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Abstract. Automated termination proofs are indispensable in the mechanic ver-
ification of many program properties. While most of the recent work on auto-
mated termination proofs focuses on the construction of linear ranking functions,
we develop an approach based on region graphs in which regions define subsets
of variable values that have different effects on loop termination. In order to es-
tablish termination, we check whether (1) any region will be exited once it is
entered, and (2) no region is entered an infinite number of times. We show the ef-
fectiveness of our proof method by experiments with Java code using a prototype
implementation of our approach.

1 Introduction

Automated termination proofs are indispensable in the mechanic verification of many
program properties. Our interest in automated termination proofs comes from the pre-
cursory work on determining communication buffer boundedness for communicating
finite state machine based models such as they occur in UML RT models [6,[7,18]. In
UML RT models the action code of a transition in a state machine can contain arbitrary
program code, for instance Java code. When the action code contains a program loop
within which some messages are sent, we need the information of how many times the
loop iterates in order to determine how many messages are sent along the transition.

Automated termination proving has recently received intensive attention
[LO,12L2L[1114113], in particular those approaches based on transition invariants [11]].
Most of the recent work [[L0,[1] focuses on the construction of linear ranking func-
tions. However, loops may not always possess linear ranking functions, c.f. Example [T]
in Section2l

We develop a method to prove termination for an important class of loops, deter-
ministic multiple-path linear numerical loops with conjunctive conditions, whose sub-
classes are also studied in [[10,12]. Given a loop, we construct one or more region
graphs in which regions define subsets of variable values that have different effects on
loop termination. In order to establish termination, we check for some generated region
graph whether (1) any region will be exited once it is entered, and (2) no region is en-
tered an infinite number of times. We show the effectiveness of our proof method by
experiments with Java code using a prototype implementation of our approach.

Related Work. [10] gives a complete and efficient linear ranking function synthesis
method for loops that can be represented as a linear inequality system. It considers non-
deterministic update of variable values to allow for abstraction. However, it does not
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apply to multiple-path loops. [[1]] can discover linear ranking functions for any linear
loops over integer variables based on building ranking function templates and check-
ing satisfiability of template instantiations that are Presburger formulas. The method
is complete but neither efficient nor terminating on some loops. [2]] gives a novel so-
Iution to proving termination for polynomial loops based on finite difference trees. In
fact it applies only to those polynomial loops whose behavior is also polynomial, i.e.,
the considered guarding function value at any time can be represented as a polynomial
expression in terms of the initial guarding function value. Note that Example [1l does
not have a polynomial behavior. [[12] proves the decidability of termination for linear
single-path loops over real variables. However, the decidability of termination for in-
teger loops remains a conjecture. [4] suggests a constraint solving based method of
synthesizing nonlinear ranking functions for linear and quadratic loops. The method
is incomplete due to the Lagrangian Relaxation of verification conditions that it takes
advantage of.

Outline. We define loops, regions, and region graphs in Sections 2land Bl The region
graph based termination proof methods are explained for three subclasses of loops: (1)
G'P! in Sectiond (2) G* P* in Section[8 and (3) G* P! in Section[6l We generalize
these methods to handle the whole loop class that we consider in this paper in the
end of Section[6l Experimental results are reported in Section[7] before a conclusion in
Section[8]

2 Loops

We formalize the class of loops that we consider in this paper. We call this class deter-
ministic multiple-path linear numericall loops with conjunctive conditions, or G* P*
(multiple-guard-multiple-path) in short. Loops in G* P* have the following syntactic
form:

while /c do
pct - & =U'z + @t

pc? — & =UPZ + P
od

where

- & =[21,...,2,]7 is a column variable vector where 7T is transposition of matrices.
1, ..., T, can be either integer variables or real variables. We use ' = [27, ..., 2/,]7
to denote the new variable values after one loop iteration.

