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Abstract. Programmers understand a piece of software by building simplified
mental models of it. Aspects of these models lend themselves naturally to for-
malization – e.g., structural relationships can be partly captured by module de-
pendency graphs. Automated support for generating and analyzing such structural
models has proven useful. For event-driven systems, behavioral models, which
capture temporal and causal relationships between events, are important and de-
serve similar methodological and tool support. In this paper, we describe such
a technique. Our method supports building and elaboration of behavioral mod-
els, as well as maintaining such models as systems evolve. The method is based
on model-checking and witness generation, using strategies to create goal-driven
simulation traces. We illustrate it on a two-lift/three-floor elevator system, and
describe our tool, Sawblade, which provides automated support for the method.

1 Introduction

Programs larger than a few tens of lines are generally far too complex to be understood
in full by a single person. In place of complete understanding, programmers use sim-
plified mental models [18] – a representation of some part of the program’s structure or
function at a high enough level of abstraction to be readily understood. One heuristic is
that they should be small enough to fit on a whiteboard [25]. Mental models are infor-
mal and cannot always be completely expressed by a formal structure; however, it has
often been found useful to create formal structures based upon programmers’ mental
models and to use them to aid construction and understanding of code. Some examples
of mental models used by programmers, and their corresponding formal artifacts, are
discussed below.

Modules and dependencies. Decomposition into modules that communicate via in-
terfaces is standard software engineering practice. Module A depends on module B if
any of the functions inA use a function or data defined in B. Considerable research has
gone into automatically extracting a graph recording all dependencies between modules
from the source code [8, 23, 24], helping programmers navigate this graph [13] or select
fragments that are most relevant to a particular aspect [28].

Design patterns and architectural patterns. Design patterns describe and catalogue
common relationships between groups of objects in object-oriented programs [14]. De-
sign patterns have a formal representation as fragments of object modelling graphs;
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formalizing the observations has led to faster program comprehension and better com-
munication between programmers. Work on extracting design patters from source code
has also been done [21]. Architectural patterns relate components-and-connectors type
diagrams to standard styles of decomposition, such as layers or pipes-and-filters. There
is research on automated exploration of architecture and automatic comparison with a
conceptual pattern [13, 25].

The models described above are mostly structural. However, behavior is as impor-
tant a part of understanding a program as structure, particularly for reactive concurrent
systems. In this paper, we address the problem of providing tool support for construct-
ing behavioral models of such complex systems.

Global propositions about a system’s behavior can be expressed using temporal
logic [22] and automatically verified using model-checking [9]. The strength of this
method is that it can be used both for assertions about some behavior and about all
possible behaviors. It has two weaknesses: expressing properties can become difficult,
though property patterns [12] help tame this difficulty; and, more importantly, even us-
ing property patterns, it is very hard to guess which properties might be both valid and
useful for understanding.

Query-checking [5] is a technique for searching for interesting temporal logic prop-
erties. It enables answering user questions such as “What property P is true every-
where?” or “If event X happens, what property Q eventually becomes true sometime
after X?” However, query-checking requires considerable intervention and technical
knowledge. Furthermore, its output can be a large propositional formula, which is hard
to interpret intuitively.

A potential candidate for behavioural models is scenarios [20]. Scenarios have been
shown to be useful for expressing requirements and for communicating between stake-
holders [16, 19]. Scenarios can capture not only sequences of events that the system
allows, but also those that it prohibits, exact causal relationship between events, etc.
Running the program – with the aid of a simulator or test-driver to provide inputs –
generates a large number of scenarios which are certainly true, but do not yield the kind
of simple, general knowledge about the system’s behavior we would like in building
a mental model. They lack any notion of causation between events, or of necessity or
impossibility of sequences of events. These richer concepts are essential for behavioral
models that support understanding and evolution of the system.

Our goal is to bridge this gap: to provide a methodology and tool for finding and val-
idating rich scenarios that describe not just sequences of events but causal relationships
between them. We need to be able to vary the level of granularity of scenarios – what
events we distinguish – and also the scope, to ignore actions of parts of the system that
are not considered relevant.

Furthermore, we want to go beyond simply finding and validating such scenarios:
our methodology aims to help the user in elaborating scenarios by finding others which
are stronger, or more detailed. Finally, since a major use of mental models is during
software evolution, our methodology must also help change these scenarios along with
evolving systems.

Contributions. In this paper, we propose a methodology and tool based on temporal
logic, model-checking, and witness generation. Our techniques do not work directly on
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the program code; instead, we assume that a finite-state model of the program has been
constructed, e.g., using the techniques of [1, 11], and that this model is small enough to
be analyzable by existing model-checkers.

We illustrate our methodology using a two-lift/three-floor elevator system [2]. Rather
than requiring direct use of temporal logic, our method uses a simple language of events
and causal relationships between them. This language itself is not new: its features are
drawn from property patterns and use-case maps [4]. The modeling language can be
used to express scenarios, and a translation into temporal logic is used for automatic
validation by a model-checker. Once scenarios have been found and validated, they
can be elaborated. We describe a set of patterns for moving from a validated scenario
to stronger and richer scenarios. Application of these patterns relies on generating the
most useful traces of the program that help the user guess more elaborate scenarios. The
notion of a useful trace is user-specified, and this specification is used by the witness-
generation component of the model-checker to carry out a strategy-directed search for
interesting traces.

