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Abstract. In this paper we present an automatic verification technique for pa-
rameterized systems where the subsystem behavior is modeled using the π-
calculus. At its core, our technique treats each process instance in a system as a
property transformer. Given a property ϕ that we want to verify of an N -process
system, we use a partial model checker to infer the property ϕ′ (stated as a for-
mula in a sufficiently rich logic) that must hold of an (N − 1)-process system.
If the sequence of formulas ϕ, ϕ′, . . . thus constructed converges, and the limit is
satisfied by the deadlocked process, we can conclude that the N -process system
satisfies ϕ. To this end, we develop a partial model checker for the π-calculus that
uses an expressive value-passing logic as the property language. We also develop
a number of optimizations to make the model checker efficient enough for routine
use, and a light-weight widening operator to accelerate convergence. We demon-
strate the effectiveness of our technique by using it to verify properties of a wide
variety of parameterized systems that are beyond the reach of existing techniques.

1 Introduction
A parameterized system consists of a number of instances of a component, the number
of such occurrences being the parameter to the system. Many safety-critical systems
are naturally parameterized: e.g. resource arbitration protocols, communication proto-
cols, etc. Traditional model checking techniques are limited to verifying properties of
a given instance of a parameterized system (i.e. for a specific value of the parameter).
Many novel techniques have been developed to verify such systems for all instances of
their parameters [12, 15, 16, 10]. These techniques vary in the classes of systems they
can handle and the degree of automation they provide. Automatic techniques typically
restrict the communication topology (e.g. rings or trees) or, at least, demand that the
communication patterns be fixed.

The Driving Problem. In many systems, e.g. mobile systems, the process interconnec-
tions can change dynamically. Existing techniques for verifying parameterized systems
do not readily extend to such systems. In this paper, we present an automatic technique
to address this problem.

The π-calculus [28] is a well-known process calculus where communication chan-
nels as well as values transmitted over them belong to the same domain of names;
names can be dynamically created, communicated to other processes, and can be used
as channels. Due to these features, it is widely used as the basis for modeling mobile
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p(x) def= (νy)xy.p(x)

q(x) def= x(y).q(x)

sys(n) def= (νx)(p(x) | qn(x))

ϕ0 ≡ X =ν 〈τ〉tt ∧ [τ ]X

ϕ1 ≡ X1(x) =ν νy′((〈xy′〉tt ∨ 〈τ〉tt) ∧ [xy′]X1(x) ∧ [τ ]X1(x))

ϕ2 ≡ X2(x) =ν νy′([xy′]X2(x) ∧ [x{y}]X2(x) ∧ [τ ]X2(x))

ϕ3 ≡ X3(x) =ν νy′([xy′]X3(x) ∧ [x{y}]X3(x) ∧ [τ ]X3(x))

(a) (b)

Fig. 1. A simple example of a parameterized system

systems. In a parameterized mobile system, we assume that each component is spec-
ified as a finite-control π-calculus process: i.e. specified without using the replication
operator of the calculus, and not containing a parallel composition within the scope of
a recursive definition. A simple example of a parameterized system based on the π-
calculus is shown in Fig. 1(a). In the figure, the parameterized system is represented by
process sys(n), which consists of one instance of process p(x) and n instances q(x).
The process p(x) creates a new name y and outputs it via channel x, while the process
q(x) receives a name via x. The property to be verified, ϕ0, is specified in the modal
µ-calculus [24, 8] and written in equational form (Fig. 1(b)). The property is a greatest
fixed point formula (specified by a =ν equation) and states that a τ action is possible
after every τ action. An example of parameterized verification problem is to determine
whether ∀n. sys(n) |= ϕ0.

Background. In [6], we developed a compositional model checker for the process
algebra CCS [27] and for properties specified in the model µ-calculus [8]. We used the
compositional checker for the verification of parameterized CCS processes. The central
idea of our approach is to view processes as property transformers: given a µ-calculus
formula ϕ and a system containing a CCS process P , we compute the property ϕ′ that
should hold in P ’s environment (say, Q) if ϕ holds in P |Q. The property transformer
of a process P , denoted by Π(P ), is such that: ∀Q. (P |Q |= ϕ) ⇔ (Q |= Π(P )(ϕ)).

Consider a parameterized system Pn consisting of n instances of a process P .
To verify whether ϕ holds in Pn for all n, we construct the sequence of properties
ϕ0, ϕ1, . . . such that ϕ0 = ϕ and ϕi+1 = Π(P )(ϕi) for all i ≥ 0. Let the sequence
converge after k steps: i.e. ϕk+1 = ϕk. By definition of Π , note that for n ≥ k,
Pn |= ϕ if Pn−k |= ϕk. Let 0 denote the deadlocked process, the unit of the paral-
lel composition operator. Specifically, Pn is equivalent to Pn|0. It then follows that
∀n ≥ k, Pn |= ϕ if 0 |= ϕk, i.e. the zero process has the property specified by limit of
the sequence of formulas.

Our Solution. Following the approach of [6], we develop a compositional model
checker for the π-calculus and use that as the basis for verifying parameterized mo-
bile systems. Consider the example in Figure 1. In order to show that sys(n) |= ϕ0 for
arbitrary n, we begin by determining a property ϕ1 = Π(p(x))(ϕ0). By the definition
of Π , we know qn(x) |= ϕ1 whenever sys(n) |= ϕ0.

