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Abstract. A smooth orchestrator is a process with several alternative branches,
every one defining synchronizations among co-located channels. Smooth orches-
trators constitute a basic mechanism that may express standard workflow patterns
in Web services as well as common synchronization constructs in programming
languages. Smooth orchestrators may be created in one location and migrated to
a different one, still not manifesting problems that usually afflict generic mobile
agents.

We encode an extension of Milner’s (asynchronous) pi calculus with join pat-
terns into a calculus of smooth orchestrators and we yield a strong correctness
result (full abstraction) when the subjects of the join patterns are co-located. We
also study the translation of smooth orchestrators into finite-state automata, there-
fore addressing the implementation of co-location constraints and the case when
synchronizations are not linear with respect to subjects.

1 Introduction

Web services programming languages use mechanisms for defining services available
on the Web. Examples of these languages are Microsoft XLANG [13] and its visual en-
vironment BizTalk, IBM WSFL [10], BPEL [2], WS-CDL [8], and WSCI [8]. Among
the basic mechanisms used by such technologies, there are the so-called orchestra-
tors, which compose available services, possibly located at different administrative do-
mains, by adding a central coordinator that is responsible for invoking and combining
sub-activities.

This contribution addresses a very simple class of orchestrators, those triggering a
continuation when a pattern of messages on a set of services is available. For example,
the orchestrator

x(u)& y(v) � z uv

enables the continuation z uv if one message to the service x and one message to the
service y are available. The orchestrator expires once it has executed. This process is
easy to implement if the two services x and y – called channels in the following –
are co-located: it suffices to migrate x(u)& y(v) � z uv to the location of x and y. The
general case when the continuation z uv is a large process may be always reduced to
the simpler one.

� Aspects of this investigation were partly supported by a Microsoft initiative in concurrent
computing and Web services.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 32–46, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Smooth Orchestrators 33

If x and y are not co-located then we immediately face a global consensus problem:
the location running the channel(-manager)s for x and y must agree with the one run-
ning x(u)& y(v)� z uv for consuming outputs. (Migrating x(u)& y(v)�P , or a variant
of it, to the location of x or of y does not simplify the problem because x and y are not
co-located.) Observe that similar problems are manifested by orchestrators such as

x(u) � z u + y(v) � z′ v

where “+” picks either one of x(u) � z u or y(v) � z′ v according to the availability of
a message on x or on y.

A language with orchestrators should therefore simply disallow those ones that com-
bine not co-located channels, on the grounds that they are un-implementable. There
are several ways for removing such problematic orchestrators. The join calculus [6]
achieves (co-)locality with an elegant syntactic constraint in which the same language
construct is used both to declare channels and to define their continuations. Channels
that are being orchestrated are, by definition, co-located. For example, the process

x(u) � (y, z)( s uy | t uz
| y(v) � P + z(w) � Q)

specifies a service x that starts the sub-activities s and t with local channels y and z,
respectively. The orchestrator – defined on these local channels – takes into account
the first activity that completes. It is worth to remark that the above process remains
implementable even if y and z are not co-located with x (this may be the case when,
for load-balancing reasons, it is preferable to create the two channels remotely). To
formalize this constraint on y and z it suffices to add an explicit co-location construct
to channel definitions. Write z @ y to mean that z is created at the same location as y.
Then the above process may be rewritten as x(u) � (y @ y, z @ y)(s uy | t uz | y(v) �
P + z(w) � Q), where the constraint y @ y means that y may be created at whatever
location.

We also consider a further relaxation of the join calculus locality constraint, which
combines co-location and input capability. Input capability is the ability to receive a
channel name and subsequently accept inputs on it. Orchestrators that join received
channels and locally defined ones are again implementable if all the channels are co-
located. In this case, the co-location constraint may be enforced statically if the lan-
guage has mechanisms for extracting the location information out of received channels.
In practice this is trivial because channels contains the IP addresses of their location.
Technically we write x(u @ u)& y(v @ u) � P to select messages on x and y that carry
co-located channels. In this case, the continuation P could orchestrate u and v, that is
P might be u(u′ @u′)& v(v′ @ v′) � P ′.

We end up in considering a class of orchestrators, which we call smooth (the ter-
minology is drawn from [1]), that consist of several alternative branches, every one
defining synchronizations among co-located channels and having an output as contin-
uation. The implementation of (smooth) orchestrators poses a number of challenges
because they may be dynamically created and because of the co-location constraints
that may introduce dependencies between different channels in the same join pattern.
With respect to Le Fessant and Maranget’s compilation technique of join patterns [9]
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we discuss a number of extensions for implementing smooth orchestrators of increas-
ing complexity. In particular, we show that it is still possible to use finite state au-
tomata for handling join pattern definitions, even when the joined channels are not
fresh.

