
Symbolic and Cryptographic Analysis of the
Secure WS-ReliableMessaging Scenario�

Michael Backes1, Sebastian Mödersheim2,
Birgit Pfitzmann1, and Luca Viganò2

1 IBM Zurich Research Lab, Switzerland
2 Information Security Group, ETH Zurich, Switzerland

Abstract. Web services are an important series of industry standards
for adding semantics to web-based and XML-based communication, in
particular among enterprises. Like the entire series, the security stan-
dards and proposals are highly modular. Combinations of several stan-
dards are put together for testing as interoperability scenarios, and these
scenarios are likely to evolve into industry best practices. In the terminol-
ogy of security research, the interoperability scenarios correspond to se-
curity protocols. Hence, it is desirable to analyze them for security. In this
paper, we analyze the security of the new Secure WS-ReliableMessaging
Scenario, the first scenario to combine security elements with elements
of another quality-of-service standard. We do this both symbolically and
cryptographically. The results of both analyses are positive. The dis-
cussion of actual cryptographic primitives of web services security is a
novelty of independent interest in this paper.

1 Introduction

Web services are a series of standards that add higher-layer semantics and qual-
ity of service to web-based communication. They use XML as the basic format
for all exchanged content and SOAP as the basis for message exchanges [19]. In
principle, web services are independent of the underlying transport protocol; in
practice, as the name suggests, typical web protocols are commonly used. An
important principle of web services is modularity (see [27]). This principle was
in particular applied to the design of quality-of-service features like security
and message ordering. Thus, these features are addressed by a set of standards
and pre-standard proposals that can, at least syntactically, be combined in a
highly flexible way. It is well-known, however, that combinations of security
elements have to be treated with care as many combinations may not yield
the properties that one might expect. The equivalent of the classic notion
of security protocols in the web-services space is interoperability profiles or
scenarios. While primarily defined for interoperability testing, they are not
unlikely to evolve into industry best practices for common cases. At the same
� This work was partially supported by the Zurich Information Security Center. It

represents the views of the authors.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 428–445, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis of the Secure WS-ReliableMessaging Scenario 429

time, they are at the level of concreteness where an analysis for well-known
protocol security properties is possible.

In this paper, we present the first such analysis for an interoperability profile
that combines features from the standards and proposals for security and another
quality-of-service area, reliable messaging. It is the Secure WS-ReliableMessaging
Scenario [24], which recently arose from the WS-ReliableMessaging and
WS-SecureConversation Composability Interop Workshop held in April 2005.1

It is based on the WS-Security standard [36] and the recent standard proposals
WS-ReliableMessaging [28] and WS-SecureConversation [32] with a few addi-
tional references to WS-Trust [33] and WS-Addressing [18]. We present two types
of analysis:

1. an automated analysis based on a number of symbolic protocol analysis
techniques under the assumption of perfect cryptography, and

2. an analysis closer to real cryptography based on explicit cryptographic as-
sumptions on the underlying cryptographic algorithms used.

Both analyses refer to the properties that are already informally stated in
WS-ReliableMessaging [28], where they are pointed out as desirable security
properties in the context of reliable sending of messages. WS-ReliableMessaging
does not address how these properties can be achieved but refers to a suitable
combination with the techniques offered by the security-specific web services
standards. The Secure WS-ReliableMessaging Scenario provides such a combi-
nation, and our analysis exemplifies that the properties can indeed be achieved
by the techniques offered by existing web services standards.

Our first, symbolic analysis has been carried out by employing the AVISPA
Tool [2, 43], which is a push-button tool for the analysis of security-sensitive
protocols and applications, under the assumption of perfect cryptography. The
AVISPA Tool relies on a modular and expressive formal language for specifying
protocols and their security properties, and integrates different back-ends that
implement a variety of state-of-the-art automatic analysis techniques. For our
analysis, we have employed OFMC [8] and CL-AtSe [42], which are the two more
mature back-ends of the tool and which both perform protocol falsification and
bounded verification by employing a number of symbolic techniques.

The Secure WS-ReliableMessaging Scenario has a structure that is far more
complex than standard security protocols. Hence, an important part of modeling
the protocol in a way feasible for automated analysis has been the search for a
way to restrict the number of permissible interleavings of sending and receiv-
ing events without excluding attacks, i.e., every attack on the original protocol
should be possible also on the simplified version. Below, we will first explain
how we have built such a specification, and then illustrate the goals that we
have checked in our analysis. Roughly speaking, we have shown that a client
and a service mutually authenticate each other on certain messages that they
exchange when executing the protocol, and that these messages remain secret.
1 The title of [24] contains “scenarios” in the plural, but for our purposes the document

defines one protocol and we thus use the singular.

430 M. Backes et al.

These problems give rise to an infinite search space, so that automated tools
need to make restrictions on some aspects of the problem in order to analyze
it. We have considered different settings by imposing bounds on the number of
possible parallel protocol sessions, on the number of message sequences that can
be considered in each session, and on the number of payloads per message se-
quence. Neither OFMC nor CL-AtSe have reported any attacks for the settings
we considered, and they have thus verified the Secure WS-ReliableMessaging
Scenario with respect to the modeled security properties for these settings.

