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Abstract. We describe a denotational semantics for a sequential func-
tional language with random number generation over a countably infinite
set (the natural numbers), and prove that it is fully abstract with respect
to may-and-must testing.

Our model is based on biordered sets similar to Berry’s bidomains, and
stable, monotone functions. However, (as in prior models of unbounded
non-determinism) these functions may not be continuous. Working in
a biordered setting allows us to exploit the different properties of both
extensional and stable orders to construct a Cartesian closed category
of sequential, discontinuous functions, with least and greatest fixpoints
having strong enough properties to prove computational adequacy.

We establish full abstraction of the semantics by showing that it
contains a simple, first-order “universal type-object” within which all
types may be embedded using functions defined by (countable) ordinal
induction.

1 Introduction

Non-determinism is an abstract property with which we may represent the inher-
ent uncertainty of a computational system, whether ocurring by accident or by
design. When describing a non-deterministic system, we are typically interested
in the possibility of failure, whether by divergence or premature termination.
However, it is well known that capturing these behaviours in systems exhibit-
ing unbounded non-determinism — i.e. programs which may choose between
an infinite set of possible steps without diverging — presents a challenge for
denotational semantics, because semantic functions characterizing their diver-
gent behaviours are not, in general, continuous (see e.g. [1]). The object of this
paper is to describe a domain-theoretic setting in which we may successfully
capture the observable properties of functional programs with countable non-
determinism via a semantics which is fully abstract with respect to may and
must testing.

The basis for our model is a category of biordered sets and order-preserving
functions based on Berry’s bidomains [2]. In previous work by the author [8, 7]
these have been used to give fully abstract models of sequential languages such as
unary PCF (which may itself be considered as a λ-calculus with a binary choice
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operator). However, as well as capturing sequentiality, using two orders allows
us to resolve some of the continuity problems associated with unbounded non-
determinism. Essentially, they give separate extensional and intensional charac-
terizations of programs, each having different completeness properties, which we
exploit in proving (e.g.) computational adequacy.

Another feature of previous biorder-based semantics which is developed here
is the focus on observably sequentiality, in which failure by divergence, and failure
by premature termination (error) are distinguished. As observed by Cartwright
and Felleisen [3], this simplifies the full abstraction problem for sequential func-
tional languages, by making evaluation-order extensionally observable. In a non-
deterministic setting, separating the two forms of failure makes a certain duality
between “may” and “must” testing evident in both operational and denotational
semantics: we give separate models of these in the same category of biorders,
by interpreting error as a least element and recursion as a greatest fixed point
with respect to may-testing, and interpreting error as a greatest element and
recursion as a least fixed point with respect to must-testing.

We establish full abstraction for both may and must-testing semantics by
developing a methodology used for proving definability results for observably
sequential languages in particular (e.g. [11, 8]). We show that each type-object
is a retract of a first-order “universal” type-object, and that these retractions
are definable as terms in the language. This sheds some light on the process of
computing interaction between functions with unbounded non-determinism, via
countable sequences of unfoldings, in addition to sidestepping reliance of typical
proofs of full abstraction on continuity and algebraicity.

1.1 Related Work

Apt and Plotkin [1] study a fully abstract denotational model of a simple impera-
tive language with random assignment in a setting which brings together much of
the preceding work on the semantics of countable non-determinism, and clarifies
the role of non-continuity in particular. Lassen and Pitcher [9] study bisimulation
equivalences based on may and must testing for a functional language similar
to that modelled here. Game semantics has been used to describe denotational
models of non-deterministic langages: Harmer and McCusker [6] have described
a fully abstract may-and-must games model of Idealized Algol with bounded
choice, whilst Levy [10] has described a game semantics of a language with un-
bounded non-determinism which captures an infinite trace equivalence. However,
the biorder model described here appears to be the first fully abstract may-and-
must testing semantics for a functional language with unbounded choice.