Related work. Distributed implementations of input-guarded choices have already been
studied in detail by the pi community. Nestmann and Pierce have proposed the following
encoding of the orchestrator

∑
i∈1..n xi(ui)�P (we rewrite the solution in our notation):

(� @ �)(� t |
∏

i∈1..n

xi(ui @ui) �
(
�(u @ t) � (� f | P ) + �(u @ f) � (� f | xi ui)

)

where t and f are two free channels that are not co-located. While this technique may
be refined so that every branch of the choice inputs on different channels � (c.f. linear
forwarders [7]), it seems not useful for our orchestrators where guards are complex
input patterns. Implementations of “defined once”-orchestrators on co-located channels
have been studied in detail for the join calculus in [9]. There are similarities between
our calculus and MAGNETs [3]. In MAGNETs orchestrators are implemented as agents
that migrate to the location where the synchronized channels are defined. As in this
paper, MAGNETs only synchronize co-located channels, even though this condition is
not enforced by a type system.

The calculus of orchestrators that we study is actually intermediate between pi cal-
culus [11] and join calculus [6]. Its motivations are pretty practical. We have recently
developed a distributed machine for the pi calculus – PiDuce [5, 4] – where it is pos-
sible to create channels and their managers in remote locations. This machine supports
inputs on received channels by decoupling them into a particle migrating to the remote
channel (the linear forwarder) and the continuation. This contribution analyzes an ex-
tension of this feature with patterns of inputs and discusses the technical problems we
found in prototyping them. Smooth orchestrators that coordinate local channels have
been already implemented in the current PiDuce prototype [4]. In the next release
we expect to extend the prototype with migrating smooth orchestrators and co-location
constraints.

Plan of paper. The paper is structured as follows. Section 2 gives the calculus with
orchestrators, and its reference semantics – barbed congruence. Section 3 gives the
encoding of few sample workflow patterns. Section 4 gives the smoothness constraint
on orchestrators that makes them implementable. We demonstrate the invariance of the
constraint with respect to the reduction and the implementation of the full calculus.
Section 5 describes the implementation of smooth orchestrators.

2 Processes with Orchestrators

In this section we introduce the calculus with orchestrators. We first present the syntax,
then the co-location relation, which is preparatory to the operational semantics, and
finally the operational semantics.
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2.1 Syntax

We assume an infinite set of names ranged over by x, u, v, . . . Names represent com-
munication channels, which are also the values being transmitted in communications.
We write x̃ for a (possibly empty) finite sequence x1 · · · xn of names. Name substi-
tutions {�y/�x} are as usual and ranged over ρ, ρ′. We let dom({�y/�x}) = x̃. We also
write (x1, · · · , xn @ y1, · · · , yn) for (x1 @ y1) · · · (xn @ yn). These sequences, called
co-location sequences, are ranged over by Λ, Λ′.

The syntax consists of processes P and join patterns J :

P ::= processes J ::= join patterns
0 (nil) x(ũ @ ṽ) (input)

| x ũ (output) | J &J (join)
|

∑
i∈I Ji � Pi (orchestrator)

| (x@ y)P (new)
| P | P (parallel)
| !P (replication)

In the rest of the paper, we write
∏

i∈1..n Pi for P1 | · · · | Pn and J1 �P1+ · · ·+Jn �Pn

for
∑

i∈1..n Ji � Pi. We also write (x)P for (x@ x)P and x(u) for x(u @u).
Free and bound names are standard: x is bound in (x@ y)P and ũ is bound in

x(ũ @ ṽ); names are free when they occur non-bound. Write bn(P ) and bn(J) for the
bound names of P and J , respectively; similarly write fn(P ) and fn(J) for the free
names. For example, fn(x(u @ u)& y(v @u)) = fn(x(v @u)& y(u @u)) = {x, y}.
The scope of the name x in (x@ y)P is y and the process P ; the scope of a name bound
by J in J � P is J and P . The name x in x ũ and in x(ũ @ ṽ) is called subject; sn(J)
collects all the subjects of J . The names

⋃
i∈I ũi in&i∈Ixi(ũi @ ṽi) are called defined

names.
Processes define the computational entities of the calculus. Most of the operators are

standard from the pi calculus [11], except new (x@ y)P , orchestrator
∑

i∈I Ji � Pi,
and input x(ũ @ ṽ). The process (x@ y)P creates a channel x at the same location of
y. The process (x@ x)P creates a channel x at a fresh location. The term x@ y in
new and input is called co-location pair. Orchestrators are reminiscent of join calcu-
lus definitions [6] and pi calculus input guarded choices. A branch Ji � Pi is chosen
provided a pattern of outputs that matches with Ji is present. In this case the con-
tinuation Pi is run and all the other alternatives are discarded. A pattern of outputs
x1 ũ1 | · · · | xn ũn matches with x1(ṽ1 @ w̃1)& · · · &xn(ṽn @ w̃n) provided ũi and
ṽi have the same length and the location constraints in w̃i are satisfied. For example,
xu | z u′ matches with x(v)& z(v′ @ v) if u and u′ are two co-located channels.