Our second analysis is manual (and thus more time-consuming, less flexible
to protocol additions, and more prone to human error), but more realistic with
respect to the cryptographic primitives. For instance, we show that we can treat
the occurring key derivation via hash functions in the standard model of cryptog-
raphy as pseudo-random functions if applied to certain pairs of arguments. For
the other primitives, symmetric and asymmetric encryption as well as symmetric
authentication and signatures, we can use standard definitions. We also discuss
how close existing theorems on justifying symbolic analyses such as our first one
come to replacing a from-scratch cryptographic analysis such as our second one.
Note, however, that the Secure WS-ReliableMessaging Scenario, like all other
current communication security standards, does not prescribe that provably se-
cure primitives in the cryptographic sense are used, in particular for the sym-
metric primitives. Thus, we cannot claim that we proved exactly the standard
implementations under what became known as standard cryptographic assump-
tions such as the hardness of factoring. Our cryptographic analysis is modular,
and some results can immediately be reused for other profiles, e.g., the analy-
sis of the initial key exchange based mainly on WS-Trust and that of the key
derivation using elements of WS-SecureConversation.

Both our analyses have positive results, i.e., they demonstrate that at the
abstraction level of each analysis, the protocol is error-free. Note that our two
analyses are complementary (in particular, neither of them is derived from the
other), but we consider it interesting future work to investigate how to link the
two kinds of analysis for web services in the style of previous proofs of soundness
of Dolev-Yao models, e.g., see [1, 5, 6, 7, 20, 40].

Outline of the Paper. We start by describing the Secure WS-ReliableMessaging
Scenario and the corresponding security properties in Section 2. Sections 3 and 4
contain the symbolic and the cryptographic analysis of the scenario, respectively.
After reviewing further related work in Section 5, we give concluding remarks
and discuss possible future extensions of this work in Section 6.

Due to lack of space, discussions, examples, and proofs have been shortened
or omitted; details can be found in the extended version of this paper [3].

2 The Secure WS-ReliableMessaging Scenario

The Secure WS-ReliableMessaging Scenario is a two-party protocol initiated by
a client C and run together with a service S. It consists of three phases starting

Analysis of the Secure WS-ReliableMessaging Scenario 431

Long-term keys:

pkeX , skeX Public and secret encryption key of X ∈ {C, S}.
pksX , sksX Public and secret signature key of X ∈ {C, S}.
pksCA Public signature key of a certification authority CA.

CertX Public key certificate of X ∈ {C, S}. We have CertX = X, pkeX , pksX ,
SigCA(X, pkeX , pksX), where SigCA(·) denotes a signature computed by the
certification authority CA, valid with respect to pksCA.

Cryptographic primitives:

EncX(·) A public-key encryption scheme, denoting encryptions computed with public
key pkeX for X ∈ {C, S}.

SigX(·) A digital signature scheme, denoting signatures computed with secret key
sksX for X ∈ {C, S}.

SymEnck (·) A symmetric encryption scheme, denoting encryptions computed with secret
key k .

Mack (·) A message authentication code, denoting MACs computed with secret key k .

Hash(·) A hash function, e.g., SHA-256.

Fig. 1. Keys and cryptographic algorithms used in the Secure WS-ReliableMessaging
Scenario

Quantities occurring in the protocols:

ID1, . . . , ID9 Message IDs of the individual protocol messages.
IDsk ID of the symmetric master key sk that is established in the initial key

exchange phase.
IDSeq Sequence ID denoting the sequence of exchanged messages.
N, N∗ Nonces used to compute the master key sk .
N1, N2 Nonces used to compute the authentication and encryption session keys

sk1 and sk2.
m Payload that should be reliably sent from C to S.
n Natural number denoting an acknowledged message.
k , k ′ Symmetric keys used within a hybrid encryption in the initial key exchange

phase.
sk Symmetric master key shared between C and S after the initial key ex-

change phase. Derived from N and N∗ as sk = Hash(N, N∗).
sk1, sk2 Symmetric session keys for authentication and encryption shared between

C and S after the start of the message sending. Derived from sk , N1, and
N2 as sk i = Hash(Ni, sk).

Fig. 2. Quantities used in the Secure WS-ReliableMessaging Scenario

with a key-exchange phase, followed by the message-sending phase which uses
this key, and finished by a termination phase which cancels the validity of the
exchanged keys.

432 M. Backes et al.

We will use a straight font to denote cryptographic algorithms (Enc, Sig, etc.),
a straight font with capital letters to denote protocol-specific constants (RST,
RSTR, etc.), and an italic font to denote keys, identities, etc.

The key-exchange phase is based on public-key cryptography and hence re-
quires a mechanism to authenticate the respective public keys. The profile as-
sumes a certification authority CA, which has a secret key sksCA. Its public
counterpart, pksCA, is known to both C and S. The certification authority cer-
tifies the public keys of party X ∈ {C, S} by signing the triple (X, pkeX , pksX)
with its key sksCA, where pkeX and pksX denote X ’s public encryption key and
X ’s signature verification key, respectively. Note that pksCA must have been
conveyed in an authenticated manner to both C and S, and that pksCA must
not give certificates with the name X of an honest party to any other party.

Figures 1 and 2 summarize the notation for the keys held by both parties,
the cryptographic primitives we will be using, and the quantities involved in the
protocol. For interoperability, the scenario uses specific cryptographic algorithms
to implement the respective primitives — RSA-1.5 for public-key encryption,
RSA-SHA1 for digital signatures, AES128-CBC for symmetric encryption, and
HMAC-SHA1 for message authentication codes. In the cryptographic analysis
that we carry out in Section 4, we do not fix specific algorithms but require
that the used algorithms satisfy the respective security definitions under active
attacks, e.g., indistinguishability under adaptive chosen-ciphertext attacks in
the case of public-key encryption. Efficient schemes that satisfy these definitions
exist under reasonable assumptions.

2.1 Description of the Protocol

Before the protocol begins, each party X ∈ {C, S} has some starting information.
Besides its own encryption and signature keys, the client starts with the signature
verification key pksCA of the certification authority CA, a certificate CertC of
its own public keys, and a certificate CertS of the public keys of the service. The
service starts only with the signature verification key pksCA and with its own
encryption and signature keys.