2 Syntax and Operational Semantics

We illustrate our approach by describing may and must semantics for a small
functional language with countable non-determinism (which could be regarded
as a target-language for CPS translation): a simply-typed λ-calculus with arith-
metic, recursion and a random-number generator. Types are generated from two



354 J. Laird

ground types: a data type of natural number values and a program (or “re-
sponse”) type o containing no values, but a single “error” term. Programs of
function type may take either data or programs as arguments, but must return
a program — i.e. nat may not occur on the right of an arrow. Thus the types of
our language are:

T ::= nat | o | T ⇒ P

where P �= nat (we refer to non-nat types as pointed).
Terms are obtained by extending the simply-typed λ-calculus with a set of

basic arithmetic constants and (primitive recursive) operations on nat, including:

– zero (0), successor and predecessor (succ( ), pred( ))
– equality testing, =
– “injective pairing” ( ∗ ) and projection fst and snd .

and the following constants:

Error e : o,
Zero test If0 : nat ⇒ P ⇒ P ⇒ P .
Fixpoints Y : (P ⇒ P ) ⇒ P .
Random number generation rnd : (nat ⇒ o) ⇒ o

We write Eq for λwxyz.((If0 (w=x)) y) z : nat ⇒ nat ⇒ P ⇒ P ⇒ P , and Ω
for the divergent term Y λx.x at each pointed type.

2.1 Operational Semantics

Note that any closed term t : nat is an arithmetic expression derived from the
total operations in the language. We assume an operation | | evaluating such
expressions to numerals, which thus has the properties:

– |s = t| = 0 if |s| = |t| and |s = t| = 1, otherwise.
– |fst(s ∗ t)| = |s| and |snd(s ∗ t)| = |t|.

We define two evaluation relations ⇓may and ⇓must between closed terms of
pointed type and “canonical forms” (λ-abstractions, If0, rnd and e) by com-
bining the following, standard, “deterministic” fragment:

e⇓e rnd⇓rnd λx.M⇓λx.M

If0⇓If0 If0 t⇓λxy.x |t| = 0 If0 t⇓λxy.y |t| �= 0

Y⇓λf.f (Y f)
M⇓λx.M ′ M ′[N/x]⇓C

M N⇓C

with one of the following rules for evaluating rnd by erratically generating a
numeral and passing it to its argument:

∃n∈N.M n⇓maye
rndM⇓maye May

∀n∈N.M n⇓muste
rndM⇓muste Must
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We define notions of approximation and equivalence with respect to may and
must testing. Given M, N : T :

– M �may N if for all compatible program contexts C[·] : o, C[N ]⇓maye
implies C[M ]⇓maye. M �may N if M �may N and N �may M .

– M �must N if for all compatible program contexts C[·] : o, C[M ]⇓muste
implies C[N ]⇓muste. M �must N if M �must N and N �must M .

Note the direction of the implication in the definition of may-approximation:
M �may N if testing N leads to fewer errors than testing M .

As expected, there are functions which not continuous with respect to �must

(considered as a partial order on �must equivalence-classes of terms) — in par-
ticular, the operator rnd itself. For example, let M0 : nat ⇒ o = λx.Ω and
Mi+1 = λx.((If0 x) e) (Mi pred(x)) — i.e. Mi terminates if and only if its argu-
ment is less than i. So rndMi �⇓must for all i, but the �must least upper bound of
the chain M0 �must M1 �must . . . is λx.e, and rnd λx.e⇓must. We study further
examples of continuity and noncontinuity in Section 4.1.

The expressiveness of the language may be exploited by using it as the
basis for CPS interpretation of more elaborate functional languages with un-
bounded nondeterminism. For example, we may translate PCF with random
number generation simply by representing the type of natural number com-
putations, nat�⊥, as (nat ⇒ o) ⇒ o, giving rnd : nat�⊥. (The corresponding
bidomain model will contain additional elements corresponding to simple con-
trol operators and errors, yielding a fully abstract semantics of Cartwright and
Felleisen’s SPCF [3] with random number generation). Similarly, we may CPS
translate Lassen and Pitcher’s [9] version of Moggi’s metalanguage extended with
countable choice by representing the nondeterminism monad constructor P as
the continuations monad ( ⇒ o) ⇒ o. (Again, the translation and associated
model will be fully abstract if first-class continuations are included in the source
language.)

By distinguishing the two notions of failure, and taking them as the basis
for our notions of observation in our model, we can also reason about a variety
of behaviours of programs in such languages. For instance we may capture the
requirement that M : nat�⊥ may converge to some (non-error) value as the
conjunction of M λx.e⇓may and M λx.Ω �⇓must, and the requirement that M
must converge to a value as M λx.e⇓must and M λx.Ω �⇓may.