Maintaining scenarios across change is done by representing change as an annota-
tion of the new system, indicating how its state transitions have changed from the old.
Once this is done, useful traces – in this case, those that highlight most effectively and
minimally the differences in behavior, where they exist – can be searched for by the
model-checker using strategies as well.

Support for this method is provided by our tool Sawblade, built on top of a model-
checker XChek [6].

Structure. The rest of this paper is organized as follows: in Section 2, we give back-
ground material on temporal logic and model-checking. In Section 3, we present a lan-
guage for scenario-like behavioural models and its translation into temporal logic. We
also discuss the elevator system which is the running example in this paper. In Section 4,
we describe witness generation and strategies for helping produce the “most interest-
ing” witnesses. In Section 5, we describe the methodology for elaborating scenarios.
In Section 6, we give our formal definition of the annotation of a changed system, and
in Section 7, describe the methodology for transforming scenarios across change. We
describe Sawblade, a tool supporting this methodology, in Section 8 and conclude the
paper in Section 9.

2 Background

In this section, we review the basics of temporal logic model-checking, presenting the
semantics of the temporal logic CTL and the definition of witnesses for existential CTL
properties.

Analysis of data-driven, run-to-completion programs is predicative, examining the
relation between the program’s input and output. Analysis of a reactive program, how-
ever, must examine the infinite behaviours of the program, and how its behaviours are
affected by input from its environment. Temporal logic is helpful for intuitively ex-
pressing properties of infinite behaviours, and, for finite-state models, model-checking
provides a useful tool for automatically deciding satisfaction of temporal logic proper-
ties by those models.
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Fig. 1. (a) A Kripke structure; (b) A Kripke structure with diff, based on a fragment of the
model in (a)

Kripke Structures and CTL. A Kripke structure is an abstract model of a reactive
system. Formally, it is a tuple (S, s0, R, I, V ) where S is a (finite) set of states; s0 is
the initial state; R ⊆ S × S is the transition relation; V is a set of atomic propositions;
I : S → 2V is a labeling function that associates each state with the atomic propositions
true in that state.

An example Kripke structure is shown in Figure 1(a). In this model, S =
{s0, s1, s2, s3, s4, s5, s6, s7}, V = {p, r, f}, and (s0, s1) ∈ R. Atomic propositions
not shown in a state are assumed to be false, e.g., p, r and f are false in s0.

For each s ∈ S, the transition relation defines a successor set Img(s) = {t |
R(s, t)} of states reachable in one step from s; the predecessor set is Img−1(s) =
{t | R(t, s)}. A path p is an infinite sequence p0p1p2 . . . of states. The set of paths
P(s) of a state s in some Kripke structure M contains all the infinite sequences of
states possible in M : p ∈ P(s) ⇔ p0 = s ∧ ∀i ∈ N · pi+1 ∈ Img(pi).

Computation Tree Logic (CTL) [10] is a temporal logic used to state properties of
the (infinite) paths of Kripke structures. The set of CTL formulas over a set of atomic
propositions (variables) V consists of the sentences defined by the following grammar:

C ::= p ∈ V | ¬C | C ∧ C | C ∨ C | EX C | AX C | E[C U C] | A[C U C] |
EF C | AF C | EG C | AG C

The symbols AX,EG, etc., are called temporal operators. The A or E indicates
whether the following symbol is to be interpreted over all future paths, or some fu-
ture paths; X stands for “next”, F for “future”, U for “until”, G for globally; thus
AXϕ means “in all next states, ϕ holds”, and EFψ means “there is a future path along
which, at some point, ψ holds”.

The CTL satisfaction relation |= is defined between states of a Kripke structure and
CTL formulas. Its definition is given in Figure 2(a). Note that only EX, EU and EG
are presented. Others can be derived from these via simple identities [9]. For instance,
EFϕ⇔ E[true U ϕ]. Also note the operator EUi; informally, E[ϕ Ui ψ] means that
there exists a path along which ψ becomes true no later than at step i, and until that
point, ϕ holds.

For instance, in the structure of Figure 1(a), we can ask whether it is possible to
reach a state where f holds: s0 |= EF f . One such state is s5, so the property holds.

Figure 2(b) shows some useful CTL identities which will be used later on. They are
straightforward consequences of the semantics. Note that EFiϕ⇔ E[true Ui ϕ].
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(a)

s |= p ⇔ p ∈ I(s)
s |= ¬ϕ ⇔ s �|= ϕ

s |= ϕ ∧ ψ ⇔ s |= ϕ ∧ s |= ψ
s |= EXϕ ⇔ ∃p ∈ P(s) · p1 |= ϕ
s |= EGϕ ⇔ ∃p ∈ P(s) · ∀i · pi |= ϕ

s |= E[ϕUψ] ⇔ ∃p ∈ P(s) · ∃i · (pi |= ψ)∧
∀j < i · pj |= ϕ

s |= E[ϕUiψ] ⇔ ∃p ∈ P(s) · ∃j ≤ i · (pj |= ψ)∧
∀k < j · pk |= ϕ

(b)

EFϕ ⇔ ϕ ∨ EX EFϕ
EF0ϕ ⇔ ϕ
EFiϕ ⇔ EX EFi−1ϕ if i > 0
EFiϕ ⇒ EFϕ for all i
EG ϕ ⇔ ϕ ∧ EX EG ϕ

Fig. 2. (a) Semantics of CTL. (b) Useful CTL identities.