- lec = \[*, I¢" is the loop condition. Each conjunct I¢" is a linear inequality in the
form a'z > b* where @' = [a}, ..., al] is a constant row vector of coefficients of
variables and b’ is a constant. We call a*Z a guard. We know that values of @'Z are

always bounded from below during loop iterations.

! With numerical loops we will not consider the rounding and overflow problems as usually
considered while analyzing programs.
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— Bach pc® — &' = U’z + @' is a path with a path condition pc’ which is a con-
junction of linear inequalities. We require that \/f:1 pc’ = true, which guarantees
a complete specification of the loop body. We further require that, for any ¢ and j
such that i # j, pc® A pc/ = false. This means that only one path can be taken at
any given point in time.

— Each U’ is a constant matrix of dimension n x n. Each @ is a constant column
vector of dimension n. They together describe how values of variables are updated
along the ¢-th path.

If a loop has only one single path, then the loop body can be written as z’ = U'Z +
@', in which we leave out the path condition true. Here are some examples of G* P*

loops.

Example 1. This loop is an example of a loop without linear ranking functions [10]:
while x > 0 do
' =-2x+10
od

Example 2. This is a loop with two paths:
while x > —4 do
r>0—a =—z-1
r<0—a =-z+1
od

Example 3. This loop has more than one inequality in its loop condition:
while 1 > 1 Axz2 > 1do

=B

od
The three examples above represent three interesting subclasses of G* P* that are stud-
ied in the paper: (1) G' P! are single-guard-single-path loops such as Example [I
(2) G P* are single-guard-multiple-path loops such as Example 2} and (3) G* P! are
multiple-guard-single-path loops such as Example 3

We say that a loop is terminating if it terminates on any initial assignment of variable
values.

3 Region Graph

We define regions, positive and negative regions, still regions, and region graphs.
Definition 1. Given a loop, a region is a set of vectors of variable values such that

— all the vectors in the region satisfy the loop condition.
— it forms a convex polyhedron, i.e., it can be expressed as a system of linear inequal-
ities.

We will also call a vector of variable values a point. We say that the loop iteration is af
some point when the variables have the same values as in the point.
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Definition 2. Given a loop and a guard in the loop condition, a positive (negative, still,
resp.) region with respect to the guard is a region such that, starting at any point in
the region, the value of the guard is decreased (increased, unchanged, resp.) after one
iteration.

For instance, a positive region of Example [I] with respect to the guard z is {v | v >
10/3}, a negative region with respect to = is {v | 0 < v < 10/3}, and the only still
region with respect to « is {10/3}. Moreover, if « is an integer variable, then there is no
still region with respect to . In the remainder, when we mention a positive (or negative
or still) region, we will omit the respective guard if it is clear from the context.

Definition 3. Given a loop and two regions R1 and Rs of the loop, there is a transition
from Ry to Ry if and only if, starting at some point p in Ry, a point p’ in Ry is reached
after one iteration. Ry is the origin of the transition. Ry is the target of the transition.

In the definition, if R; and R, are distinct, then we say that R; is exited at p and Ro
is entered at p’. A transition is a self-transition if it starts and ends in one same region.
We define that a self-transition on a region means that the region is neither exited nor
entered.

For instance, there is a transition from the positive region {v | v > 10/3} to the
negative region {v | 0 < v < 10/3} of Example[llbecause —2 x 4 + 10 = 2 while 4 is
in the positive region and 2 is in the negative region.

Definition 4. Given a loop, a region graph is a pair < R, T > such that

— R is a finite set of pairwisely disjoint regions such that the union of all the regions
is the complete set of points satisfying the loop condition.
— T is the complete set of transitions among regions in R.

In general, a region graph may contain regions that are neither positive, nor negative,
nor still. However, the region graphs constructed by our termination proving methods
contain only positive, negative, or still regions. A loop may have infinitely many region
graphs.

Definition 5. Given a region graph, a cycle is a sequence of transitions < 11, ..., T}, >,
where n > 2, such that

— for any two successive transitions T; and T;41, the origin of T;y1 is the target
of Ti;
— the origin of T} is the target of T),.