The protocol consists of nine steps, which we now briefly describe; an illustra-
tive prose description of the individual steps based on Figures 3-5 is given in [3].
The first two steps constitute the key-exchange phase of the protocol between
the client and the service and essentially rely on the functionalities offered by
WS-SecureConversation; they are depicted in Figure 3. Similarly, the last two
steps cancel the validity of this key as depicted in Figure 5. Steps three to seven
are depicted in Figure 4 and constitute the message-sending phase, which con-
sists of the creation of a message sequence, the secure sending of a message
m, and the closing of the sequence; each of these steps essentially relies on the
functionalities offered by WS-ReliableMessaging.

The protocol is not simply a ping-pong protocol: after the key-exchange phase
has been completed, the client is allowed to start multiple sessions of the message-
sending phase in parallel and there are non-deterministic choices on the order of
messages.

Analysis of the Secure WS-ReliableMessaging Scenario 433

Composite Fields for Initial Key Exchange (Step 1-2):

body1 SymEnck(RST, S, N)
SigConf SigC(ID1, S, RST, C, body1,CertC)
header1 EncS(k), SymEnck(SigConf)
body2 SymEnck′(RSTR, IDsk , S, N∗)
header2 EncC(k′), SymEnck′(SigConf),

SymEnck′(SigS(ID2, C, RSTR, ID1,SigConf , body2))

Protocol Flows (Step 1-2, from WS-SecureConversation):

1. RequestSecurityToken: C −−
ID1, S, RST, C,CertC , header1, body1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

2. RequestSecurityTokenResponse: C ←−
ID2, C, RSTR, ID1,CertC , header2, body2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

Fig. 3. The Key-exchange Phase, implemented via WS-SecureConversation

Composite Fields for Message Sending (Step 3-7):

Session (IDsk , N2), (IDsk , N1)

body3 CS, C, IDsk

header3 SymEncsk2
(Macsk1(ID3, S, CS, C, body3))

body4 CSR, IDSeq

header4 SymEncsk2
(SigConf), SymEncsk2

(Macsk1(ID4, C, CSR, ID3, body4))

body5 SymEncsk2
(PM, m)

header5 SymEncsk2
(Macsk1(ID5, S, PM, (IDSeq ,n), body5))

body6 ()

header6 SymEncsk2
(Macsk1(ID6, C, SA, (IDSeq ,n), body6))

body7 TS, IDSeq

header7 SymEncsk2
(Macsk1(ID7, S, TS, (TS, IDSeq), body7))

Message Sending (Step 3-7, from WS-ReliableMessaging):

3. CreateSequence: C −−−−−
ID3, S, CS,Session, header3, body3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

4. CreateSequenceResponse: C ←−−−−
ID4, C, CSR,Session, header4, body4−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

5. PayloadMessage: C −−−−−−−
ID5,S,PM,(IDSeq ,n),IDsk ,Session,

header5,body5−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

6. SequenceAcknowledgment: C ←−
ID6, C, SA, (IDSeq ,n),Session, header6, body6−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

7. TerminateSequence: C −−−
ID7, S, TS, IDsk ,Session, header7, body7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

Fig. 4. The Message-sending Phase, implemented via WS-ReliableMessaging

434 M. Backes et al.

Composite Fields for Session Closure (Step 8-9):

Session (IDsk , N2), (IDsk , N1)

body8 CST, IDsk

header8 SymEncsk2
(Macsk1(ID8, S, CST, C, body8)

body9 CSTR

header9 SymEncsk2
(SigConf),

SymEncsk2
(Macsk1(ID9, C, CSTR, (IDsk , N1), body9)

Protocol Flows (Step 8-9, from WS-SecureConversation):

8. CancelSecurityToken: C −
ID8, S, CST, C, IDsk ,Session, header8, body8−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

9. CancelSecurityTokenResp: C ←−−−
ID9, C, CSTR,Session, header9, body9−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

Fig. 5. The Termination Phase, implemented via WS-SecureConversation

The necessary tests on the received messages follow the usual convention as
described in [35], e.g., an honest receiver of a message checks that the decrypted
plaintexts are of the correct format, that respective parts of the plaintext match
corresponding parts sent unencrypted in the same message, and that the sender
and receiver fields contain the expected values. We do not always mention this
explicitly in the following.

Possible Protocol Extensions. We moreover sketch a possible extension of
the interoperability scenario to reflect additional capabilities of the client
and the service offered by the WS-ReliableMessaging standard. The standard

Composite Fields for Protocol Extension:

ID5.1, ID5.1∗ Message IDs of the additional protocol messages.
body5.1 ()
header5.1 SymEncsk2

(Macsk1(ID5.1, C, NAck, (IDSeq ,n), body5.1))
body5.1∗ ()
header5.1∗ SymEncsk2

(Macsk1(ID5.1∗ , C, AR, (IDSeq ,n), body5.1∗))

Resend and Ack Inquiries (Between Step 5 and 6, from WS-
ReliableMessaging):

5.1. NotAcknowledged: C ←−
ID5.1, C, NAck, (IDSeq ,n),Session, header5.1, body5.1−−− S

5.1∗. AckRequested: C −
ID5.1∗ , C, AR, (IDSeq ,n),Session, header5.1∗ , body5.1∗−−→ S

Fig. 6. Extension of the Secure WS-ReliableMessaging Scenario with Resend Inquiries

Analysis of the Secure WS-ReliableMessaging Scenario 435

additionally allows a client to request an unreceived acknowledgment of a previ-
ously sent message, and it allows a service to ask the client to re-send a message if
it has not been received yet. This yields two additional steps which are depicted
in Figure 6.