The set of all states in a model M which satisfy a given property ϕ is denoted by
[[ϕ]]M , or just [[ϕ]] when the model is implicit. The semantics of CTL can be expressed
entirely in terms of [[·]] rather than quantification over paths. For instance, [[EXϕ]] =
{Img−1(s) | s ∈ [[ϕ]]}, and EFϕ is the least fixed-point of Img−1 applied to [[ϕ]].

Witnesses to CTL Properties. In first-order logic, an existential assertion ∃x · Q(x)
can be proven by exhibiting a witness – an element in the domain of the predicate Q
which makes Q true. Since CTL properties are expressed in a fragment of first-order
logic, this proof method can be applied to them as well. For example, a witness for the
property EFf in the model of Figure 1(a) is s0, s1, s3, s5.

Any CTL property whose semantics is entirely expressible using existential quan-
tifiers where the negation is pushed to the level of atomic propositions, can be proven
by exhibiting an instantiation for all the existential quantifiers over paths. Though CTL
semantics is expressed over infinite paths, a witness is always made up of finite paths
or finite prefixes followed by finite repeating suffixes [9]. For example, the witness
for s0 |= EXp for the model in Figure 1(a) is a two-step path, where the second
step is a successor t such that (s0, t) ∈ R (state s1 in our example). The witness for
s1 |= EGp is infinite, and, in the case of the model in Figure 1(a), consists of a loop
s1, s2, s4, s1, .... In the rest of the paper, we use “witness” to refer to either the nec-
essary finite segments or to infinite paths that begin with such segments; the correct
interpretation will be clear from the context. Also, we only consider properties linear
witnesses [3], i.e., a single path through the states of the model that suffices as a proof.
This restriction is for the sake of simplicity of presentation, and is not a constraint on
the method discussed; our results can also be extended to witnesses with branching
structure [15].

Determining whether a CTL formula has a linear witness is NP-hard [3]; a sublan-
guage of CTL which always has linear witnesses is given by the following grammar:

A ::= p ∈ V | ¬A | A ∧A | A ∨A
T ::= A | EXT | EFT | E[A U T ] | T ∨ T

For example, the witness to E[r U EXp] in state s0 of the model in Figure 1(a) is
linear, whereas the witness to EXp ∧ EX¬p in state s1 is not.

A counterexample is a witness to the negation of a property. Letϕ be a formula with a
witness, and let ψ = ¬ϕ. If ψ does not hold in some state s, then a counterexample to ψ
can be computed; further, if ϕ has a linear witness, then ψ has a linear counterexample.



Automated Support for Building Behavioral Models of Event-Driven Systems 127

3 Scenario Language

In this section, we describe the syntax and semantics of a simple language of scenarios.
The language allows expression of causal relationships between events, under qualify-
ing conditions. Its semantics is a translation into CTL, so that scenarios can be auto-
matically validated.

To illustrate the concepts in this paper, we use a simple two-lift, three-floor elevator
system with a central controller. Each of the elevators,E1 and E2, can be standing still,
or moving up or down; its door can be open or closed. It has a record of the floors it is
still obliged to visit – an elevatorEi must visit a floor if either (1) its internal button for
that floor was pressed, or (2) the controller received a call from a landing-button on that
floor and assigned Ei to service it. The controller assigns calls to elevators based on a
heuristic estimating which will arrive first.

3.1 Syntax

The basic entities of mental models of behaviour are conditions – the state of a program
spanning some nonzero number of steps in time – and events – changes between one
state and the next [17]. Some of the events and conditions of the elevator system are
shown in Figure 3(a). Note that events do not have to be independent of each other, e.g.,
floor=2 ⇔ (E1.floor=2 ∨ E2.floor=2).

The fundamental relationships between events are temporal and causal. We consider
the following to be the atomic relationships between events A and B:

A � B A and B can happen, and B can follow A.
A ⇀ B A and B can happen, and if A happens, then B must happen sometime in the future.
A ↽ B A and B can happen, and if B happens, then A must have happened prior to B.

Also, A � B means that both A ⇀ B and A ↽ B. Composition of relationships
is transitive: writing A ⇀ B ⇀ C means that A ⇀ B and B ⇀ C. For example,
the graphical expression shown in Figure 3(b) denotes (landingCall(3) ↽ floor=3) ∧
(landingCall(3)↽ assigned(3)) ∧ (assigned(3)⇀ floor=3). That is, an elevator arrives
at floor 3 only because of a call to floor 3. Also, floor 3 is assigned to an elevator only
because of a call; and assignment of a floor always causes its service by an elevator.

Events
init the elevator is started up
landingCall(3) there is a call for an elevator on floor 3
liftCall(3) there is a call inside an elevator for floor 3
E1.floor = 1 elevator 1 arrives on floor 1
floor= 2 either elevator arrives on floor 2
assigned(3) the controller assigns a call to one of

the elevators.
Conditions

E1.up elevator 1 is moving up
outstandingCall(3) there is an unserviced call for floor 3

landingCall(3) floor=3

assigned(3)

↽
↽

⇀

(a) (b)

Fig. 3. (a) Some elevator events and conditions; (b) An example graphical expression
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Causal relationships can be absolute or conditional: either A ⇀ B in any case,
or A ⇀ B while a condition c is satisfied, that is, if A happens while condition c
is true, then either B eventually happens or, before that, c becomes false. We denote
this by c[A ⇀ B]. This situation is called an exception. In addition, we want to allow
representation of exceptions which are due to events. If A leads to B unless event C
happens, we write (A ⇀ B) ↓ C. We can further generalize this by defining scopes as
in the temporal logic patterns framework [12, 27], e.g., A ⇀ B between (conditions or
events) P and Q.