Join patterns J satisfy the following well-formedness constraints:

1. defined names of J are pairwise different;
2. (left-constraining) if J = &i∈1..nxi(ũi @ ṽi) then (ũ1 · · · ũn @ ṽ1 · · · ṽn) is such

that, for every decomposition (ũ′ @ ṽ′)(u @ v)(ũ′′ @ ṽ′′) of it, we have v �∈ ũ′′.
With an abuse of terminology, a co-location sequence that satisfies this property is
said left-constraining.
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Remark 1. Left-constraining makes & not commutative. For example the pattern J =
x(u @u)& y(v @u) is well-formed while J ′ = y(v @ u)&x(u @u) is not. Left-
constraining makes join patterns parsable from left to right; on the contrary, in
y(v @u)&x(u @u), to find the binder for the occurrence of u in y(v @ u) one has to
read the whole join pattern. Left-constraining also simplifies some technical discussions
later in the paper.

Remark 2. The well-formedness condition on join patterns does not enforce their
linearity with respect to subject names. For example, the pattern x(u)&x(v) is well-
formed. This linearity constraint is not easy to formalize because, in our calculus, re-
ceived names may be used as subjects of inputs in the continuations – input capability.
Removing the feature of input capability, the linearity constraint may be defined as in
join calculus [6].

2.2 Co-location Relation

Process reduction is possible if the co-location constraints specified in the join pattern
are fulfilled. This fulfillment is defined in terms of the co-location relation.

Definition 1. Let x̃@ ỹ � u�v, called the co-location relation, be the equivalence
relation on names that is induced by the following rules:

(BASE)

(x̃@ ỹ)(u @ v) � u�v

(LIFT)

x̃@ ỹ � u�v u, v �= z

(x̃@ ỹ)(z @ z′) � u�v

For example (x@ y)(z @ y) � x�z by transitivity. A less evident entailment is
(x@ y)(z @ y)(y @ u) � x�z. This is due to (x@ y)(z @ y) � x�z and to the (LIFT)
rule because x, z �= y. We write x̃@ ỹ � u1 · · · un

�v1 · · · vn if x̃@ ỹ � ui
�vi for

every i.
The co-location relation induces a partition on names that is left informal in this con-

tribution. For instance (x@ y)(z @ y)(y @u) gives the partition {x, z}, {y, u}. There
are permutations of co-location sequences that preserve the induced partition. A rele-
vant one is the following.

Proposition 1. If x �= x′, x �= y′, and x′ �= y then Λ(x@ y)(x′ @ y′) � u�v implies
Λ(x′ @ y′)(x@ y) � u�v.

Proof. For brevity we only examine four cases, and we assume u �= v.

(u, v �= x, x′) From Λ(x@ y)(x′ @ y′) � u�v and the hypotheses we derive Λ � u�v.
From this and the hypotheses we conclude Λ(x′ @ y′)(x@ y) � u�v by (LIFT).

(u = x, u, v �= x′) From Λ(u @ y)(x′ @ y′) � u�v we derive Λ(u @ y) � u�v. There
are two sub-cases:
(v = y) We conclude Λ(x′ @ y′)(u @ v) � u�v by (BASE).
(v �= y) Since u�y we must have derived u�v by transitivity from Λ � v�y.

From Λ � v�y and the hypotheses v, y �= x′, u we get Λ(x′ @ y′)(u @ y) �
v�y. From this and Λ(x′ @ y′)(u @ y) � u�y by transitivity we obtain
Λ(x′ @ y′)(u @ y) � u�v.
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(u = x′, u, v �= x) We have Λ(x@ y)(u @ y′) � u�v. There are two sub-cases:
(v = y′) We have Λ(u @ v) � u�v. From this and the hypotheses u, v �= x we

conclude Λ(u @ v)(x@ y) � u�v.
(v �= y′) Since u�y′ we must have derived u�v by transitivity from Λ(x@ y) �

v�y′. From this and the hypotheses v, y′ �= x we get Λ � v�y′. From this and
the hypotheses v, y′ �= u, x we get Λ(u @ y′)(x@ y) � v�y′. Using similar
arguments we derive Λ(u @ y′)(x@ y) � u�y′ and by transitivity we conclude
Λ(u @ y′)(x@ y) � u�v.

(u = x, v = x′) We have Λ(u @ y)(v @ y′) � u�v. From the hypotheses we have
u, v �= y′ and u, v �= y. We must have concluded u�v by transitivity from y�y′.
From this and y, y′ �= v, u we get Λ(v @ y′)(u @ y) � y�y′. From this and
Λ(v @ y′)(u @ y) � u�v we conclude Λ(v @ y′)(u @ y) � u�v. ��

It is possible to establish a relation between the partition induced by a co-location se-
quence and the one obtained when bound names in a suffix of the same sequence are
substituted.

Proposition 2. Let ρ be a substitution such that Λ � x̃ρ�ỹρ. Then Λ(x̃@ ỹ) � u�v
implies Λ � uρ�vρ.