3 Complete Meet Biorders

Berry’s biorders [2, 4] are based on a binary greatest lower bound operator (i.e.
a meet semi-lattice) which may be used to interpret binary choice [8]. Thus to
give a semantics of unbounded choice, we develop a notion of biorder based on
complete lattices (i.e. having a greatest lower bound operator for arbitrary sets).

Definition 1. A complete (meet) biorder is a triple 〈D, 
, ≤〉 consisting of a
set D with two partial orders 
, ≤⊆ D × D such that:
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– (D, 
) (the extensional order) is a complete lattice: every subset X has a
greatest lower bound

�
X.

– (D, ≤) (the stable order) is included in 
 (≤⊆
), has a least element, ⊥ =�
D and for any X, Y ⊆ D such that X ≤ Y in the Egli-Milner order (i.e.

∀x ∈ X∃y ∈ Y.x ≤ y ∧ ∀y ∈ Y.∃x ∈ X.x ≤ Y ) we have
�

X ≤
�

Y .

We shall write ↑X if X ⊆ D is non-empty1 and bounded above in (D, ≤),
observing that (D, ≤) is bounded co-complete in the following sense:

Lemma 1. If ↑X then
�

X is a greatest lower bound for X in (D, ≤).

Proof. Suppose X is bounded above by y in ≤. Then for any x ∈ X , X ≤ {x, y}
and so

�
X ≤ x � y = x, and if z is a ≤-lower bound for X , then {z} ≤ X and

so z ≤
�

X .

Products of complete meet biorders are defined by taking the pointwise order-
ings on the product of the underlying sets. Particular examples include the
one-element biorder 1 (the unit for the product), the “Sierpinski” biorder Σ
containing two elements, ordered stably and extensionally.

Definition 2. A function f from (D, 
, ≤) to (D′, 
′, ≤′) is monotone if it
preserves both orders, and (completely) stable if for every stably bounded set X,
f(

�
X) =

�
f(X).

Proposition 1. The category of complete meet biorders and completely stable
and monotone functions is Cartesian closed.

Proof. For complete biorders (D, 
D, ≤D) and (E, 
E, ≤E) the function-space
D ⇒ E is the biorder over the set of monotone and stable functions from D to
E in which the extensional order is defined:

f 
D⇒E g if f(x) 
E g(x) for all x ∈ D.

and the stable order is defined:

f ≤D⇒E g if for all x ≤D y, f(x) ≤E g(y) and f(x) = f(y) � g(x).

This satisfies the axioms for a complete biorder, with the greatest lower bound
of a bounded set of functions F defined pointwise: (

�
F )(x) =

�
{f(x) | f ∈ F}.

Thus we have the basis for the semantics of functional languages with un-
bounded choice (a CCC with a greatest lower bound operator). To interpret
the Y combinator we require least and greatest fixed points of each endomor-
phism f : D → D. As in [1], we may compute these as the suprema/infima of
chains of approximants obtained by iterating f countably many times.

Proposition 2. Every endomorphism f : A → A has a 
-least fixed point
f † : 1 → A and a 
-greatest fixed point f ‡ : 1 → A.

1 In particular, � =
⊔

∅ is not in general a ≤-greatest element.
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Proof. We obtain f † as a stationary point of the 
-chain defined fλ =f(
⊔

κ<λ fκ)
for each ordinal λ. Then λ ≤ κ implies fλ 
 fκ, and if fλ < fλ+1 then fκ � fµ

for all κ < µ ≤ λ. So if κ has cardinality strictly greater than A, then we must
have f(fκ) = fκ. Moreover fκ is a least (pre)fixed point, since if f(a) 
 a then
fλ 
 a for all λ.

We construct the greatest fixed point f ‡ similarly, as a stationary point in
the descending 
-chain defined fλ = f(

�
κ<λ fκ).

However, since least upper bounds in complete meet biorders are defined indi-
rectly, the mere existence of the least fixed point f † is not sufficient to prove that
it yields an interpretation of Y which is computationally adequate. It transpires
that the continuity property required to prove adequacy is that for f : (A ⇒
B) → (A ⇒ B), (

⊔
κ<λ fκ)(e) =

⊔
κ<λ f(e). In general, the least upper bound

of a 
-directed set of functions cannot be determined in this way (i.e. it is not
the case that (

⊔
F )(x) =

⊔
{f(x) | f ∈ F} )— we give an example in the next

section. However, we shall now show that we may define a full (Cartesian closed)
subcategory of biorders in which the stable order is a cpo in which least upper
bounds of directed sets of functions is determined pointwise.