3.2 Translation

Since Kripke structures deal only with propositions, and not events, we must explicitly
encode events as changes of state. For instance, in the elevator, floor=1 is a state vari-
able: the elevator arrives at floor 1 when this variable becomes true. We assume that
the structure, where needed, is annotated with event variables, which become true for a
single time-step whenever the event occurs, and false once it ceases to occur.

Since any scenario expression can be represented by a conjunction of atomic binary
expressions, we only describe the translation of atomic expressions into CTL.

If B � C, then there are three properties to be checked: (1) B can occur; (2) C can
occur; (3) C can follow B. These are subsumed by determining whether there exists
some path from the initial state along which B occurs at some point; and whether, once
B occurs, C may occur. Formally, B � C = EF(B ∧ EF C). For instance, we can
check init � (floor=3) by asking the model-checker whether EF(init ∧ EF floor=3)
holds. Since init is necessarily true of s0, this reduces to EF floor=3.

The translation of the remaining constructs into CTL is shown in Table 1. W/C
indicates whether the translation has a linear witness (W), a linear counterexample (C),
or neither (–). If B ⇀ C, then not only can both B and C occur, but when B occurs,
then C must occur at some point after it. As an example, we can ask whether call=3 ⇀
floor=3 is a valid scenario; the model-checker determines whether for any state where
call=3 occurs, each future path eventually reaches a state where floor=3. If B ↽ C,
then either C never occurs, or on any path where C does occur, between the initial
state and the first occurrence of C, and between any two occurrences of C, there is an
occurrence of B. c[B ⇀ D] means that if B occurs while c is true, then along all future
paths, c holds until either D occurs, or c becomes false (the exception condition). For
(B ⇀ C) ↓ E, B must either lead to an occurrence of C or an occurrence of E; C
must be possible, but E need not be.

Table 1. CTL semantics of atomic scenarios

Scenario CTL translation W/C
B � C EF(B ∧ EF C) W
B ⇀ C AG(B ⇒ AF C) C
B ↽ C AG(init ∨ C ⇒ –

(AG¬C ∨ A[¬C U B]))
c[B ⇀ D] AG(B ∧ c⇒ A[c U D ∨ ¬c]) C
(B ⇀ C) ↓ E AG(B ∧ ¬E ⇒ AF(C ∨ E)) C
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Once relationships between events are discovered, they can be immediately validated
by the model-checker. This leaves open, however, the question of how to find such
relations and how to make them more precise – elaborate them. We address this issue
in Section 5.

4 Witnesses and Strategies

In this section, we discuss how to define strategies for constructing “interesting” wit-
nesses. We also discuss optimality of a witness-generation strategy with respect to ob-
jectives which may not be expressible as part of CTL.

4.1 Witness Generation

In Section 2, we defined witnesses. We now discuss their effective computation.
We start by defining annotated witnesses. An annotated witness is a sequence π

of pairs (π0, Φ0), (π1, Φ1), ... where πi is a state and Φi a set of CTL formulas. The
formulas Φi are proof-obligations – informally, properties which, at step πi, still need
to be demonstrated by the witness. For example, the annotated witness to s0 |= EF f
for the model in Figure 1(a) is

(s0, {EF f}) → (s1, {EF2 f}) → (s2, {EF1 f}) → (s5, {f})
For each state in this witness, we only show a singleton set of proof obligations, al-
though others are possible as well (e.g., {EF f,EF2 f} in state s1). An (infinite)
annotated witness to s1 |= EG p is

(s1, {EGp, p,EX EG p}) → (s2, {EGp, p,EX EG p}) → s2 · · ·
which moves from s1 to s2 and then loops infinitely on s2. The labels are based on the
identity EG p⇔ p ∧ EX EG p; see Figure 2(b) for CTL identities.

An annotated witness w to s |= ψ satisfies the following conditions: (1) π0 = s, and
the conjunction of the formulas in Φ0 implies ψ: ψ ⇐ ∧

ϕi∈Φ0
ϕi; (2) for every state

(πi, Φi) in w, πi |= ϕi for each ϕi ∈ Φi; (3) for every step (πi, Φi) → (πi+1, Φi+1)
in the witness, let Φt

i be the subset of Φi containing temporal operators. Then for every
ϕj ∈ Φt

i, there is ϕ′
j ∈ Φi+1 such that EX ϕ′

j ⇒ ϕj . If the witness is finite, as in the
case of EF, the proof obligation for the last step (πk, Φk) does not include any temporal
operators.

A sequence of annotated states is a partial witness if properties (1) and (2) of wit-
nesses hold in it, and property (3) holds for every state except the last. Particularly,
(s, {ϕ}) is always a partial witness for s |= ϕ if this property holds in the model. Thus,
using the model-checker’s results cached from the computation of [[ϕ]], we can com-
pute a complete witness starting from (s, {ϕ}), extending it one step at a time until
either a final state is reached or a cycle can be closed. More precisely, given a par-
tial witness with (π, Φ) as the last state, we compute the extension (π′, Φ′) so that (1)
∀ϕi ∈ Φt · ∃ϕ′

i ∈ Φ′ · EX ϕ′
i ⇒ ϕi, and (2) choose π′ ∈ Img(s) ∩ ⋂

ϕi∈Φt [[ϕ′
i]].