2.2 Security Properties

We consider a range of reasonable security requirements for the parties involved;
some of the requirements are explicitly mandated by the standards, others are
optional and hold only under stronger assumptions on the underlying crypto-
graphic primitives. The following security properties are explicitly pointed out
in WS-ReliableMessaging:

– No Message Alteration: Payloads contained in the 5. PayloadMessage in a
session between an honest client and an honest service cannot be altered by
an adversary.

– No Message Disclosure: Payloads contained in the 5. PayloadMessage in a
session between an honest client and an honest service remain secret from
the adversary.

– Key Integrity and Confidentiality: If an honest client and an honest ser-
vice established a shared key sk after the first two steps of the protocol,
both parties obtained the same key. Moreover, this key is secret from the
adversary.

– Authentication: If an honest service accepts a payload m presumably from
an honest client, then this honest client indeed sent this payload in the same
session.

Accountability is also mentioned in WS-ReliableMessaging as one of the proper-
ties desirable in certain scenarios. As this scenario uses symmetric cryptography
for the message authentication, accountability in the sense of non-repudiation
is clearly not a goal of this scenario. The potential real-life accountability of
this scenario is formally captured on the protocol level by the message integrity
property and otherwise given by non-protocol factors. We refer to [3] for ad-
ditional useful properties that are not explicitly required by the standard as
well as for a refinement of the aforementioned properties tailored to the Secure
WS-ReliableMessaging Scenario.

3 Symbolic Security Analysis

The AVISPA Tool. We have carried out a symbolic analysis of the Secure
WS-ReliableMessaging Scenario by employing the AVISPA Tool [2, 43], which
is a push-button tool for the automated validation, under the assumption of
perfect cryptography and Dolev-Yao adversary [25], of industrial-scale Internet
security-sensitive protocols and applications. A user interacts with the AVISPA
Tool by specifying a security problem (a protocol paired with a security property
that it is expected to achieve) in the High-Level Protocol Specification Language

436 M. Backes et al.

HLPSL [21], which is an expressive, modular, role-based, formal language that
allows for the specification of control-flow patterns, data structures, alternative
adversary models, complex security properties, as well as different cryptographic
operators and their algebraic properties. The AVISPA Tool automatically trans-
lates a user-defined security problem into an equivalent description of an infinite-
state transition system that is then input to the back-ends of the AVISPA Tool.
The back-ends search the transition system for states that represent attacks on
the intended properties of the protocol.

The current version [2, 43] of the tool integrates four back-ends that implement
a variety of state-of-the-art automatic analysis techniques, ranging from protocol
falsification (by finding an attack on the input protocol) to abstraction-based
verification methods for infinite numbers of sessions. The back-ends are: the
On-the-fly Model-Checker OFMC, the Constraint-Logic-based Attack Searcher
CL-AtSe, the SAT-based Model-Checker SATMC, and the TA4SP verifier, which
analyzes protocols by implementing tree automata based on automatic approx-
imations. All the back-ends of the tool analyze protocols by considering the
standard Dolev-Yao model of an active adversary that controls the network but
cannot break cryptography; in particular, the adversary can intercept messages
and analyze them if it possesses the respective keys for decryption, and it can
generate messages from his knowledge and send them under any party’s name.
Upon termination, the AVISPA Tool outputs that the protocol was verified with
respect to the specified security problem, that an attack was found, or that the
available resources were exhausted.

For our analysis of the Secure WS-ReliableMessaging Scenario, we have em-
ployed OFMC [8] and CL-AtSe [42], which are the two more mature back-ends
of the tool, with better scope and performance. OFMC and CL-AtSe both per-
form protocol falsification and bounded verification by employing a number
of symbolic techniques. Some of these techniques are back-end specific, while
other ones are common to the two back-ends, such as the lazy intruder tech-
nique to symbolically represent all the possible messages that the Dolev-Yao
adversary can generate. These techniques enable both OFMC and CL-AtSe to
handle protocols with complex message terms and in particular to model the
Secure WS-ReliableMessaging Scenario in its full complexity, without having to
simplify the messages that are exchanged.2

The Model. The back-ends of the AVISPA Tool have successfully validated
(or found a number of new attacks on) security protocols such as those in
the Clark/Jacob library [22], as well as Kerberos, IKE, SET, and other pro-
tocols proposed by standardization organizations such as the IETF, ITU, W3C,
Oasis, IEEE, 3GPP, and OMA. Similar analyses have been carried out by other
(semi-)automated tools such as [9, 16, 17, 26, 41].

2 The complexity of the Scenario prevents the usage of the current versions of SATMC
and TA4SP. We hope to soon be able to report on the analysis with these back-ends
as well; in particular, if analysis with TA4SP succeeded, then that would prove that
the protocol is safe for secrecy goals for any number of sessions.

Analysis of the Secure WS-ReliableMessaging Scenario 437

The Secure WS-ReliableMessaging Scenario has a structure that is far more
complex than that of standard security protocols. Nonetheless, thanks to its ex-
pressiveness, HLPSL allows us to completely model the protocol, i.e., to provide
a formal specification of the complex interactions between the two honest parties,
which we can model as two separate client and service programs that commu-
nicate over an insecure network controlled by a Dolev-Yao adversary. However,
such a model is too complex for automated analysis as even for a limited number
of sessions, the set of permissible interleavings of sending and receiving events
is enormous. For instance, the messages sent by the client may arrive in any
order at the service. Additionally, both the client and the service can send “ad-
ministrative” messages, i.e., acknowledge messages, request the retransmission
of messages, or request the acknowledgment of messages. An important part of
modeling the protocol in a way feasible for automated analysis has thus been
the search for a way to restrict the number of interleavings without excluding
attacks, i.e., such that any attack on the original protocol is possible also on the
simplified version.