Definition 3. A complete meet biorder D is a complete meet bidomain2 if it
satisfies the following conditions:

Stable Completeness. Every set X ⊆ D which is stably directed (i.e. up-
wards directed with respect to ≤) has a least upper bound

∨
X with respect

to the stable order, such that
∨

X =
⊔

X, and satisfying the following dis-
tributivity property:
for any y with y ↑

∨
X, y �

∨
X =

∨
{x � y | x ∈ X}.

Algebraicity. An element c ∈ D is weakly compact (c ∈ K(D)) if for every
stably directed set X such that c 


∨
X there exists x ∈ X such that c 
 x.

D is (weakly) algebraic if every element in d ∈ D is the (
) least upper bound
of its set of weakly compact approximants — d =

⊔
{c ∈ K(D) | c 
 d}.

Lemma 2. If D, E are stably complete and algebraic, then D ⇒ E is stably
complete.

Proof. Given a stably directed set of functions F , the set {f(x) | f ∈ F} is stably
directed, so we may define the stable supremum of F pointwise: (

∨
F )(x) =∨

{f(x) | f ∈ F}.
This is monotone — if x ≤ y then for all f , f(x) ≤ f(y) ≤ (

∨
F )(y) and so

(
∨

F )(x) ≤ (
∨

F )(y) — and binary-stable: if x↑y, then (
∨

F )(x) � (
∨

F )(y) =∨
{f(x) �

∨
F (y) | f ∈ F} =

∨
{f(x) � g(y) | f, g ∈ F} 


∨
F (x � y).

To show that
∨

F is stable with respect to infima of stably bounded infinite
sets, it is sufficient to show that it preserves infima of (downwards) stably di-
rected sets. So suppose we have a downwards stably-directed set X . We need to
show that

�
(
∨

F )(X) 

∨

F (
�

X).

2 Note that a complete meet bidomain need not be a bidomain in the sense of Berry.
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Suppose c is a compact element such that c 

�

(
∨

F )(X). Choosing x ∈ X ,
we have c 
 (

∨
F )(x) and so by compactness of c, there exists f ∈ F such that

c 
 f(x). Then for any y ∈ X , there exists z ∈ X such that z ≤ x, y, and so
we may find g ∈ F such that c 
 g(z), and h ∈ F such that f, g ≤ h. Thus
f(z) = f(x) � h(z), and so c 
 f(z) 
 f(y). So c 


�
f(X), and c 


∨
F (

�
X)

as required.
Moreover

∨
F is a ≤-least upper bound for F (as well as being a 
 least

upper bound): if f ∈ F then for all x, f(x) ≤ (
∨

F )(x) and if x ≤ y then
f(y) � (

∨
F )(x) =

∨
{f(y) � g(x) | g ∈ F � f ≤ g} = f(x). If f ≤ g for all

f ∈ F , then for all x, (
∨

F )(x) ≤ g(x), and if x ≤ y then (
∨

F )(y) � g(x) =∨
{f(y) � g(x) | f ∈ F} = (

∨
F )(x).

Since �,
∨

are both determined pointwise, the distributivity condition is
straightforward to verify.

Lemma 3. The complete meet bidomains and completely stable and monotone
functions form a CCC.

Proof. By Lemma 2, if D, E are complete meet bidomains then D ⇒ E is stably
complete, so it remains to show weak algebraicity. Given f ∈ D ⇒ E, d ∈ D,
and weakly compact c ∈ E such that c 
 f(d), we define fd

c ∈ D ⇒ E such that
fd

c (x) = c if d 
 x and fd
c (x) = ⊥ otherwise.

Then f c
d is monotone and completely stable: if x 
 y, then if d 
 x, fd

c (x) =
fd

c (y) = c, otherwise fd
c (x) = ⊥ ≤ fd

c (y). Given a stably bounded set X , if d 
�
X then d 
 x for all x ∈ X , and so fd

c (
�

X) = c =
�

fd
c (X). If d � sqleq

�
X

then there exists x ∈ X such that d �
 x, and so fd
c (x) = ⊥ = fd

c (
�

X).
It is straightforward to check that f c

d is weakly compact (if fd
c 


∨
F then

fd
c (d) = c 
 (

∨
F )(d) and so c 
 f(d) for some f ∈ F , and so fd

c 
 f) and
f =

⊔
{fd

c | d ∈ D ∧ c ∈ K(E) ∧ c 
 f(d)}.