That is, π must witness EXϕ′
i for every temporal ϕi ∈ Φ. The choice of a suitable π′ is

made by a witness generation strategy [7]. This is the (tableau-based) technique used by
our model-checker XChek [6, 15], and it allows simple local specification of strategies.
Clearly, other techniques are possible as well.
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4.2 Strategies

Strategies are procedures for choosing which witness to show to the user, in case sev-
eral are possible. A simple strategy, used by most model-checkers, is to compute the
shortest possible witness (Shortest). For a finite witness property, such as s |= EFϕ,
this strategy uses the identity EFϕ ⇔ ∃i · EFiϕ, and selects as the initial partial wit-
ness (s, {EFi ϕ}) by finding the least i such that s |= EFi ϕ. At each extension step,
it chooses a successor for (π, {EFi ϕ}) by determining the smallest j < i such that
some π′ ∈ Img(π) satisfies EFjϕ, and choosing any such π′. If j = 0, then EF0ϕ
is rewritten to the purely propositional ϕ, and the strategy halts successfully. This is
how the witness to s0 |= EF f in Section 4.1 was generated: s0 |= EF3 f ; the least
i < 3 than can be chosen is 2, and s1 is the only choice. From (s1, {EF2 ϕ}), the least
possible i < 2 is 1; s2, s3 are equally valid choices, so the strategy picks s2 at random;
finally the path is extended to s5, which satisfies f (EF0 f ), and so the strategy halts.

For EGϕ, the strategy builds a (shortest) path until it reaches a state t which lies on
a cycle: that is, there is a path from t which reaches t again, and ϕ holds continuously
on this path. Since t satisfies ϕ ∧ EX E[ϕ U {t}], there is a finite path from t back to
t, and once this has been constructed, the witness, consisting of a finite prefix followed
by the cycle on t, is complete.

In this paper, we consider several strategies. We describe them informally here; for
a more formal treatment, please see [7]. At each step, the set of possible successors is
partitioned into preferred (P ) and avoided (A); if the preferred set is nonempty, then
the next state is chosen from it nondeterministically; otherwise, the next state is chosen
from A. P and A can be the same throughout the construction of the witness, or can
be updated. Clearly, this approach is greedy: decisions are made locally, and thus we
may not generate the most interesting witness. Strategies with backtracking can also be
defined, but their application is more expensive.

Avoid-Visited. This strategy uses the avoid set A that consists of previously visited
states. The set is updated after the next state of the witness is chosen. For example, a
sequence of states forming a witness to EX EFr in state s2 of the model in Figure 1(a)
is s2, s3, or s2, s4 but not s2, s2.

Avoid-States. This strategy is similar to Avoid-Visited. However, it receives a set of
states to avoid as a parameter, and does not update this set as the witness gets con-
structed.

Avoid-Conditions. This strategy is similar to Avoid-States, but its parameter-list con-
sists of conditions on the next state to avoid.

Avoid-Events. This strategy receives a list L of events to avoid. Given the last state
s of the partial witness, it tries to pick a successor t so that none of the events of L
occur between s and t. The avoidance set stays the same throughout the witness gener-
ation process. We can further define a strategy that picks a successor that minimizes the
number of events that fire on the transition between s and t.

Avoid-Vars. This is similar to Avoid-Events: given a set of variables L, the strategy
extends the current partial witness by choosing the successor that does not change vari-
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ables inL. We can further define a strategy that picks a successor that minimizes changes
to variables in L.

Clearly, we can define Prefer counterparts of the above strategies. For example,
Prefer-Visited extends the partial witness by preferring states which are already part of
this witness.

5 Elaboration of Behavioral Models

In Section 3, we discussed specifying and validating simple scenarios. Since automatic
extraction of interesting scenarios from the system is difficult (because scopes and
events of interest need to be specified and because mental models are an abstraction of
the behaviour of the system – they typically ignore exceptional cases), our methodology
works by starting from simple scenarios that are guessed by the user, and elaborating
them into more complex scenarios using elaboration patterns. Guessing simple scenar-
ios is not hard – we can start just with determining that a certain event p is possible,
without worrying about what caused it.

An elaboration pattern represents a typical way in which behavioral understanding
moves from a set of valid and invalid scenarios – the base scenarios – to stronger or
richer ones – the elaborated scenarios. This movement usually involves enriching the
current vocabulary of events of interest or strengthening the relationship between the
existing events. Elaboration patterns help narrow down the focus of investigation, and
determine which witnesses would be most useful for elaborating the current scenario;
this in turn suggests the witness-generation strategy that should be applied. Application
of an elaboration pattern does not guarantee the existence or the utility of an elaborated
scenario of the desired form.

In this section, we describe elaboration patterns which we found useful for building
behavioural models. Several of these are summarized in Table 2.