Proof. By induction on the proof of Λ(x̃@ ỹ) � u�v. The base case is straightfor-
ward. The inductive case is when the last rule is an instance of (LIFT). Let (x̃ @ ỹ) =
(x̃′′ @ ỹ′′)(x′ @ y′) and let Λ(x̃ @ ỹ) � u�v be demonstrated by (LIFT) with premises
Λ(x̃′′ @ ỹ′′) � u�v and u, v �= x′. We have that Λ � x̃ρ�ỹρ implies Λ � x̃′′ρ�ỹ′′ρ.
Henceforth, by inductive hypothesis, we conclude Λ � uρ�vρ. ��

2.3 Operational Semantics

The operational semantic is defined by means of a structural congruence that equates
all processes that have essentially the same structure and that are never distinguished.

Definition 2. Structural congruence ≡ is the smallest equivalence relation that satis-
fies the following axioms and is closed with respect to contexts and alpha-renaming:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R !P ≡ P | !P
(x@ y)0 ≡ 0 (x@ y)(P | Q) ≡ P | (x@ y)Q if x �∈ fn(P )

(x@ y)(x′ @ y′)P ≡ (x′ @ y′)(x@ y)P if x �= x′, x �= y′, and y �= x′

Notice that the last congruence axiom is strictly related to Proposition 1.

Definition 3. The reduction relation → is the least relation satisfying the rule

M =
∏

j∈1..n xj ũj Jk = &j∈1..nxj(ũj @ ṽj) k ∈ I

dom(ρ) =
⋃

j∈I ũj

(
z̃ @ ỹ � ũjρ

�ṽjρ
)j∈1..n

(z̃ @ ỹ)
(
Mρ |

∑
i∈I Ji � Pi | R

)
→ (z̃ @ ỹ)

(
Pkρ | R

)

and closed under ≡, | and (z @ z′) .
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The last premise of the reduction rule requires that the interacting processes are un-
derneath a sequence of news that is long enough. For example, the process P = xu |
x(u @ v) � Q is inactive. On the contrary (u @ v)P reduces to Q. We refer to the intro-
duction for few sample processes in our calculus.

The semantics is completed by the notion of barbed congruence [12]. According to
this notion, two processes are considered equivalent if their reductions match and they
are indistinguishable under global observations and under any context.

Definition 4. The name x is a barb of P , written P ↓ x, when

x ũ ↓ x
(z @ y)P ↓ x if P ↓ x and x �= z
!P ↓ x if P ↓ x
P | Q ↓ x if P ↓ x or Q ↓ x

Write ⇒ for →∗ and ⇓ for ⇒↓.
A barbed bisimulation is a symmetric relation φ such that whenever P φ Q then

(1) P ↓ x implies Q ⇓ x, and (2) P → P ′ implies Q ⇒ Q′ and P ′ φ Q′. The largest

barbed bisimulation is noted
�≈.

Let C[ ] be the set of contexts generated by the grammar:

C[ ] ::= [·] |
∑

i∈I

Ji � C[ ] | (x@ y)C[ ] | P |C[ ] | C[ ]|P | !C[ ]

The barbed congruence is the largest symmetric relation ≈ such that whenever P ≈ Q

then, for all contexts C[ ], C[P ]
�≈ C[Q].

3 On the Expressivity of Orchestrators

Orchestrators constitute a basic mechanism that may express standard workflow pat-
terns in Web services as well as common synchronization constructs in programming
languages. A few paradigmatic encodings of patterns are described below.

Client/supplier/bank interaction. The first example describes a Supplier that waits for
requests from clients. Upon receiving a buy request, the supplier asks the client about
his financial availability. The client must reassure the supplier by letting his financial
institution (a bank ) vouch directly for him. In the meantime, the supplier forwards the
client’s request to the appropriate manufacturer, which will proceed with the delivery
as soon as he receives a confirmation from the bank. We write x [ũ] instead of x ũ:

Supplier def= buy(item, x)� (voucher @ item)(
x [voucher , amount ]
| voucher (u)& item(v) � deliver [u, v] | record [u, v])

We note that several clients may compete for the same item. In this case, delivery oc-
curs only when the payment for the item is available. We also observe that the channel
voucher is co-located with item. Henceforth, the orchestrator voucher (u)& item() �
deliver [u, v] | record [u, v] will coordinate two channel managers at a same location.
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Synchronizing merge. Synchronizing merge is one of the advanced synchronization pat-
terns in [14]. According to this pattern, an activity A may trigger one or two concurrent
activities B and C. These activities B and C signal their completion by sending mes-
sages to a fourth activity D. Synchronization occurs only if both B and C have been
triggered. We assume that the choice of A of triggering one between B and C or both is
manifested to D by emitting a signal over one or not, respectively. This signal is similar
to the so-called “false tokens” in those workflow engines that support this synchroniza-
tion pattern:

SynchMerge def= b(v)& one() � d [v] + c(v)& one() � d [v] + b(v)& c(v′) � d [v, v′]

Dynamic load balancing. Our last example models a load balancing mechanism for
Web services. We assume the existence of two message queues: job , where requests for
services are posted, ready where services make themselves available for processing one
or more requests:

LoadBal def= . . . ready(w)& job(u) � w [u]

This is a typical load balancing mechanism that can handle multiple requests concur-
rently, or may distribute the computational load among different servers, possibly de-
pending on request’s priority. In addition, in our language it is possible to change the
load dynamically. For instance, a supplier could run the code

job(u)& job(v) � w [u, u′]

that changes the policy by processing two jobs at a same time. This small piece of code
– a smooth orchestrator – may migrate to the location of the load balance process in
order to update the current policy.