In order to specify ϕ1 correctly, the property language needs to be expressive enough
to specify names and their scopes. We extend the modal µ-calculus to a logic called the
Cµ-calculus. In this logic, formula variables may be parameterized by names. Moreover,
formulas may specify local names (denoted by νx) and may contain modalities with
new actions such as the free input action xy (see Section 2).
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In the above example, observe that p(x)|Q (for any process Q) can do a τ -action if (a)
Q can do an input action on x to synchronize with p(x)’s bound output action xνy, or
(b) Q itself can do a τ -action. Thus the term 〈τ〉ϕ′ holds in p(x)|Q if (〈xy〉ϕ′′ ∨〈τ〉ϕ′′)
holds in Q. The other modalities and operations in the formula are derived along the
same lines using the property transformer for p(x). The resulting property ϕ1, defined
in Cµ-calculus using the formula variable X1, is shown in Figure 1(b). It states that it is
always possible to input from x or perform a τ action after any such action. Observe that
free name x is the parameter to the formula variable X1. We now check if ϕ1 holds in
qn(x), by checking if ϕ2 = Π(q(x))(ϕ1) holds in qn−1(x). Observe that ϕ2 does not
have the conjunct 〈xy′〉tt ∨〈τ〉tt since a single instance of q(x) can satisfy it. Using the
terminology of assume-guarantee proof techniques [19], we can say that the obligation
of 〈xy′〉tt ∨ 〈τ〉tt on qn(x) is satisfied by one instance of q(x) and hence is not passed
on to qn−1(x). Continuing further, we can check if ϕ2 holds in qn−1(x) by checking if
ϕ3 = Π(q(x))(ϕ2) holds in qn−2(x).

Observe from the figure that ϕ3 and ϕ2 differ only in the names of formula variables
and hence represent the same property. We thus conclude that the sequence ϕi con-
verges to ϕ2. Moreover, since 0 satisfies ϕ2 we can conclude that the original formula
ϕ0 is satisfied by sys(n) for sufficiently large n. It should also be noted that since ϕ2
is a greatest fixed point formula and involves a conjunction of universal modalities, it
is equivalent to tt ; hence the last iteration (to compute ϕ3) is redundant. Techniques
to simplify formulas and to find equivalences will in general enable us to detect con-
vergence earlier. A more careful analysis of the sequence of formulas reveals that it
converges after one instance of q(x) is considered, and hence we can conclude that
∀n ≥ 1 sys(n) |= ϕ0.

Contributions. The main contributions of this paper are as follows.

– A compositional model checker for the π-calculus. The model checker works for
finite-control π-calculus processes, as well as value-passing calculus with equality
(=) and dis-equality ( �=) constraints between names (see Section 3).

– Operations to efficiently check for convergence of formula sequences, and to accel-
erate convergence. The verification technique for parameterized systems is based
on computing the limit of a sequence of Cµ-calculus formulas. We describe effec-
tive techniques to check if two Cµ-calculus formulas are equivalent. We also de-
scribe a widening operator to extrapolate the sequence to estimate (approximately)
its limit (Section 4).

– Optimizations to compositional model checking. We develop a number of light-
weight optimization techniques to reduce the size of formulas generated in the in-
termediate steps of compositional model checking. We find that such optimizations
are necessary and effective. Without these, parameterized system verification based
on compositional model checking appears infeasible (see Section 5).

We also demonstrate the utility of our technique by applying it on a variety of param-
eterized π-calculus systems: ranging from simple ones that can also be expressed as
parameterized CCS systems, to those that exhibit π-calculus-specific features of name
creation, link passing and scope extrusion (Section 6).
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Related work. A number of model checking techniques for the π-calculus have been
developed. Examples include the model checking technique for polyadic π-calculus
[11]; the Mobility Workbench (MWB) [33], a model checker and bisimulation checker
for the π-calculus; a system [32] to translate a subset of π-calculus specifications into
Promela for verification using Spin [20]; and MMC [35, 36] model checker for the π-
calculus based on logic programming. All these techniques, however, apply only to
finite-control π-calculus, and cannot be used for verifying parameterized systems.

Type systems for the verification of π-calculus processes [9, 21] handle the replica-
tion operator and appear to be a promising alternative to the verification of parameter-
ized mobile systems. The PIPER system [9] generates CCS processes as “types” for
π-calculus processes (based on user-supplied type signatures), and formulates the veri-
fication problem in terms of these process types. In [21], a generic type system for the
π-calculus is proposed as a framework for analyzing properties such as deadlock- and
race-freedom. The replication operator alone is insufficient to model many parameter-
ized systems where the repeated instances may have different free variables.

The area of compositional verification has received considerable attention. Most
techniques for compositional verification are based on assume-guarantee reasoning
[18, 1, 26, 7, 19], and need user guidance. An approach to learn assumptions using au-
tomata learning techniques is proposed in [2]; but the technique is limited to the verifica-
tion of systems with a fixed number of finite-state components. The technique presented
in this paper is broadly based on our earlier technique [6] which is restricted to parame-
terized CCS systems and does not support dynamic change of communication topology.
Other closely-related works include the compositional model checker for synchronous
CCS [4] and the partial model checker of [3]. The latter defines property transformers
for parallel composition of sequential automata, while we generalize the transformers
for arbitrary π-calculus processes. These papers also proposed techniques to reduce the
size of formulas, but the optimizations are done after the formulas are generated in the
first place; in contrast, we apply our optimizations during the model checking process,
thereby reducing the size of formulas generated.

Verification of parameterized systems has been recognized as an important problem
and significant progress has been made in the recent years [37, e.g.]. One popular ap-
proach to the verification of a parameterized system of the form Pn is to identify a
finite cut off k for a property ϕ such that ∀n.Pn |= ϕ ⇔ P k |= ϕ, thereby reduc-
ing it to a finite-state verification problem. Techniques following this approach range
from those that provide cutoffs for particular communication topologies [13, 14, e.g.],
to those based on symmetries and annotations in the system specification [22]. Later
works, such as [30, 5] have proposed automatic techniques, based on identification of
appropriate cut-off of the parameters, for verification of wide range of parameterized
systems using rich class of data objects and operations (inequalities, incrementations).
Another approach is to identify an appropriate representation technique for a given
parameterized system; e.g. counting abstraction with arithmetic constraints [12], cov-
ering graphs [15, 16], and context-free grammars [10], and regular languages [31]. The
use of abstractions to generate invariants of parameterized systems is explored in [23].
None of these techniques, however, consider dynamically changing communication
topologies.
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2 A Logic for Compositional Analysis of π-Calculus Processes

In this section, we present the fundamentals of π-calculus (Section 2.1) and property
specification logic, which we will refer to as Cµ-calculus (Section 2.2), followed by our
technique of compositional analysis (Section 3).