Cause Weakening. Suppose we start with a validated scenario A ⇀ B (A causes B),
whereas A ↽ B (B can only happen after A) is not valid. Thus, we cannot conclude

Table 2. Elaboration patterns

Pattern Before Strategies After
Cause A ⇀ B

√
Avoid-Events A ∨ C � B

Weakening A ↽ B ×
Event A ⇀ B

√
Shortest, c[A ⇀ B1],

Splitting B = B1 ∨ B2
√

Avoid-States c′[A ⇀ B2]
A ↽ B1

√
or

A ↽ B2
√

A1 ⇀ B1,
A ⇀ B1 × A2 ⇀ B2,
A ⇀ B2 × A = A1 ∨A2

Intermediate A ⇀ B
√

Shortest, A ⇀ C ⇀ B
Event Avoid-Vars
Intermediate A ⇀ B

√
A ↽ D,

Cause A ↽ B × D ↽ B
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A � B. Our goal is to determine an eventC such that C causes A and furtherC ⇒ A,
so that the elaborated scenario is A ∨ C � B. To find C, we might want to examine
the causes of failure of A ↽ B, but the counterexample to this property is non-linear
and thus may not provide the necessary understanding. Instead, we propose to examine
which events other thanA causeB; so the useful witnesses in this case are generated by
checking init � B using an Avoid-Events({A}) strategy. Examining these witnesses
helps us guess which events need to be added to C; with each successful guess, C is
increased (weakened) until we can conclude (A ∨ C) � B.

As an example of Cause Weakening, consider the relationship between
landingCall(3) and floor=3 in the elevator system. landingCall(3) ⇀ floor=3, but it
is not true that landingCall(3) ↽ floor=3. Using the elaboration pattern, we compute a
witness to init � floor=3, avoiding landingCall(3), which results in init, E1.liftCall(3),
E1.assigned(3), E1.doorClosed, E1.floor=2, E1.floor=3. Examining this trace allows
us to identify liftCall(3) as another possible cause of floor=3. We can quickly vali-
date that liftCall(3) ⇀ floor=3; and furthermore, that (liftCall(3) ∨ landingCall(3)) ↽
floor = 3. The new event liftCall(3) ∨ landingCall(3) is called call(3), and call(3) �
floor=3.

Event-Splitting. Suppose we start with A � B, where B is a compound event B ⇔
B1∨B2. Thus,A ⇀ B1∨B2 andA ↽ B1∨B2. We can proveA ↽ B1 andA ↽ B2,
but neither A ⇀ B1 nor A ⇀ B2. We are interested in causes of B1 and B2. Potential
elaborations can be some conditions under whichA ⇀ Bi, or perhaps splitting upA so
that A⇔ A1 ∨A2 and A1 ↽ B1 and A2 ↽ B2; finally, we may conclude that A leads
to a non-deterministic choice between B1 and B2. We first examine counterexamples
to A ⇀ Bi, perhaps with the Shortest strategy. If this is not helpful, we suggest the
following tactic: examining A � B1, the existential counterpart of A ⇀ B1. A does
not always result in B1, but checking A � B1 lets us examine cases where it does.
Let V1 be the set of states visited while generating a counterexample for A ⇀ B1.
We can generate a witness to A � B1 with the strategy Avoid-States(V1); this avoids
accidental similarities between paths from A to B1 and those from A to B2, and helps
with the elaboration.

We show an application of Event-Splitting in the elevator system by studying the
relationship between a call to floor 3 and the arrival of a given elevator to that floor.
The event floor=3 is composed of the events E1.floor=3 and E2.floor=3. call(3) ↽
E1.floor=3, and call(3) ↽ E2.floor=3; however, call(3) ⇀ E1.floor=3 is not valid. A
witness to ϕ=call(3) � E1.floor=3 shows a lift-call for E2 (which is a sub-event of
call(3)), followed by E2.floor=3. We validate E2.liftCall(3) ⇀E2.floor=3, and ask for
another witness to ϕ, using the strategy Avoid-Event({E2.liftCall(3)}). This yields the
following trace: init, landingCall(3), E2.assignCall(3), etc., until E2 reaches floor 3.
Thus, we observe that if both elevators are on floor 1, the assignment of calls appears
to be nondeterministic.

To find a better reason, we use the Avoid-States(V1) strategy, where V1 is the set of
states in the previous witness. This results in the following sequence of events: there is
a call for floor 2; it is assigned to elevator 2, which moves to floor 2 to service it; there is
a call for floor 3, and it is assigned to elevator 2. This allows us to make another guess:
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if E2.floor=1 and E1.floor=2, then landingCall(3) causes E1.floor=3:

(E1.floor = 1 ∧ E2.floor = 2)[landingCall(3) ⇀ E1.floor=3]

Since this scenario holds, we assume that the criterion is the distance: if elevator 1 is
closer to the floor called for than elevator 2, it is assigned the call. If they are equidistant,
then preference is given to the elevator moving in the right direction; and otherwise
the assignment is made nondeterministically by the controller. Running a sequence of
witnesses using Avoid-Visited helps build this intuition.

Intermediate Events. Given that A ⇀ B, is there an intermediate event C that links
them, so that A ⇀ C and C ⇀ B?

Intermediate Cause. This is a variant of Cause Weakening. Suppose we start with
A ⇀ B valid, but A ↽ B not valid. If Cause Weakening does not find a weaker event
A ∨ C with A ∨ C ↽ B, is there an intermediate event D such that D happens only
because ofA (A ↽ D), andB happens only because ofD (D ↽ B).B can still follow
A without an occurrence of D.

Variable Subset Dependence. This and the following pattern are not shown in Table 2
because they are applicable for general-purpose elaboration. The goal of Variable Sub-
set Dependence is to limit the focus of the exploration. For example, we may want to
study just the behaviour of the elevator E1 by disallowing changes in variables of E2.
The pattern is to choose a subset V ′ of the state variables and use an Avoid-Events(V ′)
strategy that attempts to avoid any changes of variables in V ′.

