
More on Bisimulations for Higher Order
π-Calculus�

Zining Cao

Department of Computer Science and Engineering,
Nanjing University of Aero. & Astro., Nanjing 210016, P.R. China

caozn@nuaa.edu.cn

Abstract. In this paper, we prove the coincidence between strong/weak
context bisimulation and strong/weak normal bisimulation for higher or-
der π-calculus, which generalizes Sangiorgi’s work. To achieve this aim,
we introduce indexed higher order π-calculus, which is similar to higher
order π-calculus except that every prefix of any process is assigned to
indices. Furthermore we present corresponding indexed bisimulations for
this calculus, and prove the equivalence between these indexed bisimula-
tions. As an application of this result, we prove the equivalence between
strong/weak context bisimulation and strong/weak normal bisimulation.

1 Introduction

Higher order π-calculus was proposed and studied intensively in Sangiorgi’s dis-
sertation [6]. It is an extension of the π-calculus [5] to allow communication
of processes rather than names alone. In [6], some interesting bisimulations
for higher order π-calculus were presented, such as barbed equivalence, con-
text bisimulation and normal bisimulation. Barbed equivalence can be regarded
as a uniform definition of bisimulation for a variety of concurrency calculi. Con-
text bisimulation is a very intuitive definition of bisimulation for higher order
π-calculus, but it is heavy to handle, due to the appearance of universal quan-
tifications in its definition. In the definition of normal bisimulation, all universal
quantifications disappeared, therefore normal bisimulation is a very economic
characterisation of bisimulation for higher order π-calculus.

The main difficulty with definitions of context bisimulation and barbed equiv-
alence that involve quantification over contexts is that they are often awkward
to work with directly. It is therefore important to look for more tractable char-
acterisations of the bisimulations. In [6, 7], the equivalence between weak nor-
mal bisimulation, weak context bisimulation and weak barbed equivalence was
proved for early and late semantics respectively, but the proof method cannot
be adapted to prove the equivalence between strong context bisimulation and
strong normal bisimulation.

To the best of our knowledge, no paper gives the proof of equivalence be-
tween strong context bisimulation and strong normal bisimulation. In [7], this
� This work was supported by the National Science Foundation of China under Grant

60473036.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 63–78, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 Z. Cao

problem was stated as an open problem. The main difficulty is that the proof
strategy for the equivalence between weak context bisimulation and weak nor-
mal bisimulation does not work for the strong case. Roughly speaking, for the
case of weak bisimulations, the mapping to triggered processes will bring some
redundant tau actions. Since weak bisimulations abstract from tau action, the
problem is inessential. But for the case of strong bisimulations, the situation
is different. We have to match these redundant tau actions to prove that two
processes are bisimilar. Therefore we need some new proof strategies to solve the
problem.

The main aim of this paper is to give a uniform proof for the equivalence be-
tween strong/weak context bisimulation and strong/weak normal bisimulation.
Especially, we will give a proof of the coincidence between strong context bisimu-
lation and strong normal bisimulation, which solves an open problem presented
by Sangiorgi in [7]. To achieve this aim, we introduce the notion of indexed
processes and define several bisimulations on indexed processes such as indexed
context bisimulation and indexed normal bisimulation. Furthermore, we present
indexed triggered mapping, prove an indexed factorisation theorem, and give
the equivalence between these indexed bisimulations. As an application of this
result, we get a uniform proof for the equivalence between strong/weak context
bisimulation and strong/weak normal bisimulation.

This paper is organized as follows: Section 2 gives a brief review of syntax and
operational semantics of the higher order π-calculus, then recalls the definitions
of context and normal bisimulations. Section 3 introduces indexed higher order π-
calculus and some indexed bisimulations. The equivalence between these indexed
bisimulations also be proved. In Section 4 we give a proof for the equivalence be-
tween strong/weak context bisimulation and strong/weak normal bisimulation.
The paper is concluded in section 5.

2 Higher Order π-Calculus

2.1 Syntax and Labelled Transition System of Higher Order
π-Calculus

In this section we briefly recall the syntax and labelled transition system of the
higher order π-calculus. Similar to [7], we only focus on a second-order fragment
of the higher order π-calculus, i.e., there is no abstraction in this fragment.

We assume a set N of names, ranged over by a, b, c, ... and a set V ar of
process variables, ranged over by X, Y, Z, U, We use E, F, P, Q, ... to stand for
processes. Pr denotes the set of all processes.

We first give the grammar for the higher order π-calculus processes as follows:

P ::= 0 | U | π.P | P1|P2 | (νa)P | !P

π is called a prefix and can have one of the following forms:
π ::= τ | l | l | a(U) | a〈P 〉, here τ is a tau prefix; l is a first order input prefix;

l is a first order output prefix; a(U) is a higher order input prefix and a〈P 〉 is a
higher order output prefix.

More on Bisimulations for Higher Order π-Calculus 65

Table 1.

ALP :
P

α−→ P ′

Q
α−→ Q′P ≡α Q, P ′ ≡α Q′ TAU : τ.P

τ−→ P

OUT 1 : l.P
l−→ P IN1 : l.P

l−→ P

OUT 2 : a〈E〉.P a〈E〉−→ P IN2 : a(U).P
a〈E〉−→ P{E/U}

PAR :
P

α−→ P ′

P |Q α−→ P ′|Q
bn(α) ∩ fn(Q) = Ø

COM1 :
P

l−→ P ′ Q
l−→ Q′

P |Q τ−→ P ′|Q′

COM2 :
P

(ν�b)a〈E〉−→ P ′ Q
a〈E〉−→ Q′

P |Q τ−→ (ν˜b)(P ′|Q′)
˜b ∩ fn(Q) = Ø

RES :
P

α−→ P ′

(νa)P α−→ (νa)P ′ a /∈ n(α) REP :
P |!P α−→ P ′

!P α−→ P ′

OPEN :
P

(ν�c)a〈E〉−→ P ′

(νb)P
(νb,�c)a〈E〉−→ P ′

a �= b, b ∈ fn(E) − c̃

For higher order π-calculus, the notations of free name, bound name, free
variable, bound variable and etc are given in [6, 7]. The set of all closed processes,
i.e., the processes which have no free variable, is denoted as Prc.