4 The Smoothness Restriction

A distributed prototype of the calculus in Section 2 may be designed with difficulties.
Let us commit to a standard abstract machine of several distributed implementations
of process calculi [15, 6, 4]. Such a machine consists of processors running at different
locations with channels that are uniquely located to processors. Outputs are always
delivered to the processor of the corresponding subject where they may be consumed.
In this machine, the process

x(u @ u, v @ v) �
(
u(w)& v(w′) � P

)

dynamically creates an orchestrator on the received channels u and v. There are at least
two problematic issues as far as distribution is concerned. Let z and y be the names
respectively replacing u and v at run-time:

1. the orchestrator z(w)& y(w′)�P is consuming inputs on channels z and y that may
be not co-located. This means that the processors running such channel(-manager)s
must compete with the processor running z(w)& y(w′) � P for consuming output.
This is a classical global consensus problem.
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2. if the channels z and y were co-located, the global consensus problem could be
solved by migrating the orchestrator z(w)& y(w′) � P to the right processor. How-
ever, this migration is expensive, because P may be large and could require a large
closure.

Due to these problems, it is preferable to restrain our study to a sub-calculus of that
in Section 2, which is more amenable to distributed implementations. The restrictions
we consider are the following two:

1. every orchestrator is smooth, namely it has the shape
∑

i∈I Ji � zi ũi where ũi

is the sequence of bound names in Ji in the same order as they appear in Ji and⋃
i∈I sn(Ji) are all co-located;

2. we admit processes z(ũ@ ṽ) � P , namely generic continuations are restricted to
simple inputs.

The formalization of the co-location restriction of joins in smooth orchestrators is
defined by means of the type system in Table 1. Let ε denote the empty co-location
sequence.

Table 1. Co-location checks for the full calculus

(NIL)

Λ � 0
(OUTPUT)

Λ � x ũ
(ORCH)

(� Ji :: Λi ΛΛi � Pi)i∈I (Λ � x�y)x∈sn(Ji),y∈sn(Jj)

Λ �
∑

i∈I Ji � Pi

(NEW)

Λ(x@ y) � P

Λ � (x@ y)P

(PAR)

Λ � P Λ � Q

Λ � P | Q

(BANG)

Λ � P

Λ � !P

(INPUT)

� x(ũ @ ṽ) :: ũ @ ṽ

(JOIN)

� J :: Λ′ � J ′ :: Λ′′

� J & J ′ :: Λ′Λ′′

Definition 5. A process P is distributable if ε � P .

We defer the analysis of the distributed implementation of smooth orchestrators to
Section 5. The rest of the section is devoted to the correctness of the co-location sys-
tem and the encoding of the calculus in Section 2 into the sub-calculus with smooth
orchestrators. We begin with a couple of technical statements.

Lemma 1. 1. Let Λ and Λ′ be such that, for every x, y ∈ fn(P ), if Λ � x�y then
Λ′ � x�y. Then Λ � P implies Λ′ � P .

2. Let x′ be fresh with respect to names in Λ and in fn(P ). Then Λ(x@ y) � P
implies Λ(x′ @ y{x′

/x}) � P{x′
/x}.

Proof. We prove item 2; the first is simpler. The argument is by induction on the proof
of Λ(x@ y) � P and we discuss the case when the last rule is an instance of (NEW); the
others are similar or straightforward.
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In this case P = (u @ v)P ′ and Λ(x@ y) � (u @ v)P ′. By (NEW) one reduces to
Λ(x@ y)(u @ v) � P ′. There are two sub-cases (a) u �= x, y and v �= x and (b) the
others. In (a), by Proposition 1 and item 1, we also have Λ(u @ v)(x@ y) � P ′. Then,
by inductive hypotheses, it is possible to obtain Λ(u @ v)(x′ @ y{x′

/x}) � P ′{x′
/x}.

Using again item 1 we derive Λ(x′ @ y{x′
/x})(u @ v) � P ′{x′

/x} and we conclude by
(NEW). The sub-case (b) is proved as follows. Let Λ(x@ y)(u @ v) � P ′. The clashes
of u with x or y may be removed by inductive hypothesis. Therefore, the problematic
case is Λ(x@ y)(u @x) � P ′.

If x �= y then consider the co-location sequence Λ(u @ y)(x@ y). It is easy to
prove that Λ(x@ y)(u @x) � u′�v′ implies Λ(u @ y)(x@ y) � u′�v′. Therefore,
by item 1 we may derive Λ(u @ y)(x@ y) � P and, by inductive hypothesis, we de-
rive Λ(u @ y)(x′ @ y{x′

/x}) � P{x′
/x}. With a same argument it is possible to obtain

Λ(x′ @ y{x′
/x})(u @x′) � P{x′

/x} and by (NEW) we conclude Λ(x′ @ y{x′
/x}) �

(u @x′)P{x′
/x}.