To interpret unpointed types (in the current setting, just the type nat of natural
number values), we define a notion of “pre-bidomain”.

Definition 4. A (complete meet) pre-bidomain (D, 
, ≤) is a set D with partial
orders ≤⊆
 such that for each x ∈ D, Dx = {y ∈ D | ∃z ∈ D.z 
 x, y} is a
co-complete bidomain.

The co-product of pre-bidomains (formed pointwise) is a pre-bidomain, and gives
the following characterization result.

Lemma 4. For a pre-bidomain D, let �D� be the set of 
-minimal elements of
D. Then D ∼=

∐
x∈�D� Dx.

Proof. Let ⊥(x) =
�

{y ∈ D | y 
 x}. Then for each x, ⊥(x) is a minimal element
of D, and it is straightforward to show that the map sending x to in⊥(x)(x) is
an order-isomorphism.

Proposition 3. The category of pre-bidomains and monotone and stable func-
tions is bicartesian closed.
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Proof. We define the cartesian closed structure as for the category of complete
bidomains and monotone and stable functions: thus the principal point to check
is that the function-space yields a well-defined pre-bidomain, for which we use
the decomposition into co-products (Lemma 4). We show that:

– for any complete meet bidomain A, and pre-bidomain D,
∐

x∈�D�(A ⇒
Dx) ∼= A ⇒

∐
x∈�D� Dx

∼= A ⇒ D, and hence A ⇒ D is a pre-bidomain.
– for any pre-bidomains D, E: Πx∈�D�(Dx ⇒ E) ∼= (

∐
x∈�D� Dx) ⇒ E ∼= D ⇒

E, and so D ⇒ E is a pre-bidomain. (So if E is a complete bidomain then
so is D ⇒ E.)

4 Denotational Semantics

We now give the may and must testing semantics of the functional language
defined in Section 2. We interpret nat as the pre-bidomain N∗ =

∐
i∈N

1, and
the remaining (pointed) types as the corresponding bidomains: i.e. [[o]] = Σ and
[[S ⇒ T ]] = [[S]] ⇒ [[T ]].

We interpret terms-in-context x1 : S1, . . . , xn : Sn � M : T as monotone and
completely stable functions from [[S1]] × . . . [[Sn]] to [[T ]], giving two denotations
[[M ]]may, [[M ]]must for each term. We use the Cartesian closed structure to in-
terpret λ-abstraction and application in standard fashion, and the associated
operations on N to interpret the arithmetic constants and operations. Random
assignment rnd is interpreted as the function which takes every argument except
� to ⊥:

[[rnd]]may(f) = [[rnd]]must(f) =
�

{f(n) | n ∈ N∗}

Thus every program with neither recursion nor explicit errors has the same
denotation in the may and must semantics.

In the may-testing semantics, we interpret the error as the least element ⊥,
and the fixpoint combinator Y : (P ⇒ P ) ⇒ P as the greatest fixed point of the
endomorphism F : (P ⇒ P ) ⇒ P → (P ⇒ P ) ⇒ P sending f to λg.g(f g). In
the must-testing semantics we interpret the error as the greatest element �, and
Y : (P ⇒ P ) ⇒ P as the least fixed point of F .

4.1 Examples

We give some examples of the continuity and noncontinuity properties of our
model.

Noncontinuity. We have shown that the random number generator rnd is not
continuous wiith respect to must-approximation. The same example suffices
to show that its denotation (which we shall write as rnd) is not continuous
with respect to extensional order nor the stable order. If we define fi : N ⇒ Σ
by fi(n) = � if n < i (so [[Mi]] = fi) then fi ≤ fi+1 for all i. rnd(fi) = ⊥ for
all i ∈ ω, but rnd(

∨
{fi | i ∈ ω}) = rnd(�) = �.
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Stable continuity of function application. We now give an example of a
least upper bound of a stably-directed set of functions, defined pointwise.
Let gi : ((N ⇒ Σ) ⇒ Σ) ⇒ Σ be defined: gi(h) = h(fi). Then gi ≤ gi+1
for all i ∈ ω (since fi ≤ fi+1), and so we may define the least upper bound
G =

∨
{gi | i ∈ ω}: G(h) = � if there exists i such that h(fi) = �. Note

that G is distinct from the function G′(h) = h(
⊔

{fi | i ∈ ω}) = h(�), since
G(rnd) = ⊥ and G′(rnd) = �.

