patterns 225

1 public abstract privileged aspect ObserverM {

2 interface Subject{} interface Observer({}

3 private HashMap<Subject,PatternInstance> instanceMap;

4 private TraceStack traces;

...pointcuts for role constructors, role methods, and other methods:

abstract pointcut sub_attach(Subject _this, Observer ob);
...auxiliary concept methods:

s public abstract boolean Modified(Subject al, Subject a2);

9 public abstract boolean Consistent (Subject al, Observer a2);
10 ...1ole state accessor methods:

11 public abstract Set<Observer> sub_obs(Subject _this);

12 public abstract Subject obs_sub(Observer _this, Subject lead);

N o o

13 ...assertion checking / bookkeeping advices:

14 after (Subject _this, Observer ob): sub_attach(_this, ob){
15 ...get #ob, #this from caller trace record...

16 assert ( (ob==pre_ob) && !'Modified(pre_this, _this) &&

17 sub_obs(_this) .containsAll (sub_obs (pre_this)) && ... &&
18 (traces.current () .length() == 1) &&

19 (traces.current () .limit (ob, "update") .length() == 1));
20 ...update caller trace record... } ... }

Fig. 8. The ObserverM Contract Monitor (partial)

are also declared to capture the other methods of the class(es) mapped to each
role. These pointcuts are defined to include all of the class methods except those

bound to role methods.
Recall that the requirements specified in the pattern contract are expressed

in terms of auxiliary concepts and role fields. Since the realizations of these
elements vary, they are captured using abstract methods, deferring their defini-
tions to a subaspect. ObserverM, for example, declares Modified() and Consistent()
methods corresponding to the auxiliary concepts of the same name (Lines 7-9).
It also declares abstract methods corresponding to Subject.obs and Observer.sub
(Lines 10-12). Each of the latter methods returns the appropriate role field value
when the argument passed as input is viewed as an instance of its role. The im-
plementations of the auxiliary concept and role field methods are supplied in
the subaspect based on the concept definitions and state maps provided in the
relevant subcontract. Since these elements are defined (in the subcontract) in
terms of code fragments, the code generation task is straightforward.

Note that for Observer.sub, the corresponding method takes an additional
argument. Since the Observer role is not flagged as lead in the pattern contract,
each observer may participate in multiple pattern instances. This means that
each observer (conceptually) stores multiple copies of the sub field — one copy
corresponding to each pattern instance. The lead argument is used to identify
the pattern instance under which the state mapping should be performed.

The final portion of the aspect defines the advice bound to each pointcut. The
checking code within the advice is generated based on the assertions specified
in the pattern contract. The before and after advice bound to each pointcut



226 J.O. Hallstrom, N. Soundarajan, and B. Tyler

Size of Contract  Size of Subcontract Execution Time (in ms)
Specific. Abs. Aspect Specific. Subaspect w/ Montr. w/o Montr.

Observer 1723 14,701 866 3967 2657 172
Memento 907 11,116 771 3730 3610 391
Chain of Resp. 592 5658 377 1845 2453 297

Fig.9. Code Size and Runtime Overhead. [Pentium-1V @ 2.53GHz, 512MB RAM,
Windows XP Pro SP 2, Sun JVM 1.5.0 04].

is responsible for checking the relevant pre- and post-conditions, respectively.
The advice is also responsible for updating the pattern instance map and the
trace stack. A portion of the after advice generated from the specification of
Subject.Attach() is shown in the figure (Lines 14-20). The advice bound to the
remaining pointcuts is defined in a similar manner.

One difference between the advice bound to Subject methods and the advice
bound to Observer methods is that the latter begins by identifying every pat-
tern instance in which an observer participates. The relevant assertions are then
checked in the context of each pattern instance. The corresponding lead object
is retrieved from the pattern instance map, and serves as the second argument
when invoking the role field method corresponding to Observer.sub.

4.1 Code Size and Runtime Overhead

We have applied our approach to several different patterns and systems. Space
restrictions preclude a detailed discussion of the results, but it is interesting
to consider the gross relationship between contract/subcontract size and the
size of the corresponding monitoring code. It is also interesting to consider the
runtime overhead introduced when this code is woven into an actual system.
Figure 9 presents the data corresponding to the use of our contracts for Observer,
Memento, and Chain of Responsibility when used in monitoring the canonical
system examples presented in [1]. As a gross estimate, we measure size in terms
of non-whitespace characters. We emphasize that this is a preliminary analysis.

5 Related Work

We are not the first to consider pattern formalization. Eden et al. [5], for example,
propose a higher-order logic formalism that captures patterns as formulae. Each
formula consists of a declaration of the participating classes, methods, and in-
heritance hierarchies, and a conjunctive statement of the relations among them.
While rich structural properties can be expressed, there is limited support for
capturing behavioral properties. The formalism does not, for example, provide
constructs for referring to pre- and post-conditional values, nor does it pro-
vide a concept analogous to our method call sequences. By contrast, Mikkonen’s
work [6] focuses almost exclusively on behavioral properties. In his approach,
patterns are specified using an action system notation. Data classes model pat-
tern participants, and guarded actions model their interactions. The approach
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is well-suited to reasoning about temporal properties. One limitation, however,
is that the separation of actions and data is structurally inconsistent with the
OO paradigm, making it difficult to express most structural properties. Fur-
ther, Mikkonen’s specifications cannot be specialized to the needs of particular
systems; thus pattern flexibility may be seriously compromised.