The operational semantics of higher order processes is given in Table 1. We
have omitted the symmetric of the parallelism and communication rules.

2.2 Bisimulations in Higher Order π-Calculus

Context and normal bisimulations were presented in [6, 7] to describe the be-
havioral equivalences for higher order π-calculus. In the following, we abbreviate
P{E/U} as P 〈E〉.

Definition 1. A symmetric relation R ⊆ Prc × Prc is a strong context bisimu-
lation if P R Q implies:

(1) whenever P
α−→ P ′, there exists Q′ such that Q

α−→ Q′, here α is not a
higher order action and P ′ R Q′;

(2) whenever P
a〈E〉−→ P ′, there exists Q′ such that Q

a〈E〉−→ Q′ and P ′ R Q′;

(3) whenever P
(ν�b)a〈E〉−→ P ′, there exist Q′, F , c̃ such that Q

(ν�c)a〈F 〉−→ Q′ and for
all C(U) with fn(C(U)) ∩ {˜b, c̃} = ∅, (ν˜b)(P ′|C〈E〉) R (νc̃)(Q′|C〈F 〉). Here
C(U) is a process containing a unique variable U .

We write P ∼Ct Q if P and Q are strong context bisimilar.

66 Z. Cao

Distinguished from strong context bisimulation, strong normal bisimulation
does not have universal quantifications in the clauses of its definition. In the
following, a name is called fresh in a statement if it is different from any other
name occurring in the processes of the statement.

Definition 2. A symmetric relation R ⊆ Prc × Prc is a strong normal bisimu-
lation if P R Q implies:

(1) whenever P
α−→ P ′, there exists Q′ such that Q

α−→ Q′, here α is not a
higher order action and P ′ R Q′;

(2) whenever P
a〈m.0〉−→ P ′, there exists Q′ such that Q

a〈m.0〉−→ Q′ and P ′ R Q′,
here m is a fresh name;

(3) whenever P
(ν�b)a〈E〉−→ P ′, there exist Q′, F , c̃ such that Q

(ν�c)a〈F 〉−→ Q′ and
(ν˜b)(P ′|!m.E) R (νc̃)(Q′|!m.F), here m is a fresh name.

We write P ∼Nr Q if P and Q are strong normal bisimilar.

In the following, we use ε=⇒ to abbreviate the reflexive and transitive closure of
τ−→, and use α=⇒ to abbreviate ε=⇒ α−→ ε=⇒ . By neglecting the tau action, we

can get the following formal definitions of weak bisimulations:

Definition 3. A symmetric relation R ⊆ Prc × Prc is a weak context bisimu-
lation if P R Q implies:

(1) whenever P
ε=⇒ P ′, there exists Q′ such that Q

ε=⇒ Q′ and P ′ R Q′;
(2) whenever P

α=⇒ P ′, there exists Q′ such that Q
α=⇒ Q′, here α is not a

higher order action, α �= τ and P ′ R Q′;

(3) whenever P
a〈E〉
=⇒ P ′, there exists Q′ such that Q

a〈E〉
=⇒ Q′ and P ′ R Q′;

(4) whenever P
(ν�b)a〈E〉

=⇒ P ′, there exist Q′, F , c̃ such that Q
(ν�c)a〈F 〉

=⇒ Q′ and for
all C(U) with fn(C(U)) ∩ {˜b, c̃} = ∅, (ν˜b)(P ′|C〈E〉) R (νc̃)(Q′|C〈F 〉).

We write P ≈Ct Q if P and Q are weak context bisimilar.

Definition 4. A symmetric relation R ⊆ Prc × Prc is a weak normal bisimula-
tion if P R Q implies:

(1) whenever P
ε=⇒ P ′, there exists Q′ such that Q

ε=⇒ Q′ and P ′ R Q′;
(2) whenever P

α=⇒ P ′, there exists Q′ such that Q
α=⇒ Q′, here α is not a

higher order action, α �= τ and P ′ R Q′;

(3) whenever P
a〈m.0〉
=⇒ P ′, there exists Q′ such that Q

a〈m.0〉
=⇒ Q′ and P ′ R Q′,

here m is a fresh name;

(4) whenever P
(ν�b)a〈E〉

=⇒ P ′, there exist Q′, F , c̃ such that Q
(ν�c)a〈F 〉

=⇒ Q′ and
(ν˜b)(P ′|!m.E) R (νc̃)(Q′|!m.F), here m is a fresh name.

We write P ≈Nr Q if P and Q are weak normal bisimilar.

More on Bisimulations for Higher Order π-Calculus 67

3 Indexed Processes and Indexed Bisimulations

3.1 Syntax and Labelled Transition System of Indexed Higher
Order π-Calculus

The aim of this paper is to propose a general argument for showing the cor-
respondence of context and normal bisimulations in both the strong and weak
cases, by relying on a notion of indexed processes. Roughly, the intention is that
indexed processes allow the labelled transition system semantics to record in
action labels the indices of the interacting components. This mechanism is then
used to filter out some tau transitions in the considered definition of bisimulation.

Now we introduce the concept of indexed processes.The index set I, w.l.o.g.,
will be the set of natural numbers. Intuitively, the concept of index can be viewed
as the name or location of components. The class of the indexed processes IPr
is built similar to Pr, except that every prefix is assigned to indices. We usually
use K, L, M , N to denote indexed processes.

The formal definition of indexed process is given as follows:

M ::= 0 | U | Iπ.M | M1|M2 | (νa)M | !M
Iπ is called indexed prefix and can be an indexed tau prefix or an indexed

input prefix or an indexed output prefix:
Iπ ::= {τ}i,j | {l}i | {l}i | {a(U)}i | {a〈N〉}i, i, j ∈index set I (here N is an

indexed process).