The condition (n > 2) in the above definition excludes self-transitions to be cycles.
Cycles such as < T,T5,13 >, < 13,T1,T5 > and < T5,T5,T} > are regarded as one

0=<x
and
x<4

Fig. 1. A Region Graph
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same cycle. A simple cycle is a cycle that cannot be further decomposed into smaller
cycles. In the remainder, all the cycles under consideration are simple cycles.

A region graph of Example[Tlis illustrated in Figure[T] assuming that x is an integer
variable. There is one cycle passing the two regions.

The basic idea of our region graph based termination proofs is stated in Theorem[Il

Theorem 1. Given a loop and one of its region graphs, the loop is terminating, if and
only if, during loop iterations starting with any variable values, we have

— once a region is entered, it will be exited eventually.
— and no region is entered infinitely often.

Proof (sketched). During loop iterations starting with some variable values, we con-
struct a sequence of points by recording the variable values before each iteration. If
the two conditions in the theorem are satisfied, then there exists no infinite sequence of
points during loop iterations, and vice versa. |

In the next sections we will show how to construct region graphs for proving termination.

4 Proving Termination for G P!

We first show how to prove termination based on region graphs for loops in the simplest
class G P'. The concepts and methods described in this section can also apply to more
general subclasses with little adaption as explained in the subsequent sections.

4.1 Constructing Region Graphs

Given a G' P! loop as below,
while ax > b do
TF=Uz+u
od
we construct a region graph as follows in a straightforward way:

— The only positive region is defined by the system of the linear inequalities (TH3)) in
Figure [2]if it has solutions. Otherwise, there is no positive region.

— The only negative region is defined by the system of the linear inequalities (ZH6) if
it has solutions. Otherwise, there is no negative region.

— The only still region is defined by the system of the linear inequalities (ZHO) if it
has solutions. Otherwise, there is no still region.

az > b (D) azr>b @) az > b )
F=Uz+u ) 7 =Uz+a (5) F=Uz+a (8)
az > ax’ 3) az < ax’ (6) a% = ax’ )

Fig. 2. Region defining linear inequality systems
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— For a region R; defined by an inequality system I; and a region R» defined by
I, there is a transition from R; to R» if the following system of inequalities has
solutions: A c; e A Aoy, €[T — 7,7 — &"] where €[ — 7', %" +— 7"] is the
same inequality as e except that Z is substituted with Z’ and Z’ is substituted with
z"" simultaneously.

The constructed region graph for Example[dlis exactly the one in Figure[Il assuming
that z is an integer variable. The right region is positive and defined by the inequalities
({IQHI2). The left region is negative and defined by the inequalities (I3HI3). There is
a transition from the positive region to the negative region because the system of the
inequalities (I6-21)) has solutions.

z>0 (10) z>0 (16)
' =-2c+10 (11) ' =-2c+10 (17
x> (12) x>z  (18)
z>0 (13) ' >0 (19
' =-20+10 (14 ' = -2z +10 (20)
x <z (15) <z’ (21)

Fig. 3. The above linear inequality systems define regions and a transition in a region graph of
Example [T]

Construction of region graphs can be fully automated since feasibility of linear in-
equality systems can be checked using linear optimization tools such as a linear pro-
gramming problem solver.

Next, we propose a method of proving termination by studying region graphs.

4.2 Checking Regions

One of the two termination conditions in Theorem[dlis that any region will be eventu-
ally exited once it is entered. For any region without a self-transition, after it is entered,
it will be exited after one iteration. For any positive region with a self-transition, the
runtime values of variables cannot stay in the region forever. This is because the re-
spective guard value is always decreased during self-transitions and also bounded from
below as imposed by the loop condition. On the contrary, negative and still regions with
self-transitions introduce the potential of staying in one region forever.