Helm et al. [7] describe a contract formalism that shares similarities with
ours. For example, their formalism includes a construct similar to our auxil-
iary concepts. It does not, however, provide a way to impose constraints that
would prevent definitions of these concepts from violating a pattern’s intent. The
formalism also includes support for specifying the relative order of method invo-
cations, but the support is limited. It is impossible, for example, to quantify over
a method call sequence to require that a particular method be invoked exactly
once, or alternatively, that a particular method not be invoked at all. Finally,
there is nothing analogous to our use of the others clause to prevent non-role
methods from violating a pattern’s intent.

In [8] and [9], we describe principles of pattern formalization and runtime
monitoring, but do not consider a general pattern specification language, pat-
tern specializations, or automated monitor generation. We provide an overview
of the specification and monitoring approach in [10], but do not go into the
technical detail presented here. For example, [10] presents only a subset of the
specification language; the subset cannot, for example, accommodate multiple
pattern instances. Other important contributions presented here that are absent
from [10] include a detailed system and subcontract example, a presentation of
the generated monitoring code, an analysis of the code size and runtime over-
head associated with monitoring, and a discussion of how the approach supports
a pattern-centric software lifecycle (Section 6).

Runtime assertion monitoring of OO systems has a long history [11-13], and
some authors have considered aspect-based approaches. Lippert and Lopes [14]
use AspectJ to refactor pre- and post-conditional assertion checking code. Gibbs
and Malloy [15] propose using aspects to monitor class invariants involving tem-
poral properties. To our knowledge, however, we are the first to investigate con-
tract monitors for design patterns.

6 Discussion

Our work was motivated by three observations. First, informal pattern descrip-
tions leave a potential for ambiguity and misunderstanding that jeopardizes the
correct use of patterns. Second, there is limited tool support to assist in iden-
tifying pattern implementation errors. Third, as a system evolves, its design
integrity may erode under maintenance; it may no longer remain faithful to the
patterns underlying its design. We presented two contributions to address these
problems. The first was a formalism for expressing pattern contracts that cap-
ture the implementation requirements and behavioral guarantees associated with
a range of patterns. The formalism includes support for subcontracts that capture
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the ways in which patterns are specialized for use in particular systems. Thus, we
are able to specify properties common across all applications of a pattern, while
accommodating the inherent variation that occurs across those applications. We
illustrated the approach by developing the contract for the Observer pattern,
and a corresponding subcontract for a simple system built using this pattern.

Our second contribution was a monitor generation tool. Given the pattern
contracts and subcontracts underlying a system design, our tool produces a set of
aspects in AspectJ that monitor the system’s runtime behavior to check whether
the contract requirements are violated. We presented some of the key details
concerning the aspects generated by the tool, as well as the structure of the tool
itself. Finally, we presented preliminary figures to show the code and runtime
overhead involved in using the tool to monitor a system during its execution.

These contributions, along with our planned extensions, provide the basis
for a pattern-centric software lifecycle. At the foundation of the lifecycle is a
contract catalog that complements existing pattern catalogs. The catalog is an
evolving document that we plan to make accessible through the web. We hope
that researchers interested in lightweight formal methods will contribute to its
development. Community involvement is essential in ensuring that the contracts
faithfully capture the intent of the patterns specified. Members of a design team
will be able to consult the catalog to ensure a common understanding of the
requirements associated with the patterns underlying a particular design.

As the design and implementation details of the system are fleshed out, part of
the design team will be charged with creating the corresponding subcontracts. In
addition to guiding the implementation, the subcontracts will allow implementa-
tion and maintenance teams to generate appropriate runtime monitoring code.
Executing this code will enable the team to identify pattern implementation
errors more easily — from early implementation through evolution.

Note that while developing a pattern contract requires reasonable facility with
formal notations, developing a subcontract is a task that will likely appeal to
system developers. Indeed, this is one reason why this portion of the formalism
resembles a programming notation more than it resembles formal mathematics.
As part of our future work, we plan to assess the degree of effort involved in
developing and maintaining these subcontracts. This will allow us to perform a
cost-benefit analysis by comparing this effort to the benefit received when using
the approach. We also plan to investigate techniques for generating test suites
that ensure suitable coverage of the patterns’ used in a system.

Another exciting possibility is a pattern-centric visualization tool. During a
system’s execution, the monitoring code will save appropriate information rele-
vant to the patterns used in the system. The visualization tool will then take this
information and play it back in the form of a “slow-motion-video”, allowing the
user to go back and forth in the system’s execution, focusing on the interactions
among groups of objects interacting according to the patterns of interest. This
will be of particular value to new members of a design team since it will enable
them to quickly develop a pattern-centric understanding of relevant systems.
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