Similar to the original higher order π-calculus, in each indexed process of the
form (νa)M the occurrence of a is bound within the scope of M . An occurrence of
a in M is said to be free iff it does not lie within the scope of a bound occurrence
of a. The set of names occurring free in M is denoted fn(M). An occurrence of
a name in M is said to be bound if it is not free, we write the set of bound names
as bn(M). n(M) denotes the set of names of M , i.e., n(M) = fn(M) ∪ bn(M).
We use n(M, N) to denote n(M) ∪ n(N). Indexed higher order input prefix
{a(U)}i.M binds all free occurrences of U in M . The set of variables occurring
free in M is denoted as fv(M). We write the set of bound variables in M as
bv(M). An indexed process is closed if it has no free variable; it is open if it
may have free variables. IPrc is the set of all closed indexed processes. Indexed
processes M and N are α-convertible, M ≡α N , if N can be obtained from M
by a finite number of changes of bound names and bound variables.

The set of all indices that occur in M , Index(M), is defined inductively as
follows:

(1) if M = 0 or U , then Index(M) ::= ∅;
(2) if M = Iπ.M1, then Index(M) ::= Index(Iπ)∪ Index(M1), here Index(Iπ)

::= {i, j} if Iπ is in the form of {τ}i,j ; Index(Iπ) ::= {i} ∪ Index(N) if
Iπ is in the form of {x〈N〉}i; Index(Iπ) ::= {i} if Iπ is in the form of
{l}i or {l}i or {x(U)}i.

(3) if M = M1|M2, then Index(M) ::= Index(M1) ∪ Index(M2);
(4) if M = (νa)M1, then Index(M) ::= Index(M1);
(5) if M =!M1, then Index(M) ::= Index(M1).

We use Index(M, N) to denote Index(M) ∪ Index(N).

68 Z. Cao

In the remainder of this paper, {P}i is an abbreviation for the indexed process
with the same given index i on every prefix in the scope of P . The formal
definition can be given inductively as follows:

(1) {0}i ::= 0;
(2) {U}i ::= U ;
(3) {τ.P}i ::= {τ}i,i.{P}i;
(4) {l.P}i ::= {l}i.{P}i;
(5) {l.P}i ::= {l}i.{P}i;
(6) {a(U).P}i ::= {a(U)}i.{P}i;
(7) {a〈E〉.P}i ::= {a〈{E}i〉}i.{P}i;
(8) {P1|P2}i ::= {P1}i|{P2}i;
(9) {(νa)P}i ::= (νa){P}i;

(10) {!P}i ::=!{P}i.

In the labelled transition system of indexed higher order π-calculus, the label
on the transition arrow is an indexed action, whose definition is given as follows:

Iα ::= {τ}i,j | {l}i | {l}i | {a〈K〉}i | {a〈K〉}i | {(ν˜b)a〈K〉}i, here {τ}i,j is an
indexed tau action, {l}i is an indexed first order input action, {l}i is an indexed
first order output action, {a〈K〉}i is an indexed higher order input action, and
{a〈K〉}i and {(ν˜b)a〈K〉}i are indexed higher order output actions.

We write bn(Iα) to represent the set of names bound in Iα, which is {˜b} if
Iα is {(ν˜b)a〈K〉}i and ∅ otherwise. n(Iα) is the set of names that occur in Iα.

Table 2.

ALP :
M

Iα−→ M ′

N
Iα−→ N ′

M ≡α N, M ′ ≡α N ′ TAU : {τ}i,j .M
{τ}i,j−→ M

OUT 1 : {l}i.M
{l}i−→ M IN1 : {l}i.M

{l}i−→ M

OUT 2 : {a〈K〉}i.M
{a〈K〉}i−→ M IN2 : {a(U)}i.M

{a〈K〉}i−→ M{K/U}

PAR :
M

Iα−→ M ′

M |N Iα−→ M ′|N
bn(Iα) ∩ fn(N) = Ø

COM1 :
M

{l}i−→ M ′ N
{l}j−→ N ′

M |N {τ}i,j−→ (M ′|N ′)

COM2 :
M

{(ν�b)a〈K〉}i−→ M ′ N
{a〈K〉}j−→ N ′

M |N {τ}i,j−→ (ν˜b)(M ′|N ′)
˜b ∩ fn(N) = Ø

RES :
M

Iα−→ M ′

(νa)M Iα−→ (νa)M ′
a /∈ n(Iα) REP :

M |!M Iα−→ M ′

!M Iα−→ M ′

OPEN :
M

{(ν�c)a〈K〉}i−→ M ′

(νb)M
{(νb,�c)a〈K〉}i−→ M ′

a �= b, b ∈ fn(K) − c̃

More on Bisimulations for Higher Order π-Calculus 69

The operational semantics of indexed processes is given in Table 2. Similar to
Table 1, we have omitted the symmetric of the parallelism and communication.
The main difference between Table 1 and Table 2 is that the label Iα on the
transition arrow is in the form of {α}i or {τ}i,j . If we adopt the distributed view,
{α}i can be regarded as an input or output action performed by component i,
and {τ}i,j can be regarded as a communication between components i and j.

Remark: Since {τ}i,j and {τ}j,i have the same meaning: a communication be-
tween components i and j, hence i, j should be considered as a set {i, j}, and
not as an ordered pair. Therefore in the above labelled transition system, {τ}i,j

and {τ}j,i are considered as the same label, i.e., M
{τ}i,j−→ M ′ is viewed to be

same as M
{τ}j,i−→ M ′.

3.2 Indexed Context Bisimulation and Indexed Normal
Bisimulation

Now we can give the concept of indexed context bisimulation and indexed nor-
mal bisimulation for indexed processes. In the remainder of this paper, we ab-
breviate M{K/U} as M〈K〉. In the following, we use M

ε,S
=⇒ M ′ to abbreviate

M
{τ}i1,i1−→ ...