2.1 Syntax and Semantics of the π-Calculus

Process algebra π-calculus [28] is used to represent behavior of systems whose in-
terconnection pattern changes dynamically. Let x, y, z, . . . range over names, p, q, r, . . .

range over process identifiers, and
→
x represent comma-separated list of names

x1, . . . , xn. In the following, we recall the syntax of the calculus.

α ::= x(y) | xy | τ

P ::= 0 | α.P | (νx)P | P | P | P + P | [x = y]P | p(
→
y )

Dp ::= p(
→
x) def= P (where i �= j ⇒ xi �= xj and fn(P) ⊆ {→

x})

In the above, α denotes the set of actions where x(y), xy and τ represent input, (free)
output and internal actions. Input action x(y) has binding occurrence of variable y. All
other variables in every action are free. The set of process expressions is represented
by P . Process 0 represents a deadlocked process. Process α.P can perform an α action
and subsequently behave as P . Process (νx)P behaves as P with the scope of x ini-
tially restricted to P ; x is called a local name. Process [x = y]P behaves as P if the
names x and y are the same name, and as 0 otherwise. The operators + and | represent
non-deterministic choice and parallel composition, respectively. The expression p(

→
y )

denotes a process invocation where p is a process name (having a corresponding defini-
tion) and

→
y is the actual parameters of the invocation. Finally, Dp is the set of process

definitions where each definition is of the form p(
→
x) def= P . A definition associates a

process name p and a list of formal parameters
→
x with process expression P .

The operational semantics of the π-calculus is given in terms of symbolic transi-
tion systems where each state denotes a process expression and each transition is la-
beled by a boolean guard and action [25]. The operational semantics is standard and is
omitted.

2.2 Syntax and Semantics of the Cµ-Calculus

For the purpose of compositional analysis, we extend value-passing µ-calculus in two
ways: (i) with explicit syntactic structures to specify and manipulate local names, and
(ii) with actions that are closed under complementation. We will refer to this logic
as Cµ-calculus. The set of formula expressions F in the Cµ-calculus is defined as
follows:

F ::= tt | ff | x = y | x �= y | loc(x) | nloc(x) | (νx)F | F ∨ F | F ∧ F
| 〈A〉F | [A]F | 〈x(y)〉∃y.F | 〈x(y)〉∀y.F | [x(y)]∀y.F | [x(y)]∃y.F
| X(

→
e ) | (µX(

→
z ).F)(

→
e ) | (νX(

→
z ).F)(

→
e )

A ::= xy | xy | x{y} | xνy | τ
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1a: [[x = y]]ξδl =

{ {sδ | s ∈ S} if δ |= x = y
∅ otherwise. 1b: [[x 
= y]]ξδl =

{ {sδ | s ∈ S} if δ |= x 
= y
∅ otherwise.

2a: [[loc(x))]]ξδl =

{ {sδ | s ∈ S} if x ∈ l
∅ otherwise. 2b: [[nloc(x))]]ξδl =

{ {sδ | s ∈ S} if x 
∈ l
∅ otherwise.

3: [[ϕ1 ∨ ϕ2]]ξδl = [[ϕ1]]ξδl ∪ [[ϕ2]]ξδl 4: [[ϕ1 ∧ ϕ2]]ξδl = [[ϕ1]]ξδl ∩ [[ϕ2]]ξδl

5: [[(νx)ϕ]]ξδl = {s | s ∈ [[ϕ{x′/x}]]ξδ(l ∪ {x′}) where x′ 
∈ fn(s)}

6: [[〈τ〉ϕ]]ξδl = {s | ∃s′.s
b,τ−→ s′ ∧ (δ, l |= b) ∧ s′ ∈ [[ϕ]]ξδl}

7: [[〈x1v〉ϕ]]ξδl = {s | ∃s′.s
b,x2v−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ s′ ∈ [[ϕ]]ξδl}

8: [[〈x1{y}〉ϕ]]ξδl = {s | ∃s′.s
b,x2v−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ s′ ∈ [[ϕ{v/y}]]ξδl}

9: [[〈x1νy〉ϕ]]ξδl = {s | ∃s′.s
b,x2νv−→ s′ ∧ v 
∈ fn(ϕ) − {y} ∧ (δ, l |= b ∧ (x1 = x2))

∧ s′ ∈ [[ϕ{v/y}]]ξδ(l ∪ {v})}

10: [[〈x1y〉ϕ]]ξδl = {s | ∃s′.s
b,x2(w)−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ s′{y/w} ∈ [[ϕ]]ξδl}

11: [[〈x1(y)〉∃y.ϕ]]ξδl = {s | ∃s′.s
b,x2(w)−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ ∃v.s′{v/w} ∈ [[ϕ{v/y}]]ξδl}

12: [[〈x1(y)〉∀y.ϕ]]ξδl = {s | ∃s′.s
b,x2(w)−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ ∀v.s′{v/w} ∈ [[ϕ{v/y}]]ξδl}

13: [[X(
→
e )]]ξδl = ξ(X)(

→
e δ)

14: [[(µX(
→
z ).ϕ)(

→
e )]]ξδl = ( ∩{f | [[ϕ]](ξ ◦ {X �→ f}) ⊆ f} )δ[

→
e /

→
z ]l

15: [[(νX(
→
z ).ϕ)(

→
e )]]ξδl = ( ∪{f | f ⊆ [[ϕ]](ξ ◦ {X �→ f})} )δ[

→
e /

→
z ]l

Fig. 2. Semantics of the Cµ-calculus

In the above, tt and ff stand for propositional constants true and false, respectively.
loc(x) is true iff x is a local name, and nloc(x) is true iff x is not a local name. The
scope of names can be specified by formulas of the form (νx)F which means that x is a
local name in the formula. Formulas can be constructed using conjunction, disjunction,
diamond (existential) and box (universal) modalities and quantifiers. The modal actions
x(y), xy, and τ represent input, free input and internal actions, respectively. xy is a
free output action where y is a free name and x{y} is an output action that has binding
occurrence of variable y. In input and output actions x(y) and x{y}, x is free and
y is bound; in free input and free output actions, all names are free. xνy is a bound
output action; in such an action x is free and y is bound. Bound names of a formula are
either bound names in the modalities or names bound by the ν operator. 〈x(y)〉∃y.F
and 〈x(y)〉∀y.F represent basic and late diamond modalities for input action x(y),
respectively. [x(y)]∀y.F and [x(y)]∃y.F represent the basic and late box modalities
for input action x(y), respectively.