We have performed a step-by-step simplification of the client and service
programs, whereby we have showed that these simplifications do not exclude
any attacks.3 As we lack space to give the HLPSL specification here due to its
complexity and the amount of explanation that would be necessary, we only
sketch the main ideas behind our HLPSL specification. In particular, we briefly
illustrate the simplifications we have carried out for the client program; the ones
for the service program are similar, and more details can be found in [3], together
with a formal justification of the fact that these simplifications of the HLPSL
specification do not exclude any attacks.

In order to simplify the client, note, firstly, that it is not a restriction if the
client sends in one transition all the messages that it wishes to transmit via the
5. PayloadMessage step as soon as it has received the 4. CreateSequenceResponse
message. Secondly, the client canneglect any requests of step 5.1. NotAcknowledged
from the service to retransmit messages, since the Dolev-Yao adversary has
seen all messages and can thus replay them to the service if this is necessary
for an attack. Hence, we can consider a simplified client program that, hav-
ing sent all its payload messages, simply waits for acknowledgment messages
(6. SequenceAcknowledgment) or, after timing out, requests acknowledgment from
the service (5.1∗. AckRequested). Thirdly, since the Dolev-Yao adversary can inter-
cept all responses from the service, it might deliberately make the client produce
acknowledge request messages. Hence we can assume that the adversary can ob-
tain acknowledge request messages of step 5.1∗. AckRequested for every payload
message. No attacks are therefore excluded if the client program sends with every
5. PayloadMessage also an 5.1∗. AckRequested message.
3 The simplified (restricted) version of the protocol that we obtain in this way is only

useful for the formal analysis, not for the practical deployment of the protocol: for
instance, since a Dolev-Yao adversary can replay old messages arbitrarily if this is
necessary to mount an attack, we can restrict the model to client programs that
never retransmit old messages.

438 M. Backes et al.

These simplifications yield a client program that behaves as follows in every
message sending phase: it sends all payload messages together with the corre-
sponding requests for acknowledgment in one step, then waits until all messages
are acknowledged, and finally sends a 7. TerminateSequence message.

Goals. Let us define the security-relevant messages of the Secure WS-
ReliableMessaging Scenario to be the key-material (sk, sk1, and sk2) and all
payloads transmitted with a 5. PayloadMessage. For our symbolic analysis, we
have specified a number of secrecy and authentication goals (giving rise to dif-
ferent HLPSL security problems for the Scenario):

– secrecy of all security-relevant messages, and
– mutual authentication between client and service on all security-relevant

messages.

We model these goals by labeling several transitions in the HLPSL specification
with special events that express the meaning of the transition with respect to
the goals of the protocol. First, whenever a client c that believes to talk with
service s creates a security-relevant message m, then it generates a secret event
secret(m,{c,s}) expressing that m must remain secret between the parties in
the specified set, in this case c and s. This allows us to define a violation of
secrecy by a state of the transition system in which the adversary knows a mes-
sage m for which a secrecy event has occurred with a set of parties to which the
adversary does not belong. Second, we define violations of authentication by la-
beling the transitions with witness and request events. Whenever a party a that
believes to talk with another party b first “handles” some security-relevant mes-
sage m (i.e., either creates it or receives it for the first time), then it generates an
event witness(a,b,id,m)where id is an identifier that uniquely determines the
purpose of the message in the protocol. This witness event expresses that a uses
message m for communication with b and for purpose id. The service s generates
an event request(s,c,id,m) when it receives a payload m (supposedly) from
the client c with index id. Similarly, if the client c receives the acknowledgement
for the id-th payload (supposedly) from the service s, and if c has previously
sent m as the id-th payload, then c generates the event request(c,s,id,m).
Similar request events are generated for the authentication on the key-material.
(Intuitively, request events express that a party begins to rely on the agreement
with another party on the specified value.)

A violation of authentication is then defined as any of the two follow-
ing situations. First, weak authentication is violated whenever there is a
request(b,a,id,m) but no matching witness event witness(a,b,id,m), i.e.,
a party b believes a message m to come from a, but a has never sent m, at least
not for this purpose. Second, strong authentication is violated whenever weak
authentication is, or whenever a request event occurs more frequently than the
corresponding witness event (i.e., by a kind of replay, the adversary made party
b accept a message more often than it was actually said by a). Note that these
goals are equivalent to Lowe’s [39] notions of non-injective and injective agree-
ment, respectively.

Analysis of the Secure WS-ReliableMessaging Scenario 439

The security problems that we obtain by modeling these goals cover the
main security properties stated for the Secure WS-ReliableMessaging Scenario in
Section 2.2 as follows:

– secrecy of all security-relevant messages covers no message disclosure and
key confidentiality,

– mutual authentication between client and service on all security-relevant
messages covers no message alteration, key integrity, and authentication.

Bounds of the Analysis. The security problems associated with the Secure
WS-ReliableMessaging Scenario give rise to an infinite search space, so that,
in order to analyze this space, automated tools need to make some restrictions,
i.e., to impose some bounds to consider relevant protocol execution and analysis
settings. In the following, we will describe the restrictions that we imposed in
our analysis with OFMC and CL-AtSe.

In general, there is no bound on the number of parties and sessions of the
protocol that can be executed in parallel. While one can bound the number of
parties, by the argumentations of [23] or by the symbolic sessions technique of
OFMC [8], the problem of an unbounded number of sessions cannot be solved
in general since it gives rise to undecidability. Moreover, there are two similar
problems of unboundedness in the protocol: there is no bound on the number of
payload messages to be exchanged or on the number of new message sequences
that can be started, i.e., the protocol contains unbounded loops. All these prob-
lems give rise to an unbounded number of steps of honest parties, while both
OFMC and CL-AtSe currently require analysis settings with bounded numbers
of steps of honest parties.