{τ}in,in−→ M ′, and use M
Iα,S=⇒ M ′ to abbreviate M

ε,S=⇒ Iα−→ ε,S=⇒ M ′,
here i1, ..., in ∈ S ⊆ I. An index is called fresh in a statement if it is different from
any other index occurring in the processes of the statement. Let us see two exam-

ples. For the transition (νa)((νb)({a}n.0|{b}m.0|{a}n.{b}m.0))
{τ}n,n−→ {τ}m,m−→ 0, we

can abbreviate it as (νa)((νb)({a}n.0|{b}m.0|{a}n.{b}m.0))
ε,{m,n}
=⇒ 0. Similarly,

since (νa)((νb)({a}n.0|{b}m.0|{a}n.{c}k.{b}m.0))
{τ}n,n−→ {c}k−→{τ}m,m−→ 0, we can ab-

breviate it as (νa)((νb)({a}n.0|{b}m.0|{a}n.{c}k.{b}m.0))
{c}k,{m,n}

=⇒ 0.
This paper’s main result states that strong context bisimulation coincides with

strong normal bisimulation. Technically, the proof rests on the notion of indexed
bisimulations. The idea is to generalize the usual notion of weak bisimulations so
that tau actions can be ignored selectively, depending on a chosen set of indices
S. The cases S = ∅ and S = I correspond to strong and weak bisimulations
respectively.

Definition 5. Let M , N be two closed indexed processes, and S ⊆ I be an index
set, we write M �S

Ct N , if there is a symmetric relation R and M R N implies:

(1) whenever M
ε,S
=⇒ M ′, there exists N ′ such that N

ε,S
=⇒ N ′ and M ′ R N ′;

(2) whenever M
Iα,S
=⇒ M ′, there exists N ′ such that N

Iα,S
=⇒ N ′ and M ′ R N ′,

here Iα �= {τ}i,i for any i ∈ S, Iα is not an indexed higher order action;

(3) whenever M
{a〈K〉}i,S=⇒ M ′, there exists N ′ such that N

{a〈K〉}i,S=⇒ N ′ and M ′

R N ′;

70 Z. Cao

(4) whenever M
{(ν�b)a〈K〉}i,S=⇒ M ′, there exists N ′ such that N

{(ν�c)a〈L〉}i,S=⇒ N ′

and for any indexed process C(U) with fn(C(U))∩{˜b, c̃} = �, (ν˜b)(M ′|C〈K〉)
R (νc̃)(N ′|C〈L〉).

We say that M and N are indexed context bisimilar w.r.t. S if M �S
Ct N.

Definition 6. Let M , N be two closed indexed processes, and S ⊆ I be an
index set, we write M �S

Nr N , if there is a symmetric relation R and M R N
implies:

(1) whenever M
ε,S
=⇒ M ′, there exists N ′ such that N

ε,S
=⇒ N ′ and M ′ R N ′;

(2) whenever M
Iα,S
=⇒ M ′, there exists N ′ such that N

Iα,S
=⇒ N ′ and M ′ R N ′,

here Iα �= {τ}i,i for any i ∈ S, Iα is not an indexed higher order action;

(3) whenever M
{a〈{m}n.0〉}i,S=⇒ M ′, here m is a fresh name, there exists N ′ such

that N
{a〈{m}n.0〉}i,S=⇒ N ′ and M ′ R N ′;

(4) whenever M
{(ν�b)a〈K〉}i,S=⇒ M ′, there exists N ′ such that N

{(ν�c)a〈L〉}i,S=⇒ N ′,
and (ν˜b)(M ′|!{m}n.K) R (νc̃)(N ′|!{m}n.L) with a fresh name m and a fresh
index n.

We say that M and N are indexed normal bisimilar w.r.t. S if M �S
Nr N.

The above definitions have some geometric intuition. From a distributed view,
{τ}i,i is an internal communication in component i, and {τ}i,j , where i �= j,
represents an external communication between components i and j. Therefore
in Definitions 5 and 6, we regard {τ}i,i as a private event in component i, which
can be neglected if i is in S, a chosen set of indices; and we view {τ}i,j as a
visible event between components i and j.

For example, by the above definition, we have (νa)({a}n.0|{a}n.M) �{n}
Ct M,

(νa)({a}n.0|{a}n.M) ��∅
Ct M and (νa)({a}n.0|{a}n.M) �I

Nr M.

3.3 Indexed Triggered Processes and Indexed Triggered
Bisimulation

The concept of triggered processes was introduced in [6, 7]. The distinguishing
feature of triggered processes is that every communication among them is the
exchange of a trigger, here a trigger is an elementary process whose only func-
tionality is to activate a copy of another process. In this section, we introduce
the indexed version of triggered processes. Indexed triggered process can be seen
as a sort of normal form for the indexed processes, and every communication
among them is the exchange of an indexed trigger. We shall use indexed triggers
to perform indexed process transformations which make the treatment of the
constructs of indexed higher order processes easier.

The formal definition of indexed triggered process is given as follows:

M ::= 0 | U | {τ}i,j .M | {l}i.M | {l}i.M | {a(U)}i.M | (νm)({a〈{m}n.0〉}i.M |
!{m}n.N) with m /∈ fn(M, N) ∪ {a} | M1|M2 | (νa)M | !M .

More on Bisimulations for Higher Order π-Calculus 71

The class of the indexed triggered processes is denoted as ITPr. The class of
the closed indexed triggered processes is denoted as ITPrc.

Definition 7. We give a mapping Trn which transforms every indexed process
M into the indexed triggered process Trn[M] with respect to index n. The
mapping is defined inductively on the structure of M.

(1) Trn[0] ::= 0;
(2) Trn[U] ::= U ;
(3) Trn[{τ}i,j .M] ::= {τ}i,j .T rn[M];
(4) Trn[{l}i.M] ::= {l}i.T rn[M];
(5) Trn[{l}i.M] ::= {l}i.T rn[M];
(6) Trn[{a(U)}i.M] ::= {a(U)}i.T rn[M];
(7) Trn[{a〈N〉}i.M] ::= (νm)({a〈{m}n.0〉}i.T rn[M]|!{m}n.T rn[N]), where

m is a fresh name;
(8) Trn[M1|M2] ::= Trn[M1]|Trn[M2];
(9) Trn[(νa)M] ::= (νa)Trn[M];

(10) Trn[!M] ::=!Trn[M].