The least and greatest fixed point formulas are specified as (µX(
→
z ).F)(

→
e ) and

(νX(
→
z ).F)(

→
e ), respectively, where

→
z represents formal parameters and

→
e represents

actual parameters. For convenience, we often represent a formula as a sequence of fixed
point equations [17]. We assume that all formulas are closed, i.e., all free names in a
formula appear in the parameters of the definition.

Semantics of the Cµ-calculus. The semantics of formulas in the Cµ-calculus is given
using four structures: (i) a symbolic transition system S = 〈S, →〉 where S represents
the set of symbolic states and ‘→’ is the symbolic transition relation; (ii) a substitu-
tion δ over which the equality (=) and disequality ( �=) constraints between names are
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interpreted; (iii) a function ξ that maps formula variables to sets of symbolic states of
S; and a set of local names l used to assign meaning to loc and nloc predicates. The
semantic function is written as [[ϕ]]ξδl and maps each formula to a set of states in S. The
symbolic transition system is used as an implicit parameter in the definition: all rules
are evaluated w.r.t. the same transition system. The treatment of boolean connectives is
straightforward. The set of local names, l, is updated in Rules 5 and 9 to include names
bound by ν operator. Similarly, the substitution δ is updated to capture the mapping of
formal parameters (free names) to actual arguments in Rules 14 and 15. Constraints of
the form x = y and x �= y are evaluated under this substitution. Rules 6–12 give the
semantics for the diamond modality. The semantics of the box modality can be easily
obtained by considering it as the dual of the diamond modality. For instance, the se-

mantics for [τ ]ϕ is: [[[τ ]ϕ]]ξδl = {s | ∀s′. if s
b,τ−→ s′ ∧ δ, l |= b then s′ ∈ [[ϕ]]ξδl}. For

brevity, we will henceforth discuss only about the diamond modality. The details related
to the box modality are given in [34]. We will use s |=δ,l ϕ to denote s ∈ [[ϕ]]ξδl.

3 Compositional Model Checker for the π-Calculus

In this section, we define the transformation function Π : P → F → F which is the
core of our technique. Given a process P ∈ P , a formula ϕ ∈ F , a set of substitutions
δ and a set of local names l, we define Π such that

P | Q | 0 |=δ,l ϕ ⇔ Q | 0 |=δ,l Π(P )(ϕ) ⇔ 0 |=δ,l Π(Q)(Π(P )(ϕ))

In words, the main objective of Π is to generate a Cµ-calculus formula which represents
the temporal obligation of the environment of the process used for transformation. This
process of transforming formula iteratively by each process in the parallel composition
is similar to the one proposed in [3, 6], where the transformation operation is defined for
labeled transitions system or process algebra CCS and the technique of model checking
is referred to as partial model checking.

The function Π for each formula expression is presented in Fig. 3. Here, we illustrate
only those rules that are not obvious. Rules 3(a) and 3(b) leave the formula expressions
loc(x) and nloc(x) unchanged; evaluation of these formulas is performed when all but
the 0 processes are used to transform the formula iteratively. Rule 6 transforms a pa-
rameterized formula variable X(

→
e ) into new formula variable Xp(

→
e1) (the definition

is in Rule A) where
→
e1 is formed by concatenation of

→
e and free names of P . Trans-

formation using a process identifier is equivalent to transformation using its definition
(Rule 9).

Rule 10 captures the compositionality of property transformers; the order of trans-
formation using P1 or P2 does not matter. Rule 11 presents the property transformer for
process (νx)P where (νx) is moved from the process side to the transformed formula.
In order to avoid name clash, x is renamed to x′ ({x′/x})that is different from any free
names in ϕ. Note that, x′ is a local name in the context of the transformed formula.

Rule 12 deals with the formulas with local name restrictions (possibly generated
via Rule 11). Transformation using P results in the extension of the scope of x to the
transformed formula. Similar to Rule 11, name x in ϕ is renamed to a new name x′

(not present as a free name in P ). Observe that, Rules 11 and 12 have a similar effect
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1(a) Π(P )(tt) = tt 1(b) Π(P )(ff ) = ff

2(a) Π(P )(x = y) =
{

tt if x = y
x = y otherwise

2(b) Π(P )(x 
= y) =
{

ff if x = y
x 
= y otherwise

3(a) Π(P )(loc(x)) = loc(x) 3(b) Π(P )(nloc(x)) = nloc(x)

4 Π(P )(ϕ1 ∨ ϕ2) = Π(P )(ϕ1) ∨ Π(P )(ϕ2)

5 Π(P )(ϕ1 ∧ ϕ2) = Π(P )(ϕ1) ∧ Π(P )(ϕ2)

6 Π(P )(X(
→
e )) = XP (

→
e1) where

→
e1 =

→
e + fn(P )

7 Π(P )(∃x.ϕ) = ∃x.Π(P )(ϕ) Π(P )(∀x.ϕ) = ∀x.Π(P )(ϕ)

8 Π(0)(ϕ) = ϕ

9 Π(p(
→
x ))(ϕ) = Π(P )(ϕ) where p(

→
x ) def= P

10 Π(P1 | P2)(ϕ) = Π(P2)(Π(P1)(ϕ))