If x = y then we consider the co-location sequence Λ(u @u)(x@ u). The proof may
be completed as in the previous sub-case. ��

It is worth to notice that Lemma 1 entails the weakening statement: if Λ � P and x is
fresh then Λ(x@ y) � P .

Lemma 2 (substitution). Let ρ be a substitution such that dom(ρ) = x̃. If Λ(x̃@ ỹ) �
P and Λ � x̃ρ�ỹρ then Λ � Pρ.

Proof. The argument is by induction on the proof of Λ(x̃@ ỹ) � P . The interesting
cases are when the last rule is an instance of (NEW) and of (ORCH).

(NEW). Let P = (u @ v)P ′ and u �= v (the case u = v is similar). By (NEW) we are
reduced to

Λ(x̃@ ỹ)(u @ v) � P ′ (1)

There are a number of sub-cases:

– u �∈ x̃ỹ and v �∈ x̃. Then by Proposition 1 the contexts Λ(x̃@ ỹ)(u @ v) and
Λ(u @ v)(x̃ @ ỹ) are equivalent and by item 1 we have Λ(u @ v)(x̃ @ ỹ) � P ′.
By applying the inductive hypothesis and (NEW) we obtain Λ � (u @ v)(Pρ) that
leads to Λ � ((u @ v)P )ρ since u, v �∈ x̃.

– u �∈ x̃ỹ and v ∈ x̃. We discuss two possibilities. If (v @w) ∈ (x̃ @ ỹ) and
w �∈ x̃ the contexts Λ(x̃@ ỹ)(u @ v) and Λ(x̃@ ỹ)(u @ w) are equivalent and
we can apply the same arguments as for the previous case. If (v @ v) ∈ (x̃@ ỹ)
consider the context Λ(u @ vρ)(x̃′ @ ỹ′) where (x̃′ @ ỹ′) is obtained by substitut-
ing (v @ v) with (v @ u) in (x̃@ ỹ). Note that Λ(x̃@ ỹ)(u @ v) � u′�v′ implies
Λ(u @ vρ)(x̃′ @ ỹ′) � u′�v′ so we can apply item 1 followed by the inductive
hypothesis and obtain Λ(u @ vρ) � P ′ρ. From this we derive Λ � (u @ vρ)P ′ρ,
which is equivalent to Λ � ((u @ v)P ′)ρ.

– u ∈ x̃ỹ. By Lemma 1(2) we reduce to Λ(x̃@ ỹ)(u′ @ v) � P ′{u′
/u}, where u′

is fresh, therefore u′ �∈ x̃ỹ. In the same way as in the first sub-case, we obtain
Λ � ((u′ @ v)P ′{u′

/u})ρ and we conclude because, by definition of substitution,
((u′ @ v)P ′{u′

/u})ρ = ((u @ v)P ′)ρ when u ∈ x̃ỹ.
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(ORCH). We discuss the case when P = J � P ′. The general case is similar. By
(ORCH), and letting � J :: (z̃ @ w̃) we are reduced to

Λ(x̃@ ỹ)(z̃ @ w̃) � P ′ (2)

and
(Λ(x̃@ ỹ) � x′�y′)x′,y′∈sn(J) (3)

We may apply Proposition 2 to (3) and obtain

(Λ � x′ρ�y′ρ)x′,y′∈sn(J) (4)

From (2), with a similar argument as in (NEW), we may derive Λ(z̃ @ w̃ρ) � P ′ρ or
similar judgments renaming names in z̃ when they clash with x̃ỹ (we omit these last
cases). By applying (ORCH) to this judgment, to (4) and to � Jρ :: (z̃ @ w̃ρ) we there-
fore derive Λ � Jρ � P ′ρ. We conclude by observing that Jρ � P ′ρ = (J � P ′)ρ. ��

A brief discussion about the substitution lemma follows. Consider

(a @ a)(u @u)(v @ u) � u& v � 0

and the substitution {a/v}. Note that (a @ a)(u @u) �� v{a/v}�u{a/v}. Indeed, if we
were allowed to apply {a/v} to the above judgment, we would obtain

(a @ a)(u @u) �� u& a � 0

Actually, the process u& v � 0 is well-typed in a context that co-locates u and v. While
this is the case for (a @ a)(u @u)(v @ u), it is not the case for (a @ a)(u @u). The
condition Λ � x̃ρ�ỹρ in the substitution establishes that co-located names remain co-
located after having been substituted. Therefore, if we insist in replacing v with a, we
must also map u to a. In this case the substitution lemma may be applied and we obtain:

(a @ a) � a& a � 0

Theorem 1 (subject reduction). If (x̃@ ỹ) � P and (x̃@ ỹ)P → (x̃ @ ỹ)Q then
(x̃@ ỹ) � Q. In particular, if P is distributable and P → Q then Q is distributable
as well.

Proof. It is sufficient to show that well-typedness is preserved by any structural con-
gruence rule (in both directions) and by the reduction rule. We omit the easy cases.

