
New Metrics for Static Variable Ordering
in Decision Diagrams�

Radu I. Siminiceanu1 and Gianfranco Ciardo2

1 National Institute of Aerospace, Hampton, Virgina 23666
2 University of California, Riverside, CA 92521

Abstract. We investigate a new class of metrics to find good variable
orders for decision diagrams in symbolic state-space generation. Most of
the previous work on static ordering is centered around the concept of
minimum variable span, which can also be found in the literature un-
der several other names. We use a similar concept, but applied to event
span, and generalize it to a family of metrics parameterized by a moment,
where the metric of moment 0 is the combined event span. Finding a good
variable order is then reduced to optimizing one of these metrics, and
we design extensive experiments to evaluate them. First, we investigate
how the actual optimal order performs in state-space generation, when
it can be computed by evaluating all possible permutations. Then, we
study the performance of these metrics on selected models and compare
their impact on two different state-space generation algorithms: classic
breadth-first and our own saturation strategy. We conclude that the new
metric of moment 1 is the best choice. In particular, the saturation algo-
rithm seems to benefit the most from using it, as it achieves the better
performance in nearly 80% of the cases.

1 Introduction

In automated system verification, the performance of symbolic model checking
algorithms based on binary decision diagrams (BDD) [4] is strongly influenced
by the variable ordering of the model. While the boundaries of what is now
amenable to BDD technology have been constantly pushed, many industrial-size
applications are still out of reach. A critical factor is that finding the optimal
BDD variable order is an NP-complete problem. Not knowing what the optimum
BDD performance could be, leaves the issue of what is actually achievable by
this method still uncertain.

Various heuristics have been proposed to tackle the variable order issue. One
direction is to attempt to find a good variable order statically [1, 2, 3, 20, 23], i.e.,
prior to generating the state space, hoping to keep the peak size of the BDD
as small as possible. The other direction is to dynamically alter the variable
ordering during state-space generation [24], usually when the size of the BDD
becomes too large, to reduce the current BDD size.
� Work supported in part by the National Aeronautics and Space Administration

under grant NCC1-02043 and by the National Science Foundation under grants
CNS-0501747 and CNS-0501748.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 90–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

New Metrics for Static Variable Ordering in Decision Diagrams 91

Most of the previous efforts on static ordering is centered around the concept
of minimum variable span, variants of which have been described as normalized
average lifetime [22], smallest communication graph [1], and diagonal dependency
matrix [15]. At its core is the idea that clustering variables that are interrelated
(in the transition relation expression, combinatorial circuit design, dependency
matrix, etc.) yields better results. This was hinted as early as in [6] and also
supports the idea of event locality [9], which ultimately produced the saturation
strategy [10], an efficient state-space generation algorithm.

However, simply minimizing the span as a metric does not always guaran-
tee good results in practice. Indeed, variable orders with the same span may
produce drastically different results. In the process of developing the saturation
strategy, we observed that the dynamics of the BDD growth can be significantly
different than for the classic breadth-first iterations. In general, the complex-
ity of symbolic state-space generation depends not only on the overall number
of BDD nodes, but also on the location of the region of BDD levels affected
by each event. In most cases, some regions tend to grow much larger than the
rest. Precisely pinpointing where those levels are concentrated cannot be done
in advance, as this is largely model-dependent, but experience indicates that
the BDDs grow larger mostly in the middle or middle-bottom area. Therefore,
BDD node operations tend to be more costly if performed at the top levels, as
the recursive calls propagate downstream. In this paper, we propose a metric
focused on the event span (over variables), rather than the variable span, and
propose a generalized version of this metric that takes into account the location
of the span with respect to the range of state variables.

The remainder of the paper is structured as follows. Section 2 contains a brief
digest of previous work on variable ordering. Section 3 recalls the background
on symbolic state-space generation and introduces the new metrics. Section 4
discusses the experimental results to evaluate the significance of these metrics
in the context of the saturation and breadth-first iteration strategies. Section 5
concludes and discusses future work.

2 Related Work

The importance of clustering interdependent variables was first pointed out by
Burch, Clarke, and Long [6]. Fujita et al. [15] provided an early overview and
evaluation of BDD variable orderings. On a closely related subject, a first static
heuristic for image computation with a partitioned transition relation was pro-
posed by Geist and Beer [13], based on the idea of ordering the conjuncts de-
pending on the number of affected variables. IWLS95, another successful but
quite elaborate heuristic, was proposed in [25] and is still widely used in various
BDD packages. Aziz et al. [1] also suggested clustering variables that depend on
each other based on an underlying communication graph.