11 Π((νx)P )(ϕ) = (νx′)Π(P{x′/x})(ϕ) where x′ ∩ n(ϕ) = ∅
12 Π(P )((νx)ϕ) = (νx′)(Π(P )(ϕ{x′/x})) where x′ 
∈ fn(P )

13 Π(a.P )(〈α〉ϕ) = 〈α〉Π(a.P )(ϕ) where bn(α) ∩ fn(a.P ) = ∅

∨

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Π(P )(ϕ) if a = τ ∧ α = τ
x1 = x2 ∧ nloc(y1) ∧ Π(P )(ϕ) if a = x1y1 ∧ α = x2y1
x1 = x2 ∧ nloc(y1) ∧ Π(P )(ϕ{y1/y2}) if a = x1y1 ∧ α = x2{y2}
x1 = x2 ∧ loc(y1) ∧ Π(P )(ϕ{y1/y2}) if a = x1y1 ∧ α = x2νy2
x1 = x2 ∧ Π(P )(ϕ{y1/y2}) if a = x1(y1) ∧ α = x2(y2)
x1 = x2 ∧ Π(P{y2/y1})(ϕ) if a = x1(y1) ∧ α = x2y2
ff otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

∨
{ 〈a〉Π(P )(ϕ), where bn(a) ∩ n(ϕ) = ∅ if α = τ

ff otherwise

}

14 Π(P1 + P2)(〈α〉ϕ) = 〈α〉Π(P1 + P2)(ϕ) ∨ Π(P1)(〈α〉ϕ) ∨Π(P2)(〈α〉ϕ)

15 Π([x = y]P )(ϕ) = C ∧ Π(P )(ϕ) where C =
{

tt if x = y
x = y otherwise

A. Π(P )(X(
→
z ) =σ ϕ ∪ E) = {XP (

→
z1) =σ Π(P )(ϕ) where (n(ϕ) − →

z ) ∩ fn(P ) = ∅) and →
z1 =

→
z + fn(P )}

∪ Π(P )(E) ∪ ⋃{Π(P ′)(X′(
→
z2) =σ′ ϕ′) s.t X′

P ′(
→
z3)is a subformula of

Π(P )(ϕ),
→
z3 =

→
z2 + fn(P ′) and (n(ϕ′) − →

z2) ∩ fn(P ′) = ∅)}
B. Π(P )({}) = ({})

Fig. 3. Partial Model Checker for π-Calculus

as pulling the ν out using the structural congruence rule: (νx)P | Q ≡ (νx)(P | Q)
where x does not appear in Q. Renamings in these two rules correspond to the side
condition of the congruence rule.

Rule 13 presents the transformation 〈α〉ϕ using prefix process expression a.P . The
rule relies on three different possibilities following which a.P , when composed with an
environment, can satisfy 〈α〉ϕ.

1. The environment makes a move on α satisfying the modal obligation (1st disjunct).
2. a.P satisfies the modal obligation α (2nd disjunct).
3. α = τ and the environment synchronizes with a.P (the 3rd disjunct), i.e., performs

an a action.

In Case 1, the side condition demands that the bindings in modal action α does not
bind any free names of prefixed process expression. As such we apply alpha-conversion
to satisfy the side condition: alpha-conversion renames all the binding occurrences in
formula with new names that are disjoint from the free names of the process. In Case 2
there are multiple possibilities depending on the nature of modal action α. Note that if
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α is an output or a free output, then formula expression nloc(y1) is generated meaning
that y1 must not be a local name to satisfy the modal obligation. This is because at the
time of transformation, it is not known whether y1 is a local name or not. Similarly,
when α is a bound output modal action, the formula expression loc(y1) is generated.

In Rule 14, a diamond modal formula is transformed using choice process expres-
sion. The result is a disjunction where (a) the first disjunct corresponds to the case where
the environment is left with the obligation to satisfy the modal action and (b) the second
and the third disjunct, respectively, corresponds to the case where the first or the second
process is selected for subsequent transformation.

Finally, Rules A and B correspond to transformation of formula equations. Observe
that, we are using equational syntax of the Cµ-calculus. Any property with formula ex-
pressions of the form σX(

→
z ).ϕ can be converted in linear time to set of equations of the

form X(
→
z ) =σ ϕ. Specifically, given a Cµ-calculus formula ϕ where each fixed point

variable has distinct names, the number of equations in the corresponding equational set
is equal to the number of fixed point sub-formulas of ϕ. Each such sub-formula of the
form σxX.ϕx is translated to a equation X =σx ψx where ψx is obtained by replacing
every occurrences of its sub-formula σyY.ϕy with Y . For example the formula expres-
sion: νX.(µY.([a1]X∧[a2]Y )) is translated to X =ν Y and Y =µ [a1]X∧[a2]Y where
X is the outer-fixed point variable and Y is the inner one. The use of equational form
is driven by the fact that transformation can be done in a per-equation basis, instead of
keeping track of all the sub-formula expressions of a formula if the transformation was
done for non-equational form.

Let E represent the sets of formula equations. Rules A and B define a function Π :
P → E → E that represents the transformer over a set of Cµ-calculus equations. Rule A
states that given a formula equation of the form X(

→
z ) =σ ϕ, transformation leads to

the generation of a new equation of the form XP (
→
z1) =σ Π(P )(ϕ) where

→
z1 is formed

by concatenation of
→
z and free names of P . Moreover, if there is a formula expression

X ′
P ′(

→
z3) present in Π(P )(ϕ), then the corresponding formula equation for X ′(

→
z2) is

transformed using P ′, where
→
z2 is formed by removing free names of P ′ from

→
z3. Rule

A also requires that names in the right-hand side of the equation that do not appear in
the parameters should be different from any free names of P .