– Let Λ � (x@ y)(x′ @ y′)P with x �= y′, x �= x′, and y �= x′. By (NEW):
Λ(x@ y)(x′ @ y′) � P . By Lemma 1(1): Λ(x′ @ y′)(x@ y) � P . We conclude
by (NEW).

– Let Λ � (x@ y)(P | Q) and x �∈ fn(P ). It is sufficient to show that if u, v �= x then
Λ � u�v iff Λ(x@ y) � u�v. This follows by the rule (LIFT) of the co-location
relation.



Smooth Orchestrators 43

– Let Λ � (Mρ |
∑

i∈I Ji � Pi | R) and let (Λ)(Mρ |
∑

i∈I Ji � Pi | R) →
(Λ)(Pkρ | R). By the hypotheses of the reduction rule: M =

∏
j=1..n xj uj , Jk =

&j∈1..nxj(ũj @ ṽj), dom(ρ) =
⋃

j=1..n ũj and Λ � ũjρ
�ṽjρ for all j ∈ 1..n. The

type system yields � Jk :: (ũj @ ṽj)j∈1..n. Therefore, by the Substitution Lemma
applied to Λ(ũj @ ṽj)j∈1..n � Pk, we obtain Λ � Pkρ. From this we conclude
Λ � Pkρ | R. ��

The calculus with distributable orchestrators may be encoded into the calculus with
smooth ones. We first define an encoding that decouples complex continuations from
join patterns.

Definition 6. The encoding [[ · ]] is defined on processes in Section 2. The function [[ · ]] is
an homomorphism except for orchestrators. In the definition below we assume that, for
every j, zj �∈

⋃
i∈I(fn(Ji)∪bn(Ji)) and the tuple ũj is exactly the sequence of defined

names in Jj:

[[
∑

i∈I

Ji � Pi]] = (zi
i∈I)

(∑

i∈I

Ji � zi ũi | zi(ũi) � [[Pi]]
)

It is folklore to demonstrate the correctness of the encoding [[ · ]], namely P ≈ Q if and
only if [[P ]] ≈ [[Q]]. This is an immediate consequence of the following statement, that
in turn uses a generalization of the pi calculus law x(ũ).P ≈ (z)(x(ũ).z ũ | z(ũ).P ).

Proposition 3. For every P , P ≈ [[P ]].

Of course, if P is a generic process with orchestrators then join patterns in [[P ]] may
have subjects that are not co-located. It is possible to avoid such problematic cases by
restricting the domain of [[ · ]] to distributable processes.

Proposition 4. If P is distributable then [[P ]] is a process with smooth orchestrators.

5 The Implementation of Smooth Orchestrators

Smooth orchestrators are small pieces of code that may migrate over the network for
reaching the location where they execute. Unlike mobile agents, they exhibit a simple,
finite behavior and they require a limited-size message to migrate. Consider a single
branch smooth orchestrator:

x1(ũ1 @ ṽ1)& · · · &xn(ũn @ ṽn) � z ũ1 · · · ũn

It may be encoded as a vector of n+1 names – the subjects x1, · · · , xn plus the destina-
tion channel z – and a vector of k1 + · · ·+ kn values, where ki is the length of the tuple
ũi. Each value can be either an integer or a (free) name and it encodes a co-location
constraint: (1) the integer value j at position h indicates that the j-th and h-th bound
names must be co-located; (2) the constant c at position h indicates that the h-th bound
name must be co-located with c. An orchestrator of m branches is encoded by a vector
of length m whose elements are pairs of vectors of the above shape.
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The destination of this vector is driven by the location of the subjects (remember
that the subjects are co-located). When this vector arrives at destination, it triggers an
appropriate process that monitors the states of the message queues of the subjects. We
discuss the implementation of smooth orchestrators of increasing complexity, starting
from the automata-based technique for implementing join patterns in the join calculus,
and gradually extending the technique to include the new features. Initially we omit the
discussion of nonlinear patterns and orchestrators with multiple branches.

In the join calculus a join definition is compiled as a finite state automaton that
keeps track of the status of the message queues associated with the corresponding chan-
nels [9]. Formally, let x1(ũ1)& · · · &xn(ũn) � z ũi be the definition, which is also a
smooth orchestrator. The associated automaton is

M = (℘({x1, . . . , xn}), {+x1, −x1, . . . , +xn, −xn}, δ, ∅, {x1, . . . , xn}) (5)

where
δ(q, +xi) = q ∪ {xi} δ(q, −xi) = q \ {xi}

The automaton reacts to symbols of the form +x, meaning “the message queue of the
channel x is not empty” and −x, meaning “the message queue of the channel x is
empty”. Every time a message queue changes (either because a new message arrives, or
because a message is removed) it notifies all the automata associated with it. When the
joined channels are all fresh (and join definitions cannot be extended at runtime, like in
the join calculus) there will be a unique automaton for handling the whole definition. In
our case channel orchestrations may be added and/or removed at runtime, thus making
the set of automata associated with them change over time. The consequent competi-
tions for messages in shared channel queues are solved without difficulties because the
automata are all co-located.