Moreover, G is definable in our language — it is the denotation of
λh.(Y λf.λx.h (λy.If0 (y < x) then � else (f y))) 0.

Extensional noncontinuity of function application. By contrast, we may
observe that the least upper bound of a 
-chain of functions may not be
determined pointwise. Define hi : (N ⇒ Σ) ⇒ Σ by hi(f) =

�
n∈ω f(n + i)

(i.e. hi is the denotation of the term λf.rnd λx.f (x+n). Then hi 
 hi+1 for
each i (but hi �≤ hi+1). The least upper bound of {hi | i ∈ ω} is �. (To show
this, define ki : N ⇒ Σ by ki(n) = ⊥ if i < n and ki(n) = �, otherwise. Then
hi(ki) = �, and so if H is an upper bound for {hi | i ∈ ω}, H(ki) = � for
all i. So by stability, H(⊥) = H(

�
{ki | i ∈ ω}) =

�
{H(ki) | i ∈ ω} = �.)

So (
⊔

{hi | i ∈ ω})(⊥) = �, but
⊔

{hi(⊥) | i ∈ ω} = ⊥.

4.2 Inequational Soundness

Proposition 4. M⇓mayC implies [[M ]]may=[[C]] and M⇓mustC implies [[M ]]must

= [[C]].

Proof. Both cases are proved by induction on the derivation of M ⇓ C: in the
case of must-testing we decorate the judgement ⇓ with an ordinal (upper) bound
on the depth of its derivation, following the schema:

M⇓λC
M⇓λλx.M ′ M ′[N/x]⇓κC

M N⇓κC κ < λ
∀n∈N.M n⇓κe
rndM⇓λe κ < λ

Then if M ⇓ C, M ⇓λ C for some λ, and we may prove by ordinal induction
that if M ⇓λ C then [[M ]]must = [[C]].

Proposition 5 (Adequacy). [[M ]]may = ⊥ implies M⇓maye and [[M ]]must = �
implies M⇓muste.

Proof. The proofs for both models are essentially the same: we sketch the case
for must-testing. This uses “approximation relations” in the style of Plotkin [12]:
first we define a relation �T between elements of [[T ]] and closed terms of type
T for each T :

– n �nat M if |M | = n.
– e �o M if e = � implies M⇓muste.
– f �S⇒T M if e �S N implies f(e) �T M N .

We then define f : [[Γ ]] → [[T ]] �Γ,T Γ � M : T if Γ = x1 : S1, . . . , xn : Sn and
for all e1 �S1 N1, . . . , en �Sn Nn implies f(e1, . . . , en) �T M [N1/x1, . . . , Nn/xn].
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We prove that if Γ � M : T then [[M ]]s �Γ,T M by a standard structural
induction. The only potentially problematic case is the fixpoint combinator Y,
for which we use the following observations:

For any (closed) M : T , the set {e ∈ T | e �T M} is (stably) chain complete,
since the least upper bound of a stable chain of functions is determined pointwise.
Note also that e �P M (YM) implies e �P YM .

To prove [[Y]]�(P⇒P )⇒P Y, we show that Fλ�(P⇒P )⇒P Y for all λ by induction
on λ. For the induction case, assume Fκ �(P⇒P )⇒P Y for all κ < λ, and hence∨

κ<λ Fκ �(P⇒P )⇒P Y by stable chain completeness. Suppose f �P⇒P M . Then
Fλ(f) = f((

∨
κ<λ Fκ)(f)) �P M (YM), and so Fλ(f) �P YM as required.

Corollary 1 (Inequational Soundness). [[M ]]may 
 [[N ]]may implies M �may

N . [[M ]]must 
 [[N ]]must implies M �must N .

Proof. Suppose e.g. [[M ]]must 
 [[N ]]must. Then for any compatible context C[ ],
C[M ] ⇓ implies [[C[M ]]]must = � implies [[C[N ]]]must = � implies C[N ] ⇓ as
required.

5 Full Abstraction

It remains to prove (inequational) completeness: we shall say that completeness
holds at type T if for all closed M, N : T , if M �may N then [[M ]]may 
 [[N ]]may

and