In general, there is also no bound on the complexity of messages that the ad-
versary can generate. However, as we remarked above, both OFMC and CL-AtSe
implement the lazy intruder technique, which uses a symbolic representation to
avoid explicitly enumerating the possible messages that the Dolev-Yao adversary
can generate, and which allows for an analysis without restricting this parameter
of the problem.

We have therefore analyzed the protocol with OFMC and CL-AtSe under the
following execution/analysis settings: there are at most three parallel protocol
sessions, the client can start at most two message-sending sequences per protocol
session, and there are at most three payload messages per message sequence.
Neither OFMC nor CL-AtSe have reported any attacks on the protocol for these
analysis settings. In particular, for three parallel sessions, both OFMC and CL-
AtSe verified the protocol within three hours (while the verification of smaller
settings required between few seconds to a minute).

4 Cryptographic Security Analysis

In this section, we complement the symbolic analysis of the security properties
of the WS-ReliableMessaging Scenario from Section 3 by a cryptographic analy-
sis. Thus we now analyze the security of the scenario in a cryptographic setting

440 M. Backes et al.

where the cryptographic primitives and the perfect cryptography assumption
are replaced with actual cryptographic algorithms and the corresponding se-
curity notions that reason about probabilistic polynomial-time attackers. It is
known that, even if the symbolic analysis is careful in distinguishing primitives
like symmetric encryption and authentication, as both the analyzed scenario and
the analysis in Section 3 do, and even if one assumes that an implementation
is made with primitives secure according to the strictest usual cryptographic
definitions, the results of such a symbolic analysis may not carry over to the
real implementation. The most prominent example is that it cannot be avoided
in general that the length of encrypted payload data, such as the values m in
the PayloadMessage, leaks. Other problems that may occur in general scenarios
are due to the probabilism of secure public-key encryption, key-stealing attacks,
and manipulations of symmetric encryptions unless authenticated encryption
[11, 10] is used in the implementation [5, 4]. Consequently, in a Dolev-Yao-style
cryptographic library designed to be implemented based on arbitrary crypto-
graphically secure primitives and to be usable in a secure way within arbitrary
protocols with arbitrary security properties, both the abstraction and the real-
ization must have certain idiosyncrasies. Hence, while it might be interesting to
augment a tool like the AVISPA Tool by the idiosyncrasies of the Dolev-Yao
style model of [5, 6, 4], and while implementing the primitives of WS-Security
with the extended realizations from those papers (e.g., some additional tagging
and randomization) might realize the goal of web service security to offer com-
pletely composable primitives also in a semantic sense, neither has been done yet.
Other work on bridging the gap between symbolic and cryptographic security
concentrated more on keeping very close to standard symbolic and real versions
at the cost of generality. However, at present none of them covers the protocol
class of Secure WS-ReliableMessaging, nor the security properties required. The
seminal work [1] treats passive attacks only. Active attacks have been considered
in this context in [40, 38, 20]. First, however, each of these papers treats only one
cryptographic primitive, asymmetric encryption in [40, 20] and symmetric en-
cryption in [38]. Secondly, [40] only treats integrity properties, while [38] only
treats the secrecy of fixed, protocol-internal messages and [20] only treats the
secrecy of nonces, i.e., random values chosen within the protocol and not usable
for operations (such as encrypting) in that protocol. It may be interesting future
work to extend such results on restricted usage of cryptographic libraries to the
typical usage in WS-Security protocols. Our following considerations can be seen
as a step in this direction.

Given these shortcomings of the current methods for deducing the security
in the cryptographic setting from a symbolic proof, we do not try to do that,
but base our proof directly on existing cryptographic work that explored the
security of encryption, signatures, and MACs when combined in specific ways.
In the following, we assume that the public-key encryption system Enc be secure
against adaptive-chosen ciphertext attacks (short IND-CCA2-secure), that the
symmetric encryption scheme be secure under adaptive chosen-plaintext attacks
(short IND-CPA-secure), and that the signature scheme Sig and the message

Analysis of the Secure WS-ReliableMessaging Scenario 441

authentication scheme Mac be secure against adaptive chosen-message attacks
(short IND-CMA-secure). These are the commonly accepted security definitions
of these primitives under active attacks so that we omit their rigorous definition.
Primitives secure in this sense exist under reasonable assumptions.

Furthermore, we have to require that the hash function Hash used to compute
the secret key sk based on two secret nonces does not degenerate the randomness
induced by the nonces. This would be clear if we worked in the random oracle
model; however, the specific setting of the scenario allows us to work in the
standard model with a sufficient condition being that Hash, when applied to
pairs, is a pseudo-random function in its first argument.

We obtain the following theorem (proven in [3]), in which we assume that the
Secure WS-ReliableMessaging Scenario is run as a stand-alone protocol. This is
not necessarily realistic for a web-services implementation; then our approach
may have to take policies into account as in [14].