Every time that the self-transition of a negative region is taken, the respective guard
value is increased. However, if the guard value has an upper bound within the region,
then the self-transition cannot be continuously taken forever. In such a case, we call this
region a bounded region.

The boundedness of a negative (or positive or still, respectively) region can be
checked at the same time when the region is created during region graph construc-
tion. For instance, the system of the inequalities (I3HI3) defines the negative region of
Example[Il We can use an optimizer to determine the maximum of guard values under
the constraint of the inequalities (I3HI3) while checking feasibility, by adding the ob-
jective function max : x. In this example, the negative region is bounded since = has
an upper bound 3 within the region.
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Having an unbounded negative region, however, does not imply that the runtime
values of variables can stay in the region forever. Consider Example [4] whose negative
region is unbounded and defined by the inequalities (22H23). Note that the difference
of the guard values before and after one iteration is the value of z» before the iteration.
By Inequality (24) we know that the value of x5 is always decreased in this region and
cannot remain positive forever. This implies eventual leaving of the region. We call such
aregion a slowdown region.

x1 >0 (22)
Th =21+ 22 23)
Example 4. This loop has an unbounded negative region. xh=1x2—1 (24)

while 1 > 0 do

=] ]+ [

od o > o (26)

T > a1 (25)

Checking whether a negative region R is a slowdown region can be done by checking
the feasibility of a linear inequality system. The checked inequality system describes a
subregion of R in which the difference of the respective guard value is increased or
unchanged after one iteration. If no such a subregion exists, then R is a slowdown
region. For instance, the negative region of Example @ is a slowdown region because
the system of the inequalities (22H26) has no solutions.

We generalize the concept of slowdown regions using an idea similar to the concept
of finite difference trees [2]. For an unbounded negative region and an arbitrary natural
number n, we build a finite chain dy, d1, ..., d,, where the root dj is the difference of the
respective guard values before and after one loop iteration within the region, and d; is
the difference of dy before and after one iteration within the region, i.e, the “difference
of difference”, and so forth. When any d; of the dy,d;, ..., d,, is decreased within the
region, the region is a slowdown region since d; dominates the change of dy, making it
impossible to remain positive forever.

4.3 Checking Cycles

Eventual exiting of regions is not enough to show termination. We must make sure that
no region is entered an infinite number of times.

In a region graph, if there are no cycles, then no region is entered infinitely often.
The region graph in Figure [Tl of Example[Ildoes not have this property. There is a cycle
passing the positive region and the negative region. If this cycle can be taken forever,
then both regions are entered infinitely often.

We observe that, for Example [I] if the negative region is entered at some point p,
then it will be entered at the next time at such a point p’ that the value of the guard x
at p is greater than the value of x at p’. Because of the loop condition = > 0, we know
that the cycle cannot be taken forever. So, no region is entered infinitely often.

We generalize the above idea by the following definition.
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Definition 6. A cycle is progressive on a region R if one of the following is satisfied:

— Along the cycle, every time that R is entered, the respective guard value is greater
than the guard value at the last time that R is entered. In such a case, we say that
the cycle is upward progressive if R is bounded.

— Along the cycle, every time that R is entered, the respective guard value is smaller
than the guard value at the last time that R is entered. In such a case, we say that
the cycle is downward progressive.

It is easy to prove that the following cycles are progressive: (1) a cycle passing the
positive region and the still region, and (2) a cycle passing the negative region and the
still region if the negative region is bounded.

For other types of cycles, we can check their progressiveness by checking feasibility
of a set of linear inequality systems. We have at most six choices: checking whether the
cycle is upward (or downward) progressive on the positive (or negative or still) region.
For the purpose of illustration, we show how to check downward progressiveness on
negative regions. The idea can be easily adapted for other choices and other cases.

Given a G' P! loop as below,

while ax > b do

¥=Uz+u

od
we assume that there is a cycle passing the positive region and negative region in its
constructed region graph. If both regions have no self-transitions, then we can use the
linear inequality system in Figure [ to describe the behavior in which the respective
guard value is not decreased every time that the negative region is entered along the cy-
cle. The inequalities 27H29) define that the negative region is entered at a point Z. The
inequalities (30H32) define that the positive region is then entered at z’. The inequalities
(B3H33) define that the negative region is re-entered at Z”. Inequality (38) imposes that
the guard value at T’ is no smaller than the guard value at . If the inequality system
has no solutions, then the guard value is always decreased and the cycle is downward
progressive on the negative region.

az>b 27 az’ >b  (30) az” >b  (33)
¥ =Uz+a (28) '=Uz+a @3 F'=Uz"+u (34
az’ > ax (29) az’ > az”’ 32) az” >az"”  (35)

az < az’  (36)

Fig. 4. A linear inequality system for checking progressiveness

If one of the regions above has a self-transition, then we do not know precisely
at which point this region is exited after being entered. In such a case, we have to
overapproximate the exit point. Assume that both regions have a self-transition. The
linear inequality system to check downward progressiveness is shown in Figure[3l Note
that the negative region is entered at a point Z as defined by the inequalities (3ZH39),
and it is exited at py- as defined by the inequalities (ZIH43). An additional inequality
Q) guarantees that the successor §; of T satisfies the loop condition because loop
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iterations cannot continue otherwise. Inequality (#4) relates the entry point and the exit
point by imposing that the guard value at Z is no larger than the guard value at p,/ due
to the effect of self-transitions of a negative region. Note that the “equal” part cannot be
dropped since it is still possible to leave the negative region immediately without taking
the self-transition. The inequalities (43H52)) describe the entering and the exiting of the
positive region similarly.

az>b  (37) az’' >b  (45) az’ >b  (53)
Se=Uz+a (3%) sy =Uz +a (46) " =U0z"+u (54
asz >azx  (39) az’ > asy  (47) az" >az"”  (55)
asz >b  (40) asyr > b (48) az <az”  (56)
apyr 2 b (41) apzr 2 b (49)
o =Upy +u (42 ' =Upgr+a  (50)
az > apy  (43) apyr >az’  (51)
apy > ax  (44) az' >apyr  (52)

Fig. 5. A linear inequality system for checking progressiveness

The progressiveness of each individual cycle is sufficient to show no infinite number
of entering of any region only if any two cycles do not pass a same region (see [9] for
the proof). Otherwise, this condition is insufficient.

Definition 7. Given a region graph, if two cycles pass one same region, then we say
that these two cycles interfere with each other on this region. The region is called an
interfered region of both cycles.

®R)—m =R ®]) ®3
VY

N \

Fig. 6. Two interfering cycles Fig. 7. Three interfering cycles

Consider the region graph in Figure [6]l where transitions are distinctly named for con-
venience. Two cycles < 77,75 > and < T1,73,T,; > interfere with each other on
R1 and RQ.

We say that a cycle is completed when, starting from a region in the cycle, the region
is re-entered along the cycle. Furthermore, a cycle C' is uninterruptedly completed if
no other cycle is completed during the completion of C'. If a cycle C} interferes with
some other cycle C5 on a region R, then a completion of C; can be interrupted at R
to enter C; and resumed from R after C5 is completed. In such a case, even if C
is progressive on some region R’, R’ may still be entered infinitely often since the
respective guard value can be arbitrary when the completion of C'; is resumed from R
after one interruption. However, the following case deserves special attention.
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Definition 8. A region R is a base region if the following is satisfied. For any cycle
C that passes R, all the cycles that interfere with C also pass R. The set of cycles
{C'| C passes R} is called an orbital cycle set.

An orbital cycle set can have more than one base region. For instance, in Figure[@] both
R, and Ry are base regions of the orbital set consisting of two cycles. In contrast no
region in Figure[7]is a base region.

Orbital sets have an interesting property as follows. Given a base region and its
corresponding orbital set, between two successive times that the base region is entered,
some cycle in the orbital set is uninterruptedly completed. The proof is sketched here.
It is trivial to show that a cycle is completed between two successive times that the
base region is entered. Assume that this completion is interrupted at some region R and
resumed after some other cycle C' is completed. Because C' is also in the same orbital
set, the base region must be entered while completing C, which contradicts that there is
no entering of the base region in-between.

Lemma 1. Given an orbital cycle set O, any region in any cycle in O is entered only a
finite number of times during loop iterations if all the cycles in O are uniformly upward
or uniformly downward progressive on some base region (see [9] for the proof).

4.4 Determining Termination

Based on the previous discussion, we suggest a termination proving algorithm for loops
in Gt P! as follows. Given a loop,

1. Check the existence of a still regiorﬂ If it exists, then check whether it has a self-
transition. If the self-transition exists, then return “UNKNOWN”.

2. Check the existence of a negative region. If neither a negative region nor a still
region exists, then return “TERMINATING”. In such a case, the loop has linear
ranking functions (see Theorem 2)).

3. If the negative region exists, then check whether it has a self-transition. If the self-
transition exists and the region is unbounded, then check whether it is a slowdown
region. If it cannot be determined to be a slowdown region, then return “UN-
KNOWN”.

4. Complete construction of the region graph by constructing the positive region and
the rest of the transitions.

5. Check if there are any cycles. If no cycle exists, then return “TERMINATING”.

6. Construct all the orbital cycle sets. If there is any interfering cycle that does not
belong to any orbital set, then return “UNKNOWN”.

7. Check if all the simple cycles are progressive. If there is one simple cycle whose
progressiveness cannot be determined, then return “UNKNOWN”. With presence
of an orbital set, check whether all the cycles in the set are progressive on one
base region and agree on the direction of progress (upward or downward). If it is
satisfied, then return “TERMINATING”.

2 Remember that the boundedness of a region is checked at the same time that the region is
created.
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All the steps in this algorithm are arranged in an optimal order so that no unneces-
sary step is taken. Since all the constructions and checks are performed by automatic
translation into linear inequality systems and and automated solving of these systems,
the algorithm requires no human intervention.

Complexity. Let N be a parameter to the algorithm as the upper bound on the length
of finite difference chains built to check slowdown regions. The number of the linear
inequality systems constructed by the algorithm is no more than 16 + /N. Each con-
structed inequality system has a size linear in the number of variables. If all the vari-
ables used in the loop are real variables, then solving of a linear inequality system is
polynomial. Otherwise, it is NP-complete. However, in practice constructed inequality
systems are usually very small. For the class of loops that have linear ranking functions,
the algorithm in [[10] needs to construct only one linear inequality system to determine
termination, which seems much more efficient than our method. However, we can show
that, for any G'* P! loop with linear ranking functions, its constructed region graph con-
tains only one positive region as stated in Theorem[2] (see [9]] for the proof). So, for any
G P! loop that has linear ranking functions, our algorithm only generates 2 inequality
systems to check the existence of a negative region and a still region.

Theorem 2. A G' P! loop has linear ranking functions if and only if its constructed
region graph contains no negative region and no still region.

Soundness. The algorithm is sound. The proof is sketched in [9]. The basic idea is to
show that, if the algorithm returns “TERMINATING” for a loop, then the two termina-
tion conditions in Theorem [T are satisfied by the constructed region graph.

Completeness. The algorithm is incomplete and may return “UNKNOWN”. Although
termination for G! P! loops in which all the variables are real variables is decidable,
the decidability of termination for G P! loops that have integer variables remains a
conjecture [[12]. Furthermore, our algorithm can prove termination for a large set of
G'P' loops whose iterations change the guard value in one of the patterns as informally
illustrated in Figure[8l The horizontal axes represent passage of time and the vertical
axes represent change of guard values. The left pattern corresponds to existence of linear
ranking functions. The middle one corresponds to existence of slowdown regions. The
right one corresponds to progressiveness of cycles.

Fig. 8. Patterns in which the guard value changes

In the next two sections, we will generalize the idea of determining termination for
G P* and G* P! loops.
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5 Proving Termination for G' P*

All the ideas in the previous section can be used for G' P* loops without too much
adaption except that some concepts are generalized with path conditions.

5.1 Constructing Region Graphs

Given a G P* loop as below,
while ax > b do
pct - & =U'z + @t

pc? — & =UPZ + P
od
the construction of region graphs is similar to the construction for G' P! loops as
follows:

— For each i-th path, we create a positive region, a negative region and a still region
if their respective defining inequality system has solutions. Let the path condition
be pc = €12 > dy A ... A&, > d,. The system of the linear inequalities (37H60)
defines the positive region. The linear inequality systems to define the negative and
the still region differ only in the relational operator in Inequality (6Q) accordingly.

— Transitions are built in exactly the same way as for G P!,

az > b (57) F=U'z+u (59

. az > 60
A &z > d; (58) o ©0)

5.2 Using Path Conditions

Path conditions can be used to determine eventual exiting of still regions and negative
regions with self-transitions.

Consider Example[3l If the first path is taken, the guard value z; remains unchanged.
However, the path cannot be taken forever. This is because the value of x5 is always
decreased every time that the path is taken and is bounded by 0 as imposed by the path
condition.

Example 5. This is a loop with two paths.
while 1 > 0 do

azo= [ - [ [] + [
o= [3] =8 [7]

od
To generalize the idea, we define drag regions as follows.
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Definition 9. A negative region or a still region is a drag region with respect to the
respective path condition pc = ¢1T > di A ... A\ EqT > dg if;, for some ¢;T in pc, the
value of ¢;T is always decreased within the region.

Drag regions can be checked by solving a linear inequality systems. The construction is
similar to the linear inequality system for checking slowdown. Due to space limitations
we do not give the full detail here.

Progressiveness of cycles can also be generalized when taking path conditions into
consideration. For a region R with respect to a path condition pc = ¢1Z > d; A ... A
CqZ > dg, a cycle is progressive on R if, along the cycle, every time that R is entered,
the value of some ¢;Z in pc is smaller than the value of ¢;Z at the last time that R is
entered.

5.3 Determining Termination

The algorithm in Subsection 4] is modified for proving termination for G* P* loops as
follows.

Positive, negative, and still regions are created for all paths.

When a still region has a self-transition, instead of returning “UNKNOWN”, check
whether it is a drag region. If not, return “UNKNOWN™.

For an unbounded negative region, check whether it is a drag region. If not, check
whether it is a slowdown region. If not, return “UNKNOWN”.

Progressiveness is checked also with respect to path conditions.

Since the number of cycles is exponential in the number of loop paths, so is the
number of linear inequality systems constructed by the modified algorithm. The size
of each constructed inequality system is linear both in the number of loop paths and in
the number of variables. The algorithm is sound and incomplete. In fact, termination of
G' P* has been shown undecidable [12]].

6 Proving Termination for G* P!

The basic idea to prove termination for a G* P! loop (c.f. Example [3) is to check
whether termination can be proved by the region graph constructed with respect to
some guard in the loop condition. While analyzing the region graph with respect to a
chosen guard, we also consider other guards in the loop condition as explained below.

Construction of region graphs. Choosing a guard in the loop condition, the construc-
tion of the region graph is similar to the construction for G PL. The linear inequality
system to define the positive region contains (1) all the inequalities in the loop condi-
tion, (2) variable update equations, and (3) the inequality that expresses the decrease
of the chosen guard value. The inequality systems defining the negative region and the
still region are constructed similarly.

Generalization of concepts. A negative or a still region is a drag region with respect
to some guard that is not chosen for constructing the region graph if the value of the
considered guard is decreased within the region. For a region R and some guard ¢ that
is not chosen for constructing the region graph, a cycle is progressive on R also if, along
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the cycle, every time that R is entered, the value of g is smaller than the value of g at
the last time that R is entered.