Theorem 1. Let P and Q be two process expressions, δ a set of substitutions, and l a
set of local names. Then for all formulas ϕ, the following holds:

Q | P |=δ,l ϕ ⇔ Q |=δ,l Π(P )(ϕ)

The proof is by induction on the size of the process expression and the formula. �

Computing Constraints. Given a process P |0 and a formula ϕ, let ψ = Π(P )(ϕ).
According to Theorem 1, given a set of constraints δ and a set of local names l, P |=δ,l

ϕ ⇔ 0 |=δ,l ψ. In Figure 4, we present a function f l(ψ) that, given a set of local names
l, computes a set of constraints δ under which 0 |=δ,l ψ.

Rules 1 and 2 in Figure 4 are straightforward. In Rules 3 and 4, if one of x and y is
a local name, then since local names are different from any other names in the system,
x = y is false. In Rule 7, if x occurs in l, then loc(x) is true, otherwise false. Rule 11
evaluates 〈α〉ϕ to ff because 0 cannot perform any action. In Rule 12, the local name
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1. f l(tt) = tt 2. f l(ff ) = ff

3. f l(x = y) =

⎧⎨
⎩

tt if x = y
ff if {x, y} ∩ l 
= ∅
x = y otherwise

⎫⎬
⎭ 4. f l(x 
= y) =

⎧⎨
⎩

ff if x = y
tt if {x, y} ∩ l 
= ∅
x 
= y otherwise

⎫⎬
⎭

5. f l(∃x.ϕ) = ∃x.f l(ϕ) 6. f l(∀x.ϕ) = ∀x.f l(ϕ)

7. f l(loc(x)) =
{

ff if x 
∈ l
tt if x ∈ l

}
8. f l(nloc(x)) =

{
tt if x 
∈ l
ff if x ∈ l

}

9. f l(ϕ1 ∧ ϕ2) = f l(ϕ1) ∧ f l(ϕ2) 10. f l(ϕ1 ∨ ϕ2) = f l(ϕ1) ∨ f l(ϕ2)

11. f l(〈α〉ϕ) = ff 12. f l((νx)ϕ) = f l∪{x}(ϕ)

13. f l(X(
→
e )) = f l(ϕ{→

e /
→
z }) where X(

→
z ) =σ ϕ

Fig. 4. Computing f l(ϕ)

x is added to l in order to evaluate the loc(x) and nloc(x) predicates. Note that f l(ψ)
generates a formula over equality and disequality expressions and standard constraint
solving algorithms are applied to solve the constraints of the form ∃x.ϕ and ∀x.ϕ.

Following example illustrates the use of loc and nloc formula expressions.

Example 1. Given a process p(x) def= (νy)xy.p(x) and a formula ϕ ≡ X(x) =ν

〈xνz〉tt:

Π(p(x))(ϕ) ≡ X1(x) =ν Π((νy)xy.p(x))(〈xνz〉tt)
=ν (νy)Π(xy.p(x))(〈xνz〉tt) =ν (νy)loc(y)

As f∅((νy)loc(y)) = f{y}(loc(y)) = tt , therefore, 0 |=tt,∅ Π(p(x))(ϕ) �

In Example 1, when computing Π(xy.p(x))(〈xνz〉tt), since (νy) is not in the scope
of transformation, the model checker cannot determine if y is a local name. Thus, we
generate the constraint loc(y). After the transformation is done, we verify if 0 satisfies
the resulting formula (νy)loc(y). Since y is a local name, (νy)loc(y) is evaluated to tt .

4 Verification of Parameterized π-Calculus Systems

We outline here the compositional analysis based technique for verification of pa-
rameterized systems where instances of subsystems are represented by finite control
π-calculus processes. Let Pn be a system with n instances of π-calculus process P .
Consider verifying that the ith instance of above system satisfies a property ϕ. The
result of transforming ϕ using the ith instance is ϕi = Π(P i)(ϕ). Therefore, from The-
orem 1, given a set of substitutions δ and a set of local names l, 0 |=δ,l ϕi ⇔ P i |=δ,l ϕ.

Now consider verifying whether ∀i. P i |= ϕ. Let ϕ′
i be defined as:

ϕ′
i =

{
ϕ1 if i = 1
ϕ′

i−1 ∧ ϕi if i > 1

By definition of ϕ′
i, (∀1 ≤ j ≤ i.0 |=δ,l ϕj) ⇔ 0 |=δ,l ϕ′

i. Thus, 0 |=δ,l ϕ′
i means that

∀1 ≤ j ≤ i.P j |=δ,l ϕ. If ϕ′
ω is the limit of sequence ϕ′

1, ϕ
′
2 . . ., then, 0 |=δ,l ϕ′

ω ⇔
∀i ≥ 1.P i |=δ,l ϕ.
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A dual technique is applied for the verification problem ∃i.P i |= ϕ. Let ϕ′′
i be

defined as:

ϕ′′
i =

{
ϕ1 if i = 1
ϕ′′

i−1 ∨ ϕi if i > 1

In this case, if ϕ′′
ω , the limit of the sequence ϕ′′

1 , ϕ′′
2 , . . ., is satisfied by 0 under

the substitution δ, then ∃n.Pn |= ϕ. We say that the series of ϕ′
i is contracting since

ϕ′
i ⇒ ϕ′

i−1 and the series of ϕ′′
i is relaxing as ϕ′′

i−1 ⇒ ϕ′′
i .

Before deploying the above technique for solving verification of parameterized sys-
tems, we need to solve the following problems:

1. Entailment: To detect whether a limit is reached requires developing the equiva-
lence relation between Cµ-calculus formulas.

2. Convergence acceleration: The limit in the chain of Cµ-calculus formulas may not
be realized in general. As such, we need to identify a suitable abstraction to the
generated formulas to ensure termination of the iterative process.