Theorem 1. (Cryptographic Security of Secure WS-Reliable Messaging Sce-
nario) If Enc is IND-CCA2-secure, if Sig is IND-CMA-secure, if SymEnc is IND-
CPA-secure, and if Hash, when applied to pairs, is a pseudo-random function
in its first argument, then key integrity and key confidentiality are cryptograph-
ically fulfilled for the scenario, i.e., if the protocol is run with a probabilistic
polynomial-time adversary, the keys are authentic with overwhelming probabil-
ity, and the keys are indistinguishable from fresh random keys given the view of
the adversary. If additionally Mac is IND-CMA-secure, then message integrity
and no message disclosure are cryptographically fulfilled. �

5 Further Related Literature

Work is currently underway on scaling-up formal analysis methods and tools to
web services security protocols, e.g., [12, 13, 14, 15, 29], although none of these
works performs a cryptographic analysis of the protocols. In particular, the
TulaFale tool [15] compiles descriptions of XML/SOAP-based security proto-
cols and properties into the applied pi calculus and then employs the ProVerif
tool [16]. We considered employing also TulaFale for the automatic symbolic
analysis of Secure WS-ReliableMessaging, but its input language would first
need to be extended to express all the constructs of the profile, and we thus
leave this analysis and the comparison with our own symbolic analysis as future
work. Recent work has also considered the automated analysis of XML-based
web services: [37] presents a formal analysis of an encoding of the original XML
messages into standard security protocol notation, showing that this encoding
is without loss of attacks. Based on this encoding, the Casper/FDR tool can
then check security properties for an unbounded number of sessions thanks to
the employed data independence technique (which is similar to the abstraction
techniques in TA4SP). The considered protocol, however, is simpler than the
Secure WS-ReliableMessaging Scenario (e.g., no open-ended exchange of pay-
load messages) and its analysis with Casper/FDR required simplifications of the

442 M. Backes et al.

message terms. It is thus not clear if the method of [37] could also work on
complex protocols such as the one considered in this paper.

Another type of analysis of a web services security protocol is that of an
interoperability profile of WS-Federation in [31]. The analyzed profile [34] is a
passive requestor profile, i.e., the user is represented only by a browser. The
emphasis therefore lies on treating a browser in a protocol security proof. The
analysis is by hand, and as only signatures and secure channels occur as cryp-
tographic primitives, there is not much discussion of detailed properties of the
cryptographic primitives in web services.

6 Conclusion and Outlook

We have given a symbolic and a cryptographic analysis of the security of the new
Secure WS-ReliableMessaging Scenario, which constitutes the first web services
scenario to combine security elements with elements of another quality-of-service
standard. The results of both analyses are positive, i.e., they are proofs as far
as the techniques faithfully represent the standards; these restrictions concern
the cryptographic primitives and, in the symbolic case, the analysis settings.
Our symbolic analysis is a further step in the use of formal proof tools for the
validation of security protocols and web services under the perfect cryptogra-
phy assumption. Our cryptographic analysis constitutes an important first step
to reason about the security of web services in the more realistic setting where
the perfect cryptography assumption is replaced by the complexity-theoretic
definitions of cryptography. Some of the cryptographic results are of more gen-
eral applicability in web services security than for the specific settings analyzed
here.

As future work on the symbolic side, we have begun considering additional
symbolic analysis settings, as well as employing abstraction techniques for carry-
ing out unbounded verification. To this end, it would be particularly interesting
not only to employ AVISPA’s TA4SP, but also to investigate the relationships
and possible complementarity of our analysis with an analysis carried out by
TulaFale/ProVerif, especially since the model checkers that we used implement
different techniques than those of ProVerif (which combines symbolic represen-
tations based on first-order logic and abstractions). Moreover, it would be of
great help to be able to exploit the automatic compilation provided by TulaFale
and we will thus investigate how to do so for the AVISPA Tool. We believe that
the work of [30] will be helpful here, as it provides a preliminary translation
procedure from protocol descriptions in HLPSL to descriptions in the applied
pi calculus, which thus allows one to apply the ProVerif tool to some existing
HLPSL protocol specifications.

On the cryptographic side, it would be interesting to see in which respect one
can weaken the security requirements imposed on the cryptographic primitives
without invalidating the security properties. Furthermore, we intend to apply our
techniques to other profiles and scenarios and possibly even to a policy-based
analysis similar to [14] on the symbolic side.

Analysis of the Secure WS-ReliableMessaging Scenario 443

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography: The com-
putational soundness of formal encryption. In Proc. 1st IFIP TCS, LNCS 1872,
pp. 3–22. Springer, 2000.

2. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.
The AVISPA Tool for the Automated Validation of Internet Security Protocols and
Applications. In Proc. CAV’2005, LNCS 3576, pp. 281–285. Springer, 2005.

3. M. Backes, S. Mödersheim, B. Pfitzmann, and L. Viganò. Symbolic and Cryp-
tographic Analysis of the Secure WS-ReliableMessaging Scenario (Extended Ver-
sion). Technical Report 502, Department of Computer Science, ETH Zurich, 2006.
Available at www.infsec.ethz.ch.

4. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao
style cryptographic library. In Proc. 17th IEEE CSFW, 2004.

5. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library
with nested operations (extended abstract). In Proc. 10th ACM CCS, pp. 220–
230, 2003. Full version in IACR Cryptology ePrint Archive 2003/015, Jan. 2003,
http://eprint.iacr.org/.

6. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a
simulatable cryptographic library. In Proc. 8th ESORICS, LNCS 2808, pp. 271–
290. Springer, 2003.

7. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for
secure reactive systems. In Proc. 1st TCC, LNCS 2951, pp. 336–354. Springer,
2004.

8. D. Basin, S. Mödersheim, and L. Viganò. OFMC: A Symbolic Model-Checker for
Security Protocols. International Journal of Information Security, 4(3):181–208,
2005.

9. G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET Purchase Protocols.
Journal of Automated Reasoning, to appear.

10. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In Proc. ASIACRYPT
2000, LNCS 1976, pp. 531–545. Springer, 2000.

11. M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient constructions. In Proc. ASIA-
CRYPT 2000, LNCS 1976, pp. 317–330. Springer, 2000.