Transformation Trn[] may expand the number of {τ}n,n steps in a process. But
the behavior is otherwise the same. The expansion is due to the fact that if in
M a process N is transmitted and used k times then, in Trn[M] k additional
{τ}n,n interactions are required to activate the copies of N.

For example, let M
def
= {a〈N〉}i.L|{a(U)}j.(U |U), then M

{τ}i,j−→ L|N |N def
=

M ′. In Trn[M], this is simulated using two additional {τ}n,n interactions:

Trn[M] = (νm)({a〈{m}n.0〉}i.T rn[L]|!{m}n.T rn[N])|{a(U)}j.(U |U)
{τ}i,j−→ (νm)(Trn[L]|!{m}n.T rn[N]|{m}n.0|{m}n.0)
{τ}n,n−→ {τ}n,n−→ (νm)(Trn[L]|Trn[N]|Trn[N]|!{m}n.T rn[N])
�∅

Ct Trn[L]|Trn[N]|Trn[N] since m is a fresh name
= Trn[M ′].

Now we can give the indexed version of triggered bisimulation as follows.

Definition 8. Let M , N be two closed indexed triggered processes, and S ⊆ I
be an index set, we write M �S

Tr N , if there is a symmetric relation R and M
R N implies:

(1) whenever M
ε,S
=⇒ M ′, there exists N ′ such that N

ε,S
=⇒ N ′ and M ′ R N ′;

(2) whenever M
Iα,S
=⇒ M ′, there exists N ′ such that N

Iα,S
=⇒ N ′ and M ′ R N ′,

here Iα �= {τ}i,i for any i ∈ S, Iα is not an indexed higher order action;

(3) whenever M
{a〈{m}n.0〉}i,S=⇒ M ′, here m is a fresh name, there exists N ′ such

that N
{a〈{m}n.0〉}i,S=⇒ N ′ and M ′ R N ′;

(4) whenever M
{(νm)a〈{m}n.0〉}i,S=⇒ M ′, there exists N ′ such that N

{(νm)a〈{m}n.0〉}i,S=⇒ N ′ and M ′ R N ′.

We say that M and N are indexed triggered bisimilar w.r.t. S if M �S
Tr N.

72 Z. Cao

3.4 The Equivalence Between Indexed Bisimulations

In [6, 7], the equivalence between weak context bisimulation and weak normal
bisimulation was proved. In the proof, the factorisation theorem was firstly given.
It allows us to factorise out certain subprocesses of a given process. Thus, a
complex process can be decomposed into the parallel composition of simpler
processes. Then the concept of triggered processes was introduced, which is the
key step in the proof. Triggered processes represent a sort of normal form for the
processes. Most importantly, there is a very simple characterisation of context
bisimulation on triggered processes, called triggered bisimulation. By the factori-
sation theorem, a process can be transformed to a triggered process. The trans-
form allows us to use the simpler theory of triggered processes to reason about
the set of all processes. In [6, 7], weak context bisimulation was firstly proved to
be equivalent to weak triggered bisimulation on triggered processes, then by the
mapping from general processes to triggered processes, the equivalence between
weak context bisimulation and weak normal bisimulation was proved.

In the case of strong bisimulations, the above proof strategy does not work.
The main problem is that the mapping to triggered processes brings some re-
dundant tau actions. Since weak bisimulations abstract from tau action, the full
abstraction of the mapping to triggered processes holds. But in the case of strong
bisimulations, the triggered mapping does not preserve the strong bisimulations,
and therefore some central technical results in [6, 7], like the factorisation theo-
rem, are not true in the strong case.

To resolve this difficulty we introduced the concept of indexed processes and
the indexed version of context and normal bisimulations. Roughly, the actions of
indexed processes have added indices, which are used to identify in which compo-
nent or between which components an action takes place. Indexed bisimulations
with respect to an indices set S neglect the indexed tau action of the form
{τ}i,i for any i ∈ S, but distinguish the indexed tau action of the form {τ}i,j if
i /∈ S or j /∈ S or i �= j. One can see that the mapping from M to Trn[M] brings
redundant indexed tau actions {τ}n,n. Therefore indexed triggered mapping pre-
serves the indexed bisimulations with respect to S ∪{n} for any S. Similarly, we
also have the indexed version of factorisation theorem. Following the proof strat-
egy in [6, 7], we prove the equivalence between indexed context bisimulation and
indexed normal bisimulation. Furthermore, when S is the empty set ∅, we discuss
the relation between indexed bisimulations and strong bisimulations, and get the
proposition: P ∼ Nr Q ⇔ {P}k �∅

Nr {Q}k ⇔ Trn[{P}k] �{n}
Tr Trn[{Q}k] ⇔

{P}k �∅
Ct {Q}k ⇔ P ∼Ct Q. This solves the open problem in [7]. We also ap-

ply the proof idea to the case of weak bisimulations. When S is the full index
set I, we study the relation between indexed bisimulations and weak bisimula-
tions, and get the proposition: P ≈Nr Q ⇔ {P}k �I

Nr {Q}k ⇔ Trn[{P}k] �I
Tr

Trn[{Q}k] ⇔ {P}k �I
Ct {Q}k ⇔ P ≈Ct Q. Therefore the proof presented here

seems to be a uniform approach to the equivalence between strong/weak context
bisimulation and strong/weak normal bisimulation.

Now we study the relations between the three indexed bisimulations. The
main result is summarized in Proposition 8: M �S

Nr N ⇔ Trn[M] �S∪{n}
Tr

More on Bisimulations for Higher Order π-Calculus 73

Trn[N] ⇔ M �S
Ct N . We achieve this result by proving several propositions:

including indexed factorisation theorem (Proposition 4), full abstraction of the
mapping to indexed triggered processes (Proposition 5), the relation between
indexed triggered bisimulation and indexed normal bisimulation (Proposition
6), and the relation between indexed triggered bisimulation and indexed context
bisimulation (Proposition 7).

In the following, we first give congruence of �S
Ct and �S

Tr.