Entailment. Equivalence checking of formula expressions in logic with explicit fixed
points is an EXPTIME-hard problem. Hence we use an approximate, conservative tech-
nique for equivalence detection which is safe and can be efficiently applied. First, we
check if two formulas are equivalent based on the algorithm in [3]. The algorithm
states that syntactically identical formula expressions are semantically equivalent. If the
equivalence between formula expressions is not readily understood from their structure,
we apply the technique developed in [6]. This technique relies on converting the formula
into a labeled transition system, called formula graphs, where each state is annotated
by a formula expressions and transitions are labeled by various syntactic constructs of
Cµ-calculus, e.g., diamond modal action. The equivalence between two formula ex-
pressions are determined by checking whether the corresponding formula graphs refine
each other. Such graph-based equivalence detection algorithm is more powerful than
that relying on textual representation of syntax [3] as the former can effectively extract
dependencies between formula variables (see [6]).

Convergence acceleration. To ensure convergence and termination, we develop a
widening algorithm that over-approximates a relaxing sequence of ϕ′′

i and under-
approximates the contracting sequence of ϕ′

i. The core of the technique is to examine
two consecutive formula expressions ϕi and ϕj in a sequence and determine their differ-
ences. For example, if the formulas are members of a relaxing sequence (ϕi ⇒ ϕj ), the
difference is identified as a disjunct in ϕj . Widening amounts to removing this disjunct
and generate a new formula ϕa such that ϕj ⇒ ϕa. Similarly, for contracting sequence,
we remove the divergence-causing conjuncts. Note that, this type of widening is only
applicable to safety and reachability properties where all the boolean connectives in the
formula are either ∧ or ∨, respectively.

Note that widening leads to an approximation of the limit of the sequence. As such,
given a parameterized system Pn and formula ϕ, if limit ϕω of a relaxing sequence
is realized via widening and 0 |= ϕω , we cannot infer that ∃n.Pn |= ϕ. However,
0 �|= ϕω ⇒ ∀n.Pn �|= ϕ. Similarly, for contracting sequence, if ϕω is the limit reached
after widening, then 0 |= ϕω ⇒ ∀n.Pn |= ϕ, while 0 �|= ϕω �⇒ ∃n.Pn �|= ϕ.
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5 Optimizations

In general, the transformation rules may generate a number of redundant formulas, e.g.,
two sub-formulas that are equivalent. Redundancies result in formulas that are large and
virtually un-manageable. In order to apply the partial model checker to any practical
application, we need to develop techniques to remove such redundancies.

In this section, we propose several optimization techniques to reduce the number of
formulas generated by transformation. In [6], the redundancy removal technique was
solely focused on removing equivalent sub-formulas and used heavy-weight bisimu-
lation checking algorithm on graphical representation of formulas. Such a technique
was used off-line, after the formulas have been generated in the first place. In contrast,
here we present a number of light-weight techniques that are tightly-coupled with the
transformation rules and help to significantly reduce the size of the resulting formulas.

Symmetry Reduction. When the partial model checker generates new formula variables,
it names them based on the corresponding process expressions (see Rule 6 in Figure 3).
The number of formulas generated can be reduced considerably by exploiting a form
of symmetry reduction. For instance, let X be a formula variable, and P and Q be ar-
bitrary process expressions. Note that Π(P |Q)(X) = Π(P )(Π(Q)(X)) is a new for-
mula variable of the form XQ,P . On the other hand, Π(Q|P )(X) = Π(Q)(Π(P )(X))
is XP,Q. Hence XP,Q and XQ,P are semantically identical. We avoid creating the two
formula variables in the first place, by reducing the suffix process expression to a sym-
metrically equivalent canonical form. This is done by first reducing the expression to
a sequence of parallel-free process expressions (exploiting the associativity of paral-
lel composition), and sorting the sequence by imposing a global total order on the
elements (exploiting the commutativity of parallel composition). This optimization is
light-weight and may dramatically reduce the number of formulas generated even for
applications where symmetry is not obvious (see Section 6).

Optimizing the Choice Rule. The choice rule in Figure 3 may generate redundant for-

mulas. Consider the process definition p(x, y) def= x(v).p(x, y)+ y(w).p(x, y) and the
formula ϕ =ν 〈τ〉tt. Π(p(x, y))(ϕ) generates the following formulas.

X1(x, y) =ν 〈τ 〉tt ∨ X2(x, y) ∨ X3(x, y)
X2(x, y) =ν 〈τ 〉tt ∨ 〈x{v}〉X1(x, y) X3(x, y) =ν 〈τ 〉tt ∨ 〈y{w}〉X1(x, y)

From the above, we can infer that X1(x, y) = 〈τ〉tt∨〈τ〉tt∨〈x{v}〉X1(x, y)∨〈τ〉tt∨
〈y{w}〉X1(x, y). We can, however, avoid generating the two redundant sub-formulas
〈τ〉tt using the following revised “+” rule.

Π(P1 + P2)(〈α〉ϕ) = 〈α〉Π(P1 + P2)(ϕ) ∨ Π ′(P1)(〈α〉ϕ) ∨ Π ′(P2)(〈α〉ϕ)

Π ′ differs from Π in Rule 13 where modal obligation 〈α〉 is not imposed on the envi-
ronment.

Simplification Techniques. Apart from symmetry-based simplification, we also remove
redundant sub-formulas and use the simplifying equations originally proposed in [3].
The most frequently used simplification techniques are constant propagation (e.g. X =
〈α〉X1, X1 = tt ⇒ X = 〈α〉tt), and unguardedness removal(e.g. X = 〈α〉X1, X1 =
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X2 ⇒ X = 〈α〉X2). These simplification techniques help to quickly detect if two
formulas are equivalent.

Environment-Based Reduction. Consider Rule 13 in Figure 3. Process a.P either leaves
the environment to perform an α action (1st disjunct) or an a action if α = τ (3rd dis-
junct), or a.P itself performs an α action (2nd disjunct). However, if the environment
cannot perform an α or an a action, then the 1st and the 3rd disjuncts need not be gener-
ated. For instance, consider the example given in Figure 1. Given a formula ϕ, we first
use p(x) to transform ϕ under the environment q(x) | . . . | q(x). From the specifica-
tion, process q(x) cannot synchronize with itself, thus the model checker does not need
to leave the environment to perform a τ action. However, this optimization requires
the knowledge of the environment, thereby rendering the model checker of Figure 3 no
longer compositional. Moreover, the assertion (P |Q) |= ϕ ⇔ Q |= Π(P )(ϕ) now
holds only for those Q that are consistent with the knowledge of the environment used
to perform this optimization.