12. K. Bhargavan, R. Corin, C. Fournet, and A. Gordon. Secure sessions for web
services. In Proc. ACM Workshop on Secure Web Services (SWS), 2004.

13. K. Bhargavan, C. Fournet, and A. Gordon. A semantics for web service authenti-
cation. In Proc. 31st POPL, pp. 198–209. ACM Press, 2004.

14. K. Bhargavan, C. Fournet, and A. Gordon. Verifying policy-based security for web
services. In Proc. 11th ACM CCS, pp. 268–277, 2004.

15. K. Bhargavan, C. Fournet, A. Gordon, and R. Pucella. TulaFale: A security tool
for web servics. In Proc. 2nd FMCO, LNCS 3188, pp. 197–222. Springer, 2004.

16. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
Proc. 14th IEEE CSFW, pp. 82–96, 2001.

17. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static vali-
dation of security protocols. Journal of Computer Security, 13(3):347–390, 2005.

18. D. Box, F. Curbera et al. Web Services Addressing (WS-Addressing), Aug. 2004.

444 M. Backes et al.

19. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, and D. Winer. Simple object access protocol (SOAP) 1.1, May 2000.

20. R. Canetti and J. Herzog. Universally composable symbolic analysis of crypto-
graphic protocols (the case of encryption-based mutual authentication and key
exchange). Cryptology ePrint Archive, Report 2004/334, 2004.

21. Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, J. Mantovani,
S. Mödersheim, and L. Vigneron. A High Level Protocol Specification Language
for Industrial Security-Sensitive Protocols. In Proc. Workshop on Specification and
Automated Processing of Security Requirements (SAPS’04), pp. 193–205. Austrian
Computer Society, 2004.

22. J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version
1.0, 17. Nov. 1997.

23. H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. In
Proc. 12th ESOP, LNCS 2618, pp. 99–113. Springer, 2003.

24. D. Davis, C. Ferris, V. Gajjala, K. Gavrylyuk, M. Gudgin, C. Kaler, D. Lang-
worthy, M. Moroney, A. Nadalin, J. Roots, T. Storey, T. Vishwanath, and
D. Walter. Secure WS-ReliableMessaging scenarios, Apr. 2005. ftp://www6.
software.ibm.com/software/developer/library/ws-rmseconscenario.doc.

25. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

26. B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols using
Casper and FDR. In Proc. Workshop on Formal Methods and Security Protocols
(FMSP’99), 1999.

27. D. F. Ferguson, T. Storey, B. Lovering, and J. Shewchuk. Secure, reli-
able, transacted Web Services – architecture and composition, Oct. 2003.
Available at http://www-106.ibm.com/developerworks/webservices/library/
ws-securtrans/.

28. C. Ferris, D. Langworthy et al. Web Services Reliable Messaging Protocol (WS-
ReliableMessaging), Feb. 2005.

29. A. Gordon and R. Pucella. Validating a web service security abstraction by typing.
In Proc. 1st ACM Workshop on XML Security, pp. 18–29, 2002.

30. A. Gotsman, F. Massacci, and M. Pistore. Towards an Independent Semantics and
Verification Technology for the HLPSL Specification Language. Electronic Notes
in Theoretical Computer Science 135(1):59–77, 2005.

31. T. Groß, B. Pfitzmann, and A.-R. Sadeghi. Proving a WS-Federation Passive
Requestor Profile with a Browser Model. In Proc. ACM Workshop on Secure Web
Services (SWS), pp. 54–64. ACM Press, 2005.

32. M. Gudgin, A. Nadalin et al. Web Services Secure Conversation Language (WS-
SecureConversation), Feb. 2005.

33. M. Gudgin, A. Nadalin et al. Web Services Trust Language (WS-Trust), Feb. 2005.
34. M. Hur, R. D. Johnson, A. Medvinsky, Y. Rouskov, J. Spellman, S. Weeden, and

A. Nadalin. Passive Requestor Federation Interop Scenario, Version 0.4, Feb. 2004.
ftp://www6.software.ibm.com/software/developer/library/ws-fpscenario2.
doc.

35. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and verifying security
protocols. In Proc. LPAR 2000, LNCS 1955, pp. 131–160. Springer, 2000.

36. C. Kaler et al. Web Services Security (WS-Security), version 1.0, Apr. 2002.
37. E. Kleiner and A. Roscoe. On the relationship of traditional and Web Services Se-

curity protocols. In Proceedings of the XXI Mathematical Foundations of Program-
ming Semantics (MFPS’05). Electronic Notes in Theoretical Computer Science, to
appear.

Analysis of the Secure WS-ReliableMessaging Scenario 445

38. P. Laud. Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In Proc. 25th IEEE Symposium on Security & Privacy,
pp. 71–85, 2004.

39. G. Lowe. A hierarchy of authentication specifications. In Proc. 10th IEEE CSFW,
pp. 31–43, 1997.

40. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Proc. 1st TCC, LNCS 2951, pp. 133–151. Springer, 2004.

41. D. Song, S. Berezin, and A. Perrig. Athena: a novel approach to efficient automatic
security protocol analysis. Journal of Computer Security, 9:47–74, 2001.

42. M. Turuani. Sécurité des Protocoles Cryptographiques: Décidabilité et Complexité.
Phd, Université Henri Poincaré, Nancy, December 2003.

43. L. Viganò. Automated Security Protocol Analysis with the AVISPA Tool. In
Proceedings of the XXI Mathematical Foundations of Programming Semantics
(MFPS’05). Electronic Notes in Theoretical Computer Science, to appear.

	Introduction
	The Secure WS-ReliableMessaging Scenario
	Description of the Protocol
	Security Properties

	Symbolic Security Analysis
	Cryptographic Security Analysis
	Further Related Literature
	Conclusion and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