Avoid Exception. Exceptional or error behaviour makes many systems hard to under-
stand, but this exact understanding is usually not necessary for building mental models.
For example, suppose it is possible to put elevators on service. Then most of the scenar-
ios we attempt to validate are false: a service within the elevator would not be satisfied
if the elevator is on service, scheduling of elevators to fulfill landing requests would
be different, etc. This pattern allows us to exclude such behaviours from consideration.
Given a failed scenario ϕ, we look for a condition c so that c[ϕ] holds (in the elevator
example, such a c is “elevator not on service”). If this fails, we can try to strengthen c
by computing counterexamples to ϕ using Avoid-Conditions({c}). A similar pattern
applies if the exceptional behaviour is caused by an event.

6 Evolving Models

In this section, we describe strategies for maintaining and updating mental models as
the system evolves.

6.1 Formalizing Change

We start by formalizing the notion of an evolution of a model. We define an exten-
sion of Kripke structures which captures information about the “old” and the “new”
structures; Kripke structures augmented with difference information (diff) are called
KSDs. KSDs partition state variables into old and new and record information about
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changes in transitions by associating labels to pairs of states: if there is a transition
between them, it is either newly-imposed (labelled by “i”) or preserved from the old
structure (“p”). If there is no transition, then either the transition never existed (“n”) or
was deleted during the evolution (“d”). KSDs also record changes of the initial state.

Formally, a Kripke structure with diff (KSD) is a tuple M = (S, s0, s′0, R, I,
I ′, V, V ′), where S is a set of states; s0 and s′0 are the old and the new initial
states, respectively; V and V ′ are sets of old and newly-added atomic propositions;
R : S×S → {p, i, d, n} is a labelled transition relation; I : S → 2V and I ′ : S → 2V ′

are labelling functions associating each state with the set of old and new atomic propo-
sitions, respectively, that are true in that state. In addition, for s, x ∈ S, if I(s) = I(x),
then s and x used to be the same state – they are identical but for the new variables; this
is an equivalence relation, and we write s ≡ x. If s ≡ x and t ≡ y, then in the old struc-
ture, transitions (s, t) and (x, y) were either both present or both absent, and thus in the
new one, they are either deleted or preserved: R(s, t) ∈ {p, d} ⇔ R(x, y) ∈ {p, d}.
The equivalence class of s under ≡, {t | t ≡ s}, is written ŝ.

For example, we augment the model in Figure 1(a) with an additional atomic propo-
sition q (V ′ = {q}). If q is true, then p does not cause r to become true. If q becomes
true while r is true, r becomes false in the next state. A fragment of this model is shown
in Figure 1(b). In the figure, preserved transitions are regular lines, imposed ones are
extra thick, and deleted ones are dashed; those never there are not shown. The initial
state of the system is now s13, but s13 ≡ s0. The transition (s13, s14) is considered
preserved because in Figure 1(a), the transition (s0, s1) was present, and s14 ∈ ŝ1,
s13 ∈ ŝ0.

Our definition of KSDs enables easy extraction of the old and the new Kripke struc-
tures. Let M = (S, s0, s′0, R, I, I

′, V, V ′) be a KSD. Then the old Kripke structure Mo

is (S/≡, s0, Ro, I, V ), where S/≡ is the set of states obtained from S via the equiva-
lence relation ≡, and Ro(ŝ, t̂) ⇔ ∀x ∈ ŝ, y ∈ t̂ · R(x, y) ∈ {p, d}; that is, a transition
between s and t exists iff for all x, y in M whose labels agree with s and t, respec-
tively, on old variables, the transition between x and y was either preserved or deleted.
The new Kripke structure Mn = (S, s′0, Rn, I ∪ I ′, V ∪ V ′) has the transition relation
Rn(s, t) ⇔ R(s, t) ∈ {p, i} since only the preserved and the imposed transitions are
present in the new system. It is equally possible to take an old Kripke structure, and
the edits (the new variables and transition changes) and compute the KSD capturing the
change.

Our definition of KSDs describes the change syntactically. Unlike a standard simu-
lation relation, it does not allow us to conclude anything about the logical relationship
between the two systems; however, it does provide a way for strategies to mine the
changed model for witnesses that highlight the differences induced by the change.

Note that we have not considered the deletion of variables. Deletion is handled by
keeping the variable in V but removing dependences on this variable from the transition
relation. Formally, let M = (S, s0, R, I, V ) be a Kripke structure, and x ∈ V . Let
s+, s− be states that agree on values of propositions in V \{x}, but disagree on the value
of x: it is true in s+ and false in s−.R is independent of x at s if Img(s+) = Img(s−).
R is independent of x if the above equality holds for all s. For example, in KSD shown
in Figure 1(b), states s14 and s10 are not independent of q.
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Thus, a Kripke structure can be made independent of a variable just by adding and
removing transitions; this is behaviorally equivalent to removing the variable. Further-
more, removing dependence on a variable actually removes the variable from the sym-
bolic representation of the model’s transition relation.

In this paper, we do not address the problem of specifying the diff between the two
models. However, our definition can encode many of the high-level notions of change
described in the literature, e.g., the SFI feature constructs of Plath and Ryan [26].

6.2 Diff-Based Strategies

We define a few strategies that use change information embedded into a KSD.

Avoid-New-Variable-Events. We say that a transition (s, t) results from a new variable
event if some proposition in V ′ has a different value in t as it did in s. If s is the last
state of the partial witness, the preferred set consists of all successors t of s such that
(s, t) does not result from new variable events. A version of this strategy that picks a
transition (s, t) with the minimum number of new variable events can also be defined.