Determining termination. The algorithm to determine termination for a G* P loops
is as follows. Given a G* P! loop, a guard in the loop condition is chosen nondeter-
ministically. The algorithm in Subsection [£.4] is then used to construct and check the
region graph with respect to the chosen guard, with a slight modification which allows
for checking drag regions and generalized progressiveness. If termination cannot be de-
termined, then another guard is chosen. This procedure is repeated until termination is
proved or all the guards have been checked.

Complexity, soundness and completeness. Let m be the number of guards in the loop
condition and N be the parameter as the upper bound on the length of finite difference
chains. In the worst case m region graphs are constructed and checked. For each region
graph, the number of constructed linear inequality systems is no more than 14+2m+N.
The size of each inequality system is linear in both m and the number of variables. The
algorithm is sound and incomplete. In fact it remains a conjecture that termination of
G* P! loops that have integer variables is decidable [12]]. Furthermore, we conjecture
that the algorithm can prove termination for any G* P! loop that has linear ranking
functions.

Proving termination for G* P*. In our paper we present incomplete approaches to prove
termination for G* P* and G* P!. These two methods are orthogonal and can be easily
combined to yield an approach to prove termination for the G* P* class.

7 Experimental Results

We implemented our method in a prototype tool named “PONES” (positive-negative-
still). Finding a representative sample of realistic software systems that exhibit a large
number of non-trivial loops that fall into our categorization is not easy, as it was
also observed in [2]. Also, automated extraction of loop code and the resulting loop
information has not yet been but will be implemented in the future. For the experi-
ments described here, we manually collected program loops from the source code of
Azureus] which is a peer-to-peer file sharing software written in Java. The software
contains 3567 while- and for-loops. We analyzed the 1636 loops that fall into our cat-
egorization. There were only 3 loops in G'P* and 4 in G*P!. In fact, most of the
loops were of the form "while (i<j) i++". The prevalent simplicity of the loops
encountered corresponds to the desire of programmers to code loops that are easy to
comprehend.

PONES failed to prove termination for 14 of the analyzed loops and proved termi-
nation within 65 milliseconds for each of all other loops on a Pentium IV 3.20GHz
machine with 2GB memory. Manual inspection revealed that the 14 loops that PONES
failed on are not terminating on arbitrary initial variable values but do terminate in the
context of the Azureus software system which limits the range of the initial variable
values.

3 Available from sourceforge.net.
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We propose that our analysis method can be improved by incorporating value analy-
sis [I5] to generate linear inequalities over variables as loop invariants. These inequalities
are then used to shrink some regions in the constructed region graph in order to exclude
those points that will never be reached during loop iterations.

As further future work we propose to generalize the concept of program loops as
explicitly constructed by the while or for constructs to control flow cycles resulting
from mutual and recursive function calls. These control flow cycles are usually more
complex but we expect that our analysis can handle them nonetheless.

We cannot give a direct comparison with other termination proof methods because
other works use different extraction and abstraction techniques than our method to col-
lect loops from programs. It should also be noted that our method can be considered as
being complementary to linear ranking function based approaches.

8 Conclusion

We propose a new termination proof method based on constructing and analyzing region
graphs. The method is incomplete and efficient in practice. It can prove termination
for some loops that have no linear ranking functions. We implemented the method in
the PONES tool and conducted several experiments with Java programs. Future work
includes: (1) the adaption of the method to approximate loop iteration times; (2) refining
the method by discovering other useful information from loops; (3) analysis of loops
with more general loop conditions, i.e., with the presence of disjunction; (4) abstraction
of nested loops and control flow cycles into G* P* loops.

Acknowledgment. We thank Alin Stefanescu for his beneficial and helpful comments on
our work and Daniel Butnaru for his assistance in programming the PONES prototype.
We also thank anonymous reviewers for their useful comments and suggestions.
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