Proposition 1 (Congruence of �S
Ct). For all M , N , K ∈ IPrc, M �S

Ct N
implies:

1. Iπ.M �S
Ct Iπ.N ;

2. M |K �S
Ct N |K;

3. (νa)M �S
Ct (νa)N ;

4. !M �S
Ct!N ;

5. a〈M〉.K �S
Ct a〈N〉.K.

Proof : Similar to the argument of the analogous result for context bisimulation
in [6, Theorem 4.2.7].

Proposition 2 (Congruence of �S
Tr). For all M , N , K ∈ ITPrc, M �S

Tr N
implies:

1. M |K �S
Tr N |K;

2. (νa)M �S
Tr (νa)N.

Proof : Similar to the argument of the analogous result for triggered bisimula-
tion in [6, Lemma 4.6.3].

Proposition 3 states the easy part of the relation between �S
Ct and �S

Nr.

Proposition 3. For any M , N ∈ IPrc, M �S
Ct N ⇒ M �S

Nr N.

Proof : It is trivial by the definition of �S
Ct and �S

Nr.
Now we give the indexed version of the factorisation theorem, which states that,
by means of indexed triggers, an indexed subprocess of a given indexed process
can be factorised out.

Proposition 4. For any indexed processes M and N with m /∈ fn(M, N), it
holds that M{{τ}i,j.N/U} �S

Ct (νm)(M{{m}i.0/U}|!{m}j.N) for any S.

Proof : Similar to the proof of P{τ.R/X} ∼Ct (νm)(P{m.0/X}|!m.R) in [6],
by induction on the structure of M .

Corollary 1. For any indexed processes M and N with m /∈ fn(M, N), it holds
that M{N/U} �S∪{n}

Ct (νm)(M{{m}n.0/U}|!{m}n.N) for any S.

Proof : It is straightforward by {τ}n,n.M �S∪{n}
Ct M and Propositions 1 and 4.

74 Z. Cao

To prove the correctness of Trn[], which is stated as Proposition 5, we first give
the following lemma:

Lemma 1. For any M , N ∈ ITPrc, M �S
Ct N ⇒ M �S

Tr N.

Proposition 5. For each M ∈ IPrc,

1. Trn[M] is an indexed triggered process;
2. Trn[M] �S∪{n}

Ct M ;
3. Trn[M] �S∪{n}

Tr M, if M is an indexed triggered process.

Proof : 1. It is straightforward.
2. It can be proved by induction on the structure of M and using Corollary 1.
3. By Lemma 1 and Case 2.

Proposition 6 below states the relation between �S
Nr and �S∪{n}

Tr :

Proposition 6. For any M , N ∈ IPrc, M �S
Nr N ⇒ Trn[M] �S∪{n}

Tr Trn[N],
here n /∈ Index(M, N).

The following Lemma 2 and Lemma 3 are necessary to the proof of Proposition 7.

Lemma 2. For any M , N ∈ IPrc, Trn[M] �S∪{n}
Tr Trn[N] ⇒ M �S∪{n}

Ct N,
here n /∈ Index(M, N).

Lemma 3. For any M , N ∈ IPrc, M �S∪{n}
Ct N ⇒ M �S

Ct N, here n /∈
Index(M, N).

P roof : It is clear since n /∈ Index(M, N).
Now we get the relation between �S∪{n}

Tr and �S
Ct as follows:

Proposition 7. For any M , N ∈ IPrc, Trn[M] �S∪{n}
Tr Trn[N] ⇒ M �S

Ct N,
here n /∈ Index(M, N).

P roof : By Lemmas 2 and 3.
The following proposition is the main result of this section, which states the
equivalence between indexed context bisimulation, indexed normal bisimulation
and indexed triggered bisimulation.

Proposition 8. For any M , N ∈ IPrc, M �S
Nr N ⇔ Trn[M] �S∪{n}

Tr

Trn[N] ⇔ M �S
Ct N, here n /∈ Index(M, N).

P roof : By Propositions 3, 6 and 7.

For indexed triggered processes, the above proposition can be simplified as
Corollary 2.

Lemma 4. For any M , N ∈ ITPrc, M �S∪{n}
Tr N ⇒ M �S

Tr N, here n /∈
Index(M, N).

P roof : It is clear since n /∈ Index(M, N).

More on Bisimulations for Higher Order π-Calculus 75

Corollary 2. For any M , N ∈ ITPrc, M �S
Nr N ⇔ M �S

Tr N ⇔ M �S
Ct N.

Proof : By Proposition 8, M �S
Nr N ⇔ Trn[M] �S∪{n}

Tr Trn[N] ⇔ M �S
Ct N ,

here n /∈ Index(M, N). Since M , N ∈ ITPrc, M �S∪{n}
Tr Trn[M] �S∪{n}

Tr

Trn[N] �S∪{n}
Tr N. By Lemma 4, we have M �S

Tr N.

Sangiorgi [6] proved that barbed equivalence coincides with context bisimulation.
We generalize this result to our indexed process calculus. In the following, we
first present an indexed variant of barbed equivalence called indexed reduction
bisimulation and then give the equivalence between indexed reduction bisimula-
tion, indexed context bisimulation and indexed normal bisimulation. This result
shows that all our indexed bisimulations are same and capture the essential of
equivalence of indexed processes.

Definition 9. Let M , N be two indexed processes, and S ⊆ I be an index set,
we write M �S

Rd N , if there is a symmetric relation R and K R L implies:

(1) K|M R L|M for any indexed process M ;

(2) whenever K
ε,S
=⇒ K ′, there exists L′ such that L

ε,S
=⇒ L′ and K ′ R L′;

(3) whenever K
{τ}i,j ,S
=⇒ K ′, here (i, j) /∈ {(k, k)|k ∈ S}, there exists L′ such that

L
{τ}i,j,S
=⇒ L′ and K ′ R L′.

We say that M and N are indexed reduction bisimilar w.r.t. S if M �S
Rd N.

Since �S
Ct is equivalent to �S

Nr, the following proposition states that �S
Ct, �S

Nr

and �S
Rd are same.

Proposition 9. For any M , N ∈ IPrc, M �S
Ct N ⇒ M �S

Rd N ⇒ M �S
Nr N .