Moon et al. [22] discusses the normalized average lifetime metric in the con-
text of efficiently applying the transition relation of a system using BDDs, either
disjunctively or conjunctively. They report significant improvements over previ-
ous heuristics in performing image computation within a unified framework that

92 R.I. Siminiceanu and G. Ciardo

combines conjunctive and splitting methods. In the same context, Chauhan et
al. [7] studied different algorithms for optimizing the lifetime metric and con-
cluded that the simulated annealing algorithm achieves the best results. They
also proved that the problem of minimizing the normalized average lifetime met-
ric is NP-complete.

Closer to our approach, [3] attempts to alter the minimum event span method.
Variables are assigned different weights, according to how many events in the
model affect them, then they are statically arranged in decreasing weight order.
MINCE [2] is a similar heuristic in the context of both BDD and SAT-based
verification, which exploits information from the conjunctive normal form.

Solving the BDD minimization problem by means of genetic algorithms is seen
in [14, 23]. One drawback in this type of work is that the evaluation function of
the chromosomes is the actual size of the resulting BDD for that order, hence the
optimization process is extremely time consuming. In Section 4.5, we propose
a much faster approach, where the fitness function is the value of the weighted
event span metric, which can be computed statically from the model information
for each order.

Other techniques for variable ordering that do not directly employ optimizing
a metric are found in [20], which proposes a sampling heuristic, [18], which
introduces the scatter search, and [17], which studies a learning based method.

3 Variable Ordering in Symbolic State-Space Generation

We focus on the important problem of symbolically generating the state-space
S of a discrete-state model. We assume a high-level description of the model
where each state i is a K-tuple of integer variables, i = (iK , ..., i1). Each of
these variables ik is in some range Sk = {0, 1, ..., nk−1}, so that the potential
state space of the model is ̂S = SK × · · · × S1. The model has an initial state,
or, in full generality, an initial set of states Sinit ⊆ ̂S. A next-state function
of the form N : ̂S → 2 ̂S specifies the set of states reachable from each state,
we can also think of it as a transition relation of the form R ⊆ ̂S × ̂S, where
j ∈ N (i) ⇔ (i, j) ∈ R. We are interested in computing and storing the state
space S, which can be defined as the smallest set containing Sinit and satisfying
the fixed-point equation X = X ∪ N (X).

Symbolic methods to compute S use decision diagrams. We consider quasi-
reduced ordered multi-valued decision diagrams (MDDs) [19], formally defined as
a directed acyclic edge-labeled multi-graph where:

– Each node p belongs to a level k ∈ {K, ..., 1, 0}, denoted p.lvl .
– There is a single root node r at level K

– Level 0 can only contain the two terminal nodes Zero and One.
– A node p at level k > 0 has nk outgoing edges, labeled from 0 to nk−1. The

edge labeled by ik points to a node q at level k − 1; we write p[ik] = q.
– Given nodes p and q at level k > 0, if p[ik] = q[ik] for all ik ∈ Sk, then p = q,

i.e., there are no duplicates.

New Metrics for Static Variable Ordering in Decision Diagrams 93

The set of states encoded by an MDD is B(r), defined recursively as

B(p) =

{
⋃

ik∈Sk
{ik} × B(p[ik]) if p.lvl = k > 1

{i1 : p[i1] = One} if p.lvl = 1
.

A basic breadth-first-search (BFS) algorithm to generate S implements exactly
the fixed-point definition of S, by initializing S to Sinit, then repeatedly updating
it to include the states reachable from it in one (more) application of N , until
no more new states are found, i.e., until N (S) ⊆ S. A 2K-level MDD, fixed for
the duration of the iterations, is used to store the next-state function N , while
a K-level MDD, which grows and shrinks during the iterations, is used to store
S. The peak size of this second MDD is critical, as it can exceed the available
memory.

To reduce the peak memory requirements of symbolic state-space genera-
tion, especially for globally-asynchronous locally-synchronous systems (GALS),
we proposed an alternative algorithm called saturation [10]. At its core is the
recognition that, in GALS, most events exhibit strong locality, i.e., they affect
only a small subset of the state variables, while the other state variables are
subject to identity transformations, i.e., they do not change.

Saturation requires a next-state function disjunctively-partitioned according
to a set E of (asynchronous) events in the high-level model, N =

⋃

e∈E Ne. As ini-
tially defined, saturation also requires that each Ne be conjunctively-partitioned
into K local functions, Ne = NK,e×· · ·×N1,e, each one describing the interaction
between event e and a state variable k, Nk,e : Sk → 2Sk . Such a decomposition
always exists. However, for Petri nets, for example, the Nk,e functions always
exist regardless of how many places are grouped into a single state variable while,
in other formalisms, this conjunctive decomposition might exist only if we merge
state variables or split events, potentially leading to exponential growth of the
node sizes or of the number of events. A more recent version of saturation allows
the conjuncts to be functions of multiple state variables [12], but we limit our
discussion to the original version for simplicity (the findings of this paper are
equally applicable to this general version of saturation).

We say that level k does not depend on event e, and vice-versa, if Nk,e = Ik,
the identity function, i.e., Nk,e(ik) = {ik} for every local state ik ∈ Sk. Then, we
define Top(e) = max{k : Nk,e �= Ik} and Bot(e) = min{k : Nk,e �= Ik} to be the
highest and lowest levels that depend on event e. Letting Nk =

⋃

e:Top(e)=k Ne

and N≤k =
⋃

e:Top(e)≤k Ne, saturation applies N1 to each node p at level 1
in the MDD encoding of Sinit, by modifying it in place, until it has reached
a fixed-point, i.e., B(p) = B(p) ∪ N≤1(B(p)); then it moves to each node q at
level 2 and applies N2 to it, and N1 to any node at level 1 created by this
application, so that B(q) = B(q) ∪ N≤2(B(q)); then it moves to the nodes at
level 3, and so on. Once the root r is saturated in this manner, it encodes the
desired state space S. Saturation has been shown to have memory and time
requirements several orders of magnitude smaller than those of BFS in many
models of GALS.

94 R.I. Siminiceanu and G. Ciardo

3.1 BDD vs. MDD Variables and Their Order

It is well-known that the variable order can greatly affect the size of a BDD, thus
the efficiency of the symbolic iterations. Moreover, finding the optimal order that
minimizes the size of a BDD (or of multiple BDDs stored in a BDD forest to share
nodes) is an NP-complete problem [5]. The same applies to MDDs, of course,
but, in addition, the MDD variables themselves offer a greater degree of freedom,
thus more opportunities to introduce improvements, but also inefficiencies. For
example, we can choose to partition the P places of a Petri net into K ≤ P
groups, each one corresponding to a state variable. We do not address the issue
of defining these groups of MDD variables, but simply observe that it can be
seen as an improvement to be applied after having decided the order of the finest
possible partition (in the case of Petri nets, this means assigning a different place
to each level of the MDD, i.e., K = P). Thus, since we focus on the problem of
finding a good order for the finest set of MDD state variables, the results that
follow are applicable to BDDs as well.

3.2 Event Span Metrics

A variable ordering is a permutation π of the K state variables (iK , . . . , i1),
so that variable ik is assigned to level π(k) of the MDD. In the following, we
write Topπ(e) and Botπ(e) to mean the value of Top(e) and Bot(e) when we
use the permutation π. We can also envision a boolean matrix describing the
dependence between levels and events, A ∈ {0, 1}|{K,...,1}|×|E| where A(k, e) = 1
iff Nk,e �= Ik and, for a given permutation π, let Aπ be matrix obtained by
permuting the rows of A according to π, i.e., row k of A equals row π(k) of Aπ .

For a given variable ordering π, we define the Normalized Event Span (NES)
metric as

NES(π) =
∑

e∈E

Topπ(e) − Botπ(e) + 1
K · |E|

The NES metric computes the average span of all events (the span is then
normalized by K) and its value is always between 0 and 1. A low NES indicates
that the event spans are small, i.e., that most events affect only state variables
close to each other in the order π.

We generalize this concept by introducing the Weighted Event Span metric
of moment i, WES (i) for variable ordering π as:

WES (i)(π) =
∑

e∈E

(

Topπ(e)
K/2

)i

· Topπ(e) − Botπ(e) + 1
K · |E|

We observe that WES (0) is exactly equivalent to NES . The WES (1) metric, in-
stead, adds to it a component that reflects the location of the affected region, by
assigning higher weights to locations closer to the top. This takes into account
that operations applied to nodes in the lower portion of the MDD tend to have
lower cost than those applied to higher nodes. Therefore the span of an event is

New Metrics for Static Variable Ordering in Decision Diagrams 95

scaled by απ(e) = Topπ(e)
K/2 , the relative position of the topmost level compared

to the average level, K/2. The weight of an event is thus between (2/K)i and
2i, but the average over all events, if their tops were uniformly distributed over
the MDD, should have an expected value of 1 for WES (1), like for NES . For
larger moments i, the emphasis on the location grows, as the weight multiplies
in powers of 2, while strong clustering is relatively less important.

The Normalized Average Lifetime (NAL) metric introduced in [22] is very
similar to our NES , but it is employed in a different context: that of finding a
good ordering of the conjuncts in the transition relation expression when per-
forming symbolic image computations. In essence, the target in [22] is still to
minimize the average span of rows, but computed on the transpose of our de-
pendence matrix. Therefore, the object of optimizing NAL can be ultimately
viewed as clustering events (the rows in our matrix), as opposed to variables
(the columns).

3.3 NP-Completeness of Our Metric

Intuitively, our WES (i) metric arises from two components, the size of the span
for each event, and the (ith power of the) position of the span for each event.

Given our matrix A ∈ {0, 1}|{K,...,1}|×|E| and considering all the matrices Aπ

obtained by permuting its rows according to π, the question (SUM-OF-SPANS,
i.e., NES)

“Is there an Aπ s.t.
∑

e∈E

Topπ(e) − Botπ(e) + 1
K · |E| ≤ T ”,

was proven in [7] to be NP-complete by reducing the directed optimal linear
arrangement problem (GT43 in [16]) to it.

Focusing on the position of the spans alone, the question (SUM-OF-TOPS)

“Is there an Aπ s.t.
∑

e∈E
Topπ(e) ≤ T ”

can also be shown to be NP-complete [26] by reducing the interval graph com-
pletion problem (GT35 in [16]) to it.

The corresponding question for our more general metric WES (i),

“Is there an Aπ s.t.
∑

e∈E

(

Topπ(e)
K/2

)i

· Topπ(e) − Botπ(e) + 1
K · |E| ≤ T ”

is clearly solvable in non-deterministic polynomial time, by simply evaluating
the metric for each non-deterministically chosen permutation π, but, while we
strongly suspect that it is NP-complete, just like SUM-OF-SPANS and SUM-
OF-TOPS, we have not yet been able to prove its NP-hardness so far. The major
obstacle in achieving the completeness result is posed by the non-linearity of the
target function for higher moments.

96 R.I. Siminiceanu and G. Ciardo

4 Results

Extensive tests were performed to shed light on the properties of the WES
metrics. We attempted as many exhaustive experiments as we could afford, given
that the number of runs required to determine the optimal ordering can be huge.

4.1 Methodology

We designed three set of experiments, which we ran on a 2.4GHz Linux work-
station with 1GB of memory. Our goal is to look for a connection between
optimizing one of the metrics, i.e., finding the variable ordering that results in
the smallest value for the metric, and optimizing the MDD performance, i.e.,
having the smallest peak number of MDD nodes during state-space generation.
Since the runtime and memory consumption are strongly related for MDD-based
algorithms, we can restrict ourselves to peak memory as a measure of the over-
all performance. In all the experiments, we limited ourselves to comparing the
metrics for the first three moments: WES (0), WES (1), and WES (2).

Finding the optimum peak MDD size among all possible K-variable orders
requires K! runs. This becomes infeasible for relatively small values of K. In
our first set of experiments, then, we tried this exhaustive search on a set of
five random models with K = 6 variables (for a total of 5 × 6! = 3600 runs).
The question we wanted to answer was whether variable orders that minimize
the MDD size coincide with orders that minimize any of the WES metrics, and
how often. This test was completed only for the saturation strategy, due to the
enormous amount of time required to finish the same tests on BFS.

The second set of experiments considered the inverse question: which metric
we should choose to minimize in order to achieve the best MDD performance. We
randomly generated 900 models of different size for which the minimum value of
the metric (not the state-space) for all K! variable orders can be computed in
a reasonable amount of time. We stopped at a maximum of K = 10 variables,
since after evaluating the 10! = 3, 628, 800 possible permutations, the optimum
one is run by BFS, for each model and each WES (i), in roughly ten minutes on
average. For all 900 models, the total runtime for BFS was 29 days. In contrast,
the same experiments took only 16 hours when running saturation, which is
more than 40 times faster.

The next value of K = 11 would have taken an estimated two hours per run
for BFS, for a grand total of close to one year. Even so, computing the value
of the WES functions statically for 10! orders and then generating the state
space for (one of) the order(s) that minimizes each metric takes much less time
than executing 6! different MDD-based state-space generation runs. While it
was not the purpose of this study, it would be of interest to generate all distinct
models of a given size K. The total number of such models is 2K(K−1), since,
in our setting, this is the number of all sub-digraphs of the complete digraph
of K nodes, as described in more detail in Section 4.2 (without considering any
symmetries, equivalences, or other possible reductions). At the same time, the
900 models used in this experiment are still relevant, precisely because they are

New Metrics for Static Variable Ordering in Decision Diagrams 97

randomly generated: they represent an unbiased statistical sample and offer a
reasonably even coverage of all possible models.

The first two sets of experiments can only be performed on small models. The
last set is instead taken from larger, more practical models. The methodology in
this case is different, as generating all models or all orders is out of the question.
We generated various orders, ranging from nearly optimal to nearly random, by
running a basic genetic algorithm for permutations [21]. The algorithm is stopped
after a varying number of generations, and the fittest chromosome (order) at the
end is fed into the state-space generator. The resulting MDD size is then used to
compare how the variations in the metric value relate to the MDD performance.

4.2 The Random Model Generator

A small program written in C++ generates models as bounded Petri nets to be
fed to the SMART [8] tool. The user specifies the number of Petri net places
(state variables) and transitions (model events), and the maximum number of
tokens allowed in each place (range of each state variable). Each transition is
adjacent to one input and one output arc. Hence, this technique of “filling out”
the Petri net with transitions is very similar to randomly filling a directed graph
with arcs between its nodes. The program rejects disconnected models, but allows
sinks, traps, and deadlocks.

4.3 Experiments Where the MDD Optimum Is Known

Table 1 presents a synopsis of the results from the first set of experiments. We
generate all possible 720 permutations of six variables and report the number of
permutations (“per”) that led to the smallest peak MDD size. The next three
pairs of columns report the minimum value of each WES metric on these orders,
and also how many of those reached the MDD optimum. For comparison, we
also list, in the last three pairs of columns, the overall optimum of each metric
and in how many instances this was reached.

Figure 1 illustrates the five random models used in this experiment, as directed
graphs (instead of Petri nets). An arrow represents a transition that removes a
token from (i.e., decreases the value of) the source place (variable) and adds it
to (i.e., increments) the target place (variable). The initial value of p0 is written
inside the place p0.

Table 1. Experiment 1: MDD optimum vs. WES optimums

smallest MDD overall metric optimum
per metric value on smallest MDDs WES (0) WES (1) WES (2)

WES (0) per WES (1) per WES (2) per min per min per min per
model 1 10 0.444 1 0.648 1 0.977 1 0.426 2 0.623 1 0.949 1
model 2 10 0.407 1 0.574 1 0.819 1 0.407 2 0.574 1 0.819 1
model 3 2 0.438 1 0.674 1 1.111 1 0.396 4 0.542 1 0.806 1
model 4 4 0.467 4 0.689 2 1.081 2 0.467 16 0.689 4 1.081 2
model 5 4 0.467 2 0.661 1 1.046 1 0.450 4 0.661 1 1.046 1

98 R.I. Siminiceanu and G. Ciardo

10

p
4

p
2

p
5

p
3

p
0

p
1

20

p
2

p
0

p
4

p
3

p
5

p
1

20
p

0

p
1

p
3

p
5

p
4

p
2

25

p
0

p
5

p
2

p
1

p
3

p
4 p p

pp

0 1

4 2

10

p
3

p
5

Fig. 1. The five random models used in the first set of experiments

Note that the minimums for the metrics differ substantially, depending on the
moment. This is because our assumption about the expected value of the scalars
απ(e) was imprecise. The average on the top level of all events is actually higher
than K/2 as the width of the affected region pushes this value up. Similarly, the av-
erage bottom level would sit lower than K/2. To achieve a better common ground
when comparing the metrics, we should consider the middle level as a scalar:

απ(e) =
(Topπ(e) + Botπ(e))/2

K/2

However, that would be a completely different metric, which will not capture
the effect we were targeting: the top level is most important, because that is
where the recursive calls in MDD operations start. Therefore, we will forgo the
property of having common expected values for the metrics in our present study.

The results show that in two of the five models (1 and 3), none of the
metrics’ optimums led to a MDD optimum. In two other models (2 and 4), all
metrics reach the MDD optimum. However, for the WES (0) metric, there are
multiple orderings that have minimum value and only a fraction of them are also
among those that coincide with the smallest MDD (1/2 and 4/16). For the other
two metrics this proportion is better (1/1 and 2/4). For the last model, WES (0)

does not reach the MDD optimum, while the others do, and they do so for a
single value. Moreover, we observe that overall (and this trend continues in the
next batch of experiments) WES (0) has multiple minimums, making it difficult
to choose the particular order among them that might lead to the MDD opti-
mum. With the other metrics, the number of minimums is much smaller, thus
the selection has a greater chance to succeed in matching the MDD’s best. Most
encouraging are cases such as models 2 and 5, where WES (1) has a unique min-
imum which coincides with the MDD optimum.

New Metrics for Static Variable Ordering in Decision Diagrams 99

4.4 Experiments Where the WES Optimums Are Known

This set of experiments used three parameters for generating the random nets:

– number of variables P : from 8 to 10;
– number of transitions T : from 11 to 25;
– number of tokens in the initial marking (i.e., the range of variables): from 5

to 100, in increments of 5.

for a total of 900 cases.
In many instances, the best order was the same for two, or even all three

metrics. A synopsis of the results is presented in Figure 2, as the percentage of
runs where each metric performed best among the three (there are many ties,
thus the sum of the three plots is over 100%). While for BFS the choice of metric
does not appear to have a large impact, this is not the case for saturation. The
table in the left of Figure 3 (left) presents a digest of the results for saturation,
where it can be seen that WES (1) clearly performs the best.

At first glance, WES (1) is the best choice among the three metrics. It also
appears that models that are not “dense” with transitions favor higher mo-
ment metrics (WES (1) and WES (2)). Since WES (1) seems to be consistently
slightly better than WES (2), it is then interesting to examine when it also “beats”
WES (0). Figure 3 (right) shows the percentage of runs where WES (1) is at least
as good as WES (0), as a function of T , for the choices P = 8 and P = 10. The
overall percentage is 79%.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

BFS WES0 P=8
BFS WES1 P=8
BFS WES2 P=8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

BFS WES0 P=10
BFS WES1 P=10
BFS WES2 P=10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SAT WES0 P=8
SAT WES1 P=8
SAT WES2 P=8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SAT WES0 P=10
SAT WES1 P=10
SAT WES2 P=10

Fig. 2. Experiment 2: % of runs where WES (0), WES (1), or WES (2) is best, as a
function of T (x-axis) and P , for BFS (top) and saturation (bottom)

100 R.I. Siminiceanu and G. Ciardo

WES (0) WES (1) WES (2)

P = 8, T = 15 35% 80% 65%
P = 8, T = 20 50% 75% 65%
P = 8, T = 25 50% 70% 60%
P = 8, total 51% 73% 70%
P = 10, T = 15 50% 85% 50%
P = 10, T = 20 45% 85% 65%
P = 10, T = 25 50% 55% 60%
P = 10, total 48% 66% 55%

% of runs where each metric is best
(for saturation)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P=8
P=10

% of runs where WES (1) beats WES (0)

as a function of the number of events

Fig. 3. Experiment 2 results: focus on saturation

4.5 Experiments Where Optimums Are Not Known

The collection of experimental results presented here is trying to answer the
question: “Is WES (1) more appropriate than WES (0), i.e., NES , to evaluate good
variable orderings in large models?”. We compare the effect of NES and WES (1)

in generating the state space with the two algorithms, saturation and BFS, and
measure the runtime and peak number of nodes in the MDD (final number of
nodes, as well as peak and final memory consumption are also collected, but not
shown in the graphs for conciseness). The experiments are set up in SMART for
three models: dining philosophers of size 10, slotted ring with 6 slots, and round
robin mutex with 8 processes (see [11] for a description of these models).

A genetic algorithm computes the variable order and evaluates the metrics
NES and WES (1) (as the actual fitness function for the chromosomes). To cover
as many values of the metrics as possible, the genetic algorithm is run for a
limited number of generations, before it converges to a good solution. As the
convergence happens relatively fast, the genetic algorithm is stopped after at
least 10 and no more than 1000 generations. The population size is also varied
from 10 to 100 chromosomes.

We stress that a single data point in the scatter plots corresponds to one run
of SMART, which can take up to an hour (the script aborts a run if the one hour
timeout has expired). To increase the density of the data points in the top-right
corners of the graphs would require months, spent running bad orders, so more
data in those sections is hard to come by.

The scatter plots in Figure 4 reveal a few interesting facts. First and foremost,
static variable ordering based on event span works: as a trend, higher values of
the metric tend to correspond to larger peak number of nodes. However, there is
some dispersion for both metrics, showing that neither metric is completely ac-
curate in predicting the effect of a particular order. For example, with a variable
order of NES 0.35 the state space of the slotted ring model can be built with
BFS as fast as in 80 seconds, but also as slow as in 550 seconds. Bad orderings
can have low NES , and also a good NES can yield poor results. An important
question is then: are the WES (1) plots less scattered? The answer is yes, even if
not impressively so. Nonetheless, a conclusion is that, using the WES (1) metric

New Metrics for Static Variable Ordering in Decision Diagrams 101

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Philosophers BFS NES
Philosophers SAT NES

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Philosophers BFS WES1
Philosophers SAT WES1

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Slotted ring BFS NES
Slotted ring SAT NES

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Slotted ring BFS WES1
Slotted ring SAT WES1

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Round robin BFS NES
Round robin SAT NES

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Round robin BFS WES1
Round robin SAT WES1

Fig. 4. Peak no. of nodes as a function of the NES/WES (1) metric: BFS vs. saturation

102 R.I. Siminiceanu and G. Ciardo

and given an input variable order of fitness 0.35, it is at least guaranteed that
state-space generation will take less than 350 seconds for this model. In conjunc-
tion to this, we recall that the WES (1) minimums have the tendency to be up
to 80% larger than NES ’s, so the above statement is actually conservative.

Beside the connection between the metric values and the MDD size, the scat-
ter plots also reveal a clear separation between the peak size when using BFS
and saturation. Most importantly, for near optimal values the performance of
saturation is consistently better. In conclusion, we can safely state that investing
time in optimizing the WES (1) metric will result in lower runtime and memory
consumption for MDD state-space generation, and that WES (1) is better suited
for saturation than for BFS.

Finally, a remark about the genetic algorithm employed here is due. As
prompted by [7], simulated annealing (essentially a degenerate form of genetic
optimization) was found to be faster at finding the global optimum of certain
fitness functions. We used this information to circumvent the need to compare
genetic optimization with other heuristics. A more comprehensive study on this
issue is due in the near future.

5 Conclusions and Future Work

We introduced a new family of metrics WES (i), indexed by a moment i, to
be used as a guide for static variable ordering in symbolic methods. We pro-
vided sufficient evidence that the connection between minimizing WES (1) and
minimizing the peak MDDs size in symbolic state-space generation is stronger
than for the unweighted metric WES (0). We attribute this to the fact that the
weighted metrics incorporate more specific information about the model, by re-
warding what is considered a good placement for the state variables affected by
an event, in addition to only a compact clustering of interdependent state vari-
ables. Another clear advantage of the metrics of higher moment is that they tend
to have fewer minimums than WES (0). We designed extensive experiments to
analyze the properties of the new metrics, including exhaustive searches for the
best variable orders in small models. To the best of our knowledge, this brute-
force approach had not been attempted before, yet it clearly can provide very
useful insight. We have also attested once more that the saturation algorithm is
vastly superior to breadth-first search, and, quite interestingly, it benefits even
more from adopting the metric WES (1) for its variable ordering.

For future research, one question is whether there is room for more fine-
tuning of the metrics or more “creative” ways to choose the scalars απ(e). An
open alternative is to scale the weights not by the index of the highest level
in the decision diagram, but by some middle value so that the the expected
average of the weights is 1. Of great interest would also be an exhaustive search
of all models of a given size, even if such an endeavour obviously has enormous
computational costs. This might enable us to classify the models into classes
that are best suited to a specific choice of metric. Where exhaustive searches are
not possible, data of statistical nature should be collected from more extensive
experiments. The behavior of the metrics near the optimums for the metrics, and

New Metrics for Static Variable Ordering in Decision Diagrams 103

how this behavior relates to the minimization of the peak MDD size should be
considered. From the algorithmic standpoint, heuristics to minimize the metrics,
other than genetic optimization, and approximation methods should be studied
and compared.

References

1. A. Aziz, S. Tasiran, and R.K. Brayton. BDD Variable Ordering for Interacting
Finite State Machines. In 31st ACM/IEEE Design Automation Conference (DAC),
San Diego, CA, June 1994. San Diego Convention Center. ch. 18.3.

2. F. A. Aloul, I. L. Markov, and K. A. Sakallah. MINCE: A static global variable-
ordering heuristic for SAT search and BDD manipulation. J. UCS, 10(12):1562–
1596, 2004.

3. D. Borrione and J. Vidal. Improving static ordering of BDDs for reachability
analysis, Apr. 29 2002.

4. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 35(8):677–691, Aug. 1986.

5. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comp. Surv., 24(3):293–318, 1992.

6. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with parti-
tioned transistion relations. In VLSI, pages 49–58, 1991.

7. P. Chauhan, E. Clarke, S. Jha, J. Kukula, H. Veith, and D. Wang. Using com-
binatorial optimization methods for quantification scheduling. Lecture Notes in
Computer Science, 2144:293–302, 2001.

8. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceaunu. Logical and stochastic
modeling with SMART. In Proc. Modelling Techniques and Tools for Computer
Performance Evaluation, LNCS 2794, pages 78–97, Urbana, IL, USA, Sept. 2003.
Springer-Verlag.

9. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Efficient symbolic state-space con-
struction for asynchronous systems. In Proc. 21th Int. Conf. on Applications and
Theory of Petri Nets, LNCS 1825, pages 103–122, Aarhus, Denmark, June 2000.
Springer-Verlag.

10. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. In T. Margaria and W. Yi, editors,
Proc. TACAS, LNCS 2031, pages 328–342, Genova, Italy, Apr. 2001. Springer-
Verlag.

11. G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In Proc.
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
LNCS 2619, pages 379–393, Warsaw, Poland, Apr. 2003. Springer-Verlag.

12. G. Ciardo and J. Yu. Saturation-based symbolic reachability analysis using con-
junctive and disjunctive partitioning. In Proc. CHARME, Saarbrücken, Germany,
Oct. 2005. Springer-Verlag. To appear.

13. D. Geist and I. Beer. Efficient model checking by automated ordering of transition
relation. In David L. Dill, editor, Proceedings of the sixth International Confer-
ence on Computer-Aided Verification CAV, volume 818, pages 299–310, Standford,
California, USA, 1994. Springer-Verlag.

14. R. Drechsler, B. Becker, and N. Gockel. A genetic algorithm for variable ordering
of OBDDs. In Int’l Workshop on Logic Synthesis. ACM/IEEE, May 1995.

104 R.I. Siminiceanu and G. Ciardo

15. M. Fujita, H. Fujisawa, and Y. Matsunaga. Variable ordering algorithms for ordered
binary decision diagrams and their evaluation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 12(1):6–12, Jan. 1993.

16. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman Press, 1979.

17. O. Grumberg, S. Livne, and S. Markovitch. Learning to order BDD variables in
verification. Journal of Artificial Intelligence Research, 18:83–116, 2003.

18. W. N. N. Hung and X. Song. BDD variable ordering by scatter search. In ICCD,
pages 368–373, 2001.

19. T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued deci-
sion diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.

20. Y. Lu, J. Jain, E. M. Clarke, and M. Fujita. Efficient variable ordering using a
BDD based sampling. In Design Automation Conference, pages 687–692, 2000.

21. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, New York, NY, USA, 1996.

22. I.-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi. To split or to conjoin: the
question in image computation. In Proceedings of the 37th Conference on Design
Automation (DAC-00), pages 23–28, NY, June 5–9 2000. ACM/IEEE.

23. A. M. Moreira, D. Déharbe, and U. S. Costa. Advances in BDD reduction using
parallel genetic algorithms, May 2001.

24. R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In
IEEE /ACM International Conference on CAD, pages 42–47, Santa Clara, Cali-
fornia, Nov. 1993. ACM/IEEE, IEEE Computer Society Press.

25. R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient BDD algo-
rithms for FSM synthesis and verification, May 1995.

26. Y. Wu and J. Robert. Personal communication, Oct. 2005.

	Introduction
	Related Work
	Variable Ordering in Symbolic State-Space Generation
	BDD vs. MDD Variables and Their Order
	Event Span Metrics
	NP-Completeness of Our Metric

	Results
	Methodology
	The Random Model Generator
	Experiments Where the MDD Optimum Is Known
	Experiments Where the WES Optimums Are Known
	Experiments Where Optimums Are Not Known

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