When using P to transform a formula under the environment Q, we check: 1) What
are the actions of P with which Q cannot synchronize? 2) Can Q perform a τ transition?
These can be easily determined for value-passing calculus by parsing the specification,
but are more difficult for the π-calculus due to link passing. Thus we compute the set
of actions conservatively: if we do not know whether one process can synchronize with
another, then we conservatively assume that such synchronization exists between the
two processes. The environment information is propagated in the model checker. The
details are given in [34]. This optimization may reduce the size of each formula and
sometimes reduces the number of formulas generated (see Section 6).

Eliminating Constraints Based on the Types of Channels. This optimization is applied
to whenever the formulas generated are guarded by equality and disequality constraints.
Under certain conditions, we can determine whether a constraint generated is unsatis-
fiable. For instance, assume that we keep track of the set of all names that have been
extruded from their initial scope. Then if x has never been extruded and y is a bound
name of an input action, then x = y is never true. We use a simple type system to
determine whether a channel could have been extruded.

6 Preliminary Experimental Results

In this section, we show the effectiveness of our technique to verify parameterized ver-
sions of several small but non-trivial examples. The examples include those with a fixed
process interconnection, namely, Token ring, a ring of n token-passing processes, and
Spin lock, a simple locking protocol where n processes compete to acquire a single
common resource. We also include examples with dynamically changing interconnec-
tion between processes, namely Printer, where n clients use a single print server to
mediate access to a printer, and Server [9], where n file readers serve web page read
requests. We also evaluate the performance of our model checker on the Handover pro-
cedure [29] (which maintains the connectedness of a mobile station in a cellular network
when the station crosses cell boundaries) to verify a single instance of the system.

The experimental results are shown in Fig. 5. All reported performance data were
obtained on a 1.4GHz Pentium M machine with 512MB of memory running Red Hat
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Benchmark Property Summary # Formulas Time (sec.)
# Iter Widen (Y/N) Orig Sym Env All Conv Orig Sym Env All Conv

Token ring deadlock freedom 3 Y 86 45 – 45 40 1.93 0.56 – 0.56 0.37
Spin lock mutual exclusion 3 N 398 192 364 181 181 34.96 7.8 23.37 5.11 5.29

deadlock freedom 3 Y 160 80 160 80 64 6.89 1.49 4.62 0.99 1.35
Printer deadlock freedom 3 Y 55 29 – 29 22 1.03 0.29 – 0.29 0.20
Server order preservation 4 Y 1440 1270 241 239 172 361.58 280 10.17 10.07 5.24

Fig. 5. Experimental Results

Linux 9.0. The figure is divided broadly into three parts. The verification results for the
different systems and properties are summarized in the first part (columns under “Sum-
mary”). In that part, the number of iterations for the sequence to converge, and whether
widening was needed appear in columns “# Iter”, and “Widen” respectively. For all the
cases listed in the figure, we can conclude that the property holds for all instances of
the parameterized system, even when widening was used to enforce convergence.

The second and third parts of the table, namely, columns under “# Formulas” and
“Time”, present the performance results (number of formulas processed and the CPU
time taken, resp.) for the examples. The columns “Conv” list the total number of for-
mulas and time to compute the formula sequence, including the time taken to perform
convergence check and widening (when needed). The other columns list the same statis-
tics to compute the formula sequence (length of the sequence is same as the number of
iterations) but without checking for convergence or applying widening. The columns
“Orig”, “Sym”, “Env” and “All” list the statistics when no optimizations, symmetry
reduction, environment-based reduction and all optimizations described in Section 5
(resp.) are applied. In the table “–” indicates that the optimization is inapplicable. The
performance results show the effectiveness of the optimizations: the overheads of per-
forming the optimizations are easily offset by the reductions enabled by the optimiza-
tions. Widening sometimes reduces formula sizes sufficiently (see Token Ring, Printer,
Server), consequently saving enough time to offset that needed to perform the opera-
tion. In all benchmarks, the memory requirement of the model checker without opti-
mizations is always higher than that with optimizations (all < 12MB), and hence the
corresponding results are not shown.

Finally, we applied the compositional model checker to verify a single instance of the
Handover protocol (1 mobile and 2 base stations). Even with all optimizations enabled,
it takes 12s to verify the deadlock freedom property for this instance. In contrast, the
non-compositional model checker MMC can verify this instance in less than a second.
This indicates that the compositional checker is unsuitable for use, as it stands, for
routine verification of non-parameterized systems. When we attempted to verify another
instance of the protocol (with 2 mobile stations), the compositional checker generated
more formulas than can be handled by our prototype implementation.

7 Conclusion

In this paper, we presented an automatic technique for verifying parameterized systems
that consist of a number of instances of finite-control π-calculus processes. This tech-
nique uses a sufficiently expressive logic, Cµ-calculus, to represent properties, and is
based on a compositional model checker for the π-calculus.
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Since the technique is based on a compositional model checker, each process in-
stance is verified in an “open” (unknown) environment. Hence in this approach, we
consider a lot more potential system behaviors than any instance of the parameterized
system can exhibit. This leads to generation of large number of formulas at each step.
Optimization aim at reducing this potential blow-up. Among these, the environment-
based reduction attempts to construct an environment for each process that is signifi-
cantly more restricted than the open environment. This is based on the capabilities of
the other processes in the parameterized system (e.g. channels they can communicate
on). Even a relatively simple version of this optimization presented in this paper, which
is based on a very coarse notion of capabilities of processes, results in significant reduc-
tion in verification time (e.g. Server example in Fig. 5). We are currently investigating
heavier-weight but more effective optimizations that would make it possible to use our
technique on realistic parameterized systems such as the Handover protocol.
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