In [1], the concept of indexed reduction bisimulation was used to give a uniform
equivalence for different process calculi.

4 The Equivalence Between Bisimulations in Higher
Order π-Calculus

4.1 Strong Context Bisimulation Coincides with Strong Normal
Bisimulation

The equivalence between strong context bisimulation and strong normal bisim-
ulation can be derived by the mapping to indexed triggered process and the
equivalence between indexed bisimulations.

For example, let us see the following two processes:

P = (νa)(a〈b.0〉.0|a(X).X);
Q = (νa)(a〈0〉.0|a(X).b.0).

They are clearly strong context bisimilar. However, their triggered mappings
are not strong triggered bisimilar. Indeed, the mapping of Q is (νa)((νm)

76 Z. Cao

(a〈m.0〉.0|!m.0)|a(X).b.0), after the communication between a and a, the resid-
ual process can perform action b without using silent tau actions, whereas the
mapping of P is (νa)((νm)(a〈m.0〉.0|!m.b.0)|a(X).X), and to match this behav-
ior, one has to go through a trigger and this therefore requires some form of
weak transition. Hence the proof strategy in [6, 7] cannot be generalized to the
case of strong bisimulation.

In our approach, we first consider the indexed version of P and Q:

{P}0 = (νa)({a〈{b}0.0〉}0.0|{a(X)}0.X);
{Q}0 = (νa)({a〈0〉}0.0|{a(X)}0.{b}0.0).

It is clearly {P}0 �∅
Ct {Q}0. Now the indexed triggered mapping of {P}0 is

Trn[{P}0] = (νa)((νm)({a〈{m}n.0〉}0.0|!{m}n.{b}0.0)|{a(X)}0.X), and the in-
dexed triggered mapping of {Q}0 is Trn[{Q}0] = (νa)((νm)({a〈{m}n.0〉}0.0|
!{m}n.0)|{a(X)}0.{b}0.0). Unlike the un-indexed case, Trn[{P}0] and Trn[{Q}0]
are indexed triggered bisimilar w.r.t. S = {n}. For example, let us consider the

transition: Trn[{P}0]
{τ}0,0−→ (νa)((νm)(0|!{m}n.{b}0.0|{m}n.0))

{τ}n,n−→ (νa)((νm)

(0|{b}0.0|!{m}n.{b}0.0|0))
{b}0−→ (νa)((νm)(0|0|!{m}n.{b}0.0|0)). Since we neglect

indexed tau action of the form {τ}n,n in the definition of �{n}
Tr , we have a match-

ing transition Trn[{Q}0]
{τ}0,0−→ (νa)((νm)(0|!{m}n.0|{b}0.0))

{b}0−→ (νa)((νm)
(0|!{m}n.0|0)). Hence Trn[{P}0] and Trn[{Q}0] are bisimilar. Formally, we have
Trn[{P}0] �{n}

Tr Trn[{Q}0]. Similarly, we can further build the relation between
�{n}

Tr and �∅
Nr: Trn[{P}0] �{n}

Tr Trn[{Q}0] ⇔ {P}0 �∅
Nr {Q}0.

In this section, we will show that P ∼Nr Q ⇒ {P}0 �∅
Nr {Q}0 and {P}0 �∅

Ct

{Q}0 ⇒ P ∼Ct Q ⇒ P ∼Nr Q. Since {P}0 �∅
Ct {Q}0 ⇔ {P}0 �∅

Nr {Q}0 by
Proposition 8, the equivalence between P ∼Nr Q and P ∼Ct Q is obvious.

Now we prove that strong context bisimulation and strong normal bisimula-
tion coincide, which was presented in [7] as an open problem.

Firstly, we introduce the concept of strong indexed context equivalence, strong
indexed normal equivalence and strong indexed triggered equivalence.

Definition 10. Strong indexed context equivalence.
Let P , Q ∈ Prc, we write P ∼i

Ct Q, if {P}k �∅
Ct {Q}k for some index k. As we

defined before, here {P}k denotes indexed process with the same given index k
on every prefix in P .

Definition 11. Strong indexed normal equivalence.
Let P , Q ∈ Prc, we write P ∼i

Nr Q, if {P}k �∅
Nr {Q}k for some index k.

Definition 12. Strong indexed triggered equivalence.
Let P , Q ∈ Prc, we write P ∼i,{n}

Tr Q, if Trn[{P}k] �{n}
Tr Trn[{Q}k] for some

index k with k �= n.

The following lemma states that strong normal bisimulation implies strong in-
dexed normal equivalence.

More on Bisimulations for Higher Order π-Calculus 77

Lemma 5. For any P , Q ∈ Prc, P ∼Nr Q ⇒ P ∼i
Nr Q.

Now, the equivalence between ∼Nr and ∼Ct can be given.

Proposition 10. For any P , Q ∈ Prc and any index n, P ∼ Nr Q ⇔ P ∼i
Nr

Q ⇔ P ∼i,{n}
Tr Q ⇔ P ∼i

Ct Q ⇔ P ∼Ct Q.

Proof : Firstly, it is easy to prove P ∼i
Ct Q ⇒ P ∼Ct Q ⇒ P ∼Nr Q. By

Lemma 5, P ∼Nr Q ⇒ P ∼i
Nr Q. Hence P ∼i

Ct Q ⇒ P ∼Ct Q ⇒ P ∼Nr Q ⇒
P ∼i

Nr Q. By Proposition 8, we have P ∼i
Nr Q ⇔ P ∼i,{n}

Tr Q ⇔ P ∼i
Ct Q for

any index n. Therefore the proposition holds.

Moreover, we can define strong indexed reduction equivalence ∼i
Rd as follows:

let P , Q ∈ Prc, we write P ∼i
Rd Q, if {P}k �∅

Rd {Q}k for some index k. By
Propositions 9 and 10, we know that ∼i

Rd coincides with ∼Nr and ∼Ct .

4.2 Weak Context Bisimulation Coincides with Weak Normal
Bisimulation

Based on the equivalence between indexed bisimulations, we can give an alter-
native proof for the equivalence between weak context bisimulation and weak
normal bisimulation.

Definition 13. Weak indexed context equivalence.
Let P , Q ∈ Prc, we write P ≈i

Ct Q, if {P}k �I
Ct {Q}k for some index k, here I

is the full index set.

Definition 14. Weak indexed normal equivalence.
Let P , Q ∈ Prc, we write P ≈i

Nr Q, if {P}k �I
Nr {Q}k for some index k, here

I is the full index set.

Definition 15. Weak indexed triggered equivalence.
Let P , Q ∈ Prc, we write P ≈i

Tr Q, if Trn[{P}k] �I
Tr Trn[{Q}k] for some

indices k and n, here k �= n and I is the full index set.

Lemma 6. For any P , Q ∈ Prc, P ≈Nr Q ⇒ P ≈i
Nr Q.

Proposition 11. For any P , Q ∈ Prc, P ≈Nr Q ⇔ P ≈i
Nr Q ⇔ P ≈i

Tr Q ⇔
P ≈i

Ct Q ⇔ P ≈Ct Q.

Proof : By Proposition 8, it is easy to get P ≈i
Nr Q ⇒ P ≈i

Tr Q ⇒ P ≈i
Ct

Q ⇒ P ≈Ct Q ⇒ P ≈Nr Q. By Lemma 6, P ≈Nr Q ⇒ P ≈i
Nr Q, therefore the

proposition holds.

Similarly, we can define weak indexed reduction equivalence ≈i
Rd as follows: let

P , Q ∈ Prc, we write P ≈i
Rd Q, if {P}k �I

Rd {Q}k for some index k. By
Propositions 9 and 11, ≈i

Rd coincides with ≈Nr and ≈Ct .
In [6, 7], the proposition: P ≈Nr Q ⇔ Tr[P] ≈Tr Tr[Q] ⇔ P ≈Ct Q was

proved, where Tr[] is the triggered mapping and ≈Tr is the weak triggered
bisimulation. In fact, this proposition can be get from Proposition 11. Firstly by

78 Z. Cao

Proposition 11, we have P ≈Nr Q ⇔ Trn[{P}k] �I
Tr Trn[{Q}k] ⇔ P ≈Ct Q.

Secondly, we can prove that Tr[P] ≈Tr Tr[Q] ⇔ Trn[{P}k] �I
Tr Trn[{Q}k].

Hence P ≈Nr Q ⇔ Tr[P] ≈Tr Tr[Q] ⇔ P ≈Ct Q is a corollary of Proposi-
tion 11. But for the strong case, the claim: P ∼Nr Q ⇔ Tr[P] ∼Tr Tr[Q] ⇔
P ∼Ct Q does not hold. For example, let P = (νa)(a〈b.0〉.0|a(X).X) and
Q = (νa)(a〈0〉.0|a(X).b.0), then P ∼Nr Q, P ∼Ct Q and Tr[P] �∼Tr Tr[Q].
Hence P ∼Nr Q �⇔ Tr[P] ∼Tr Tr[Q] �⇔ P ∼Ct Q. This also shows that we
cannot prove the equivalence between strong context bisimulation and strong
normal bisimulation by the original technique of triggered mapping.

5 Conclusions

To prove the equivalence between context bisimulation and normal bisimulation,
this paper proposed an indexed higher order π-calculus. In fact, this indexed
calculus can also be viewed as a model of distributed computing, where indices
represent locations, indexed action {α}i represents an input/output action α per-
formed in location i, and {τ}i,j represents a communication between locations i
and j. There are a few results on bisimulations for higher order π-calculus. In [6],
context bisimulation and normal bisimulation were compared with barbed equiv-
alence. In [3], authors proved a correspondence between weak normal bisimula-
tion and a variant of barbed equivalence, called contextual barbed equivalence. In
[4] an alternative proof of the correspondence between context bisimulation and
barbed equivalence was given. It would be interesting to understand whether
our concept of indexed processes and indexed bisimulations can be helpful to
study the relation between bisimulations in the framework of other higher order
concurrency languages.

References

1. Z. Cao. A uniform reduction equivalence for process calculi, In Proc. APLAS’04,
Lecture Notes in Computer Science 3302, 179-195. Springer-Verlag, 2004.

2. A. Jeffrey, J. Rathke. A theory of bisimulation for a fragment of concurrent ML
with local names. Theoretical Computer Science. 323:1-48, 2004.

3. A. Jeffrey, J. Rathke. Contextual equivalence for higher-order π-calculus revisited.
Logical Methods in Computer Science, 1(1:4):1-22, 2005.

4. Y. Li, X. Liu: Towards a theory of bisimulation for the higher-order process calculi.
Journal of Computer Science and Technology. 19(3): 352-363, 2004.

5. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Part I and
II). Information and Computation, 100:1-77, 1992.

6. D. Sangiorgi. Expressing mobility in process algebras: first-order and higher-order
paradigms, Ph.D thesis, University of Einburgh, 1992.

7. D. Sangiorgi. Bisimulation in higher-order calculi, Information and Computation,
131(2):141-178, 1996.

8. D. Sangiorgi, D. Walker. The π-calculus: a theory of mobile processes, Cambridge
University Press, 2001.

9. B. Thomsen. Plain CHOCS, a second generation calculus for higher order processes,
Acta Information, 30:1-59, 1993.

	Introduction
	Higher Order $\pi $-Calculus
	Syntax and Labelled Transition System of Higher Order π-Calculus
	Bisimulations in Higher Order π-Calculus

	Indexed Processes and Indexed Bisimulations
	Syntax and Labelled Transition System of Indexed Higher Order π-Calculus
	Indexed Context Bisimulation and Indexed Normal Bisimulation
	Indexed Triggered Processes and Indexed Triggered Bisimulation
	The Equivalence Between Indexed Bisimulations

	The Equivalence Between Bisimulations in Higher Order π-Calculus
	Strong Context Bisimulation Coincides with Strong Normal Bisimulation
	Weak Context Bisimulation Coincides with Weak Normal Bisimulation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