Avoid-New-Transitions. This strategy uses transition labels. If s is the last state of the
partial witness, then t is in the preferred set if R(s, t) = p, and in the avoided set if
R(s, t) = i.

Reuse-Old-Witness. The strategy is useful if the initial states of the new and the old
system coincide (s0 ≡ s′0). Given a previously-generated annotated witness w for ϕ,
with wi = (si, Φi), this strategy prefers, at step i of generating the new witness w′,
states in ŝi+1.

7 Maintaining Models Under Evolution

Changes to a system can have two important effects on behavioral models: new events
can be introduced and causal relationships which were established in the old system
may be broken. In this section, we introduce an elaboration pattern Exception Breaks
Causation which helps understand change and which is supported by strategies that
operate on KSDs.

In the old system, A ⇀ B was valid. The existential counterpartA � B still holds,
but A ⇀ B no longer does. We guess that the change has introduced an exceptional
condition c under which A does not lead to B, but possibly to some other event D. Our
goal is to find this c,andD if it exists, so that ¬c[A ⇀ B] holds, and perhaps c[A ⇀ D]
hold. Further, we may want to check whether A is necessary for D: A ↽ D.

Recording the difference between the two systems in a KSD allows us to use the
Avoid-New-Transitions strategy for the counterexample to A ⇀ B. It minimizes
the dependence on the new behavior and focuses on the essential difference between
the systems to help identify potential c and D. Conversely, applying Prefer-New-
Transitions combined with Avoid-States allows us to compute different witnesses to
A � B that focus on the new behavior and yet preserve the property.

We illustrate the use of this pattern on the elevator system, which we modify by in-
troducing a service feature to each elevator: once on service, it stops servicing any of
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its currently-assigned landing calls and may not be assigned any other requests until it
goes off service. This change breaks the scenario landingCall(3) ⇀ floor=3. Search-
ing for counterexamples of this property using Avoid-New-Transitions yields the one
where from init, both E1.service and E2.service become true, and in the next state,
the landing-call for floor 3 cannot be assigned to either elevator. Further, both elevators
stay on service (the last state is looping). So, we guess that the exception condition c is
E1.service ∧ E2.service.

However, c[landingCall(3) ⇀ floor=3] is not valid either, as the following coun-
terexample shows: E1 goes on service, a landing-call for floor 3 comes in, it is assigned
to E2, E2 goes to floor 2, E1 goes off service, and E2 goes on service. The system
may stay in this state indefinitely, without servicing the call to floor 3. Thus, we pro-
pose a weaker c, E1.service ∨E2.service, and this guess is correct: the system behaves
normally as long as neither elevator goes on service. There is no reasonable D, in this
instance, with c[landingCall(3) ⇀ D]; if the elevators stay on service, then floor=3
may never happen, but no positive event which does happen instead can be identified.

To build more understanding of cases where the service feature is used but a landing-
call is still being serviced, we use the Prefer-New-Transition strategy and examine
witnesses to call(3) � floor=3.

8 Tool Support

Sawblade is built on top of our symbolic model-checking tool XChek [6]. Its parts are
described below.

The Vocabulary Manager keeps track of variables and events currently considered to
be of interest, and hierarchical relationships between them. Elements of the vocabulary
can be combined (for a more abstract event), or split up (for a more concrete one).

The Pattern Tool allows users to create behavioral models from scratch using the cur-
rent vocabulary. It is similar to the corresponding part of the Bandera tool [11]; the
fully-realized pattern is translated into a CTL property, which is handed to the model-
checker.

The Model Manager tracks validated behavioral models and the relationships between
them.

The Strategy Builder allows the user to select and customize standard strategies (such
as those described in this paper). Although not currently implemented, Strategy Builder
will also include a scripting language for enabling users to define their own strategies.

The Interactive Witness Generator (KEGVis) [15] uses the selected strategy to pro-
duce a witness. It can either produce it immediately, or allow manual intervention at
defined breakpoints.

Sawblade can maintain Kripke structures with diff as well as ordinary Kripke struc-
tures, and construct them from a specification and an edit. This information is used
whenever a change-aware strategy (such as Avoid-New-Transitions) is used. When a
new and an old model are being examined side-by-side, all parts of the tool are aware of
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it: the Vocabulary Manager marks old and newly-introduced elements, and the Model
Manager indicates whether a behavioral model is validated in the old, new, or both
systems. The Witness Generator distinguishes newly-introduced variables graphically
when presenting witnesses, and also color-codes the types of transition used (preserved
and imposed). When attempting to reuse an old witness, it can indicate the location
where a removed transition made the reuse impossible.

9 Conclusions and Future Work

In this paper, we described a methodology for building compact behavioural models of
existing event-driven systems. The methodology, supported by a tool Sawblade, is based
on the use of model-checking for validating scenarios, and on strategy-augmented wit-
ness generation for helping elaborate these scenarios. We also described a methodology
for storing information about the system evolution and using strategies that use the old
and the new systems to help users understand the change in behavioural models. We
illustrated our approach using an elevator controller.

In future work, we plan to augment the current capabilities of the tool by adding
a scripting language, and expand the witness generator so that it can use strategies
with backtracking. We are also interested in combining our methodology with query-
checking [5]: once events of interest have been identified, query-checking may be ef-
fective in determining the exact relationship between them. We are also planning to
provide a stronger empirical validation of our elaboration patterns.
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