This mechanism may be easily extended with co-location constraints when the scope
of such constraints is limited to the message itself. This is the case in
x(u @u, v @u)& y(w @w)�P . To model this extension the alphabet of the automata is
patched by admitting symbols of the form +x(ũ @ ṽ) and −x(ũ@ ṽ) instead of +x and
−x. When a new message x ã is available, each automaton associated with x makes
a +x(ũ@ ṽ) transition only if the co-location constraints are satisfied. When a mes-
sage x ã is removed from the x-queue, every automaton that has been affected by the
message checks whether the queue contains another message satisfying its co-location
constraints or not. In case there is no such message, the state of the automaton is ade-
quately reset in accordance with the new state of the queue.

When different joined channels have co-location dependencies, the constraints to be
verified may involve names that have been bound during previous transitions. For exam-
ple, take x(u @ u)& y(v @u) and assume that the corresponding automaton has made
a transition on a message xa. The subsequent transition on y depends on a’s location:
only a message y b such that a and b are co-located will make the automaton move into
the accepting state. Symmetrically, the automaton may start with a message y b. In this
case the automaton may progress provided a message xa has been enqueued with a
co-located with b. In facts, we are rewriting the above pattern into y(v @ v)&x(u @ v),
which preserves the co-location constraints (this operation is sustained by Lemma 1.1)
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and is left-constraining. More precisely, in the case of J = & i∈1..nxi(ũi @ ṽi) the
automaton is defined as follows. Let W =

⋃
j∈1..n ũj ṽj and w̃j be tuples in W . Then

M = ({& i∈Ixi(ũi @ w̃i) | I ⊆ 1..n}, {xi(ũi @ w̃i) | i ∈ 1..n}, δ, J, ∅)

where the transition relation δ is defined by
(
& i∈Ixi(ũi @ w̃i)

)
&x(ũ @ w̃)&

(
& j∈I′xj(ũj @ w̃j)

)

x(�u @ �w′)−→
(
& i∈Ixi(ũi @ w̃′

i)
)
&

(
& j∈I′xj(ũj @ w̃j)

)

where (ũi @ w̃i)i∈I(ũ @ w̃) is equivalent (in the sense of Lemma 1.1) to the sequence
(ũ @ w̃′)(ũi @ w̃′

i)
i∈I . (This rewriting can always be accomplished with simple syntac-

tic transformations because the join pattern is left constrained.)
The instantaneous description of an automaton is a pair (q, ρ) where q is the current

state and ρ is the substitution over names that have been bound while the automaton
moved from the initial state to q. The behavior of the automaton can be defined by the
following transition relation between instantaneous descriptions:

(q, ρ)
x a1,...,an−→ (q′, ρ[u1 �→ a1] · · · [un �→ an])

if q′ = δ(q, x(u1 @ v1, . . . , un @ vn)) and ai
�viρ. Note that the behavior is not deter-

ministic: an incoming message may spawn a new automaton at any time.
As usual this nondeterminism may be described in terms of multiple automata run-

ning simultaneously, or by means of backtracking when there is a choice. It is well
known that nondeterministic automata are considerably more expensive than the de-
terministic ones in terms of space occupation or computational complexity. Since this
complexity is unavoidable if constraints make two or more input channels depend on
each other, it makes sense to look for solutions that limits the use of nondeterministic
automata as much as possible. One of such solutions that we consider is the following.
Given a pattern J = & i∈Ixi(ũi @ ṽi) we can partition the set of xi’s so that two chan-
nels stay in the same partition only if they have co-location dependencies. Inputs that
only have local co-location constraints, like x(u @u) or y(u @u, v @u), are placed in
singleton partitions. Then, a deterministic automaton can be created for handling the
pattern J partition-wise. On the contrary, every partition that contains inputs with co-
location dependencies will be implemented by means of a nondeterministic automaton.
It turns out that this simple optimization is effective since most of the orchestrators with
complex join patterns that are used in practice have very few co-location dependencies.

So far the implementation of smooth orchestrators that are not linear with respect
to subjects have been purposely overlooked. The deterministic automaton 5 described
above can handle nonlinear patterns following the suggestion of Maranget and Le Fes-
sant in [9]. The basic observation is that the number of channels involved in a pattern is
finite and the automata can query the associated message queues for the number of the
needed messages. Because of their nature, nondeterministic automata can also handle
nonlinear patterns. On the contrary, deterministic automata with co-location constraints
cannot be extended in a straightforward way. Consider the pattern x(u @ u, v @ v)&
x(w @ w, z @ w). If a message satisfies x(w @ w, z @ w), but the automaton uses it for
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making a transition on x(u @ u, v @ v), then it might be not possible to reach the ac-
cepting state. What is needed in this case is again a form of nondeterminism.

The implementation of orchestrators that consist of several branches makes use of the
solution adopted in join calculus that mostly merges the automata for different branches
into a single automaton. The idea being that if the branches involve shared inputs, the
automata usually share some common structure and the resulting automaton is smaller
than the sum of the automata for the branches taken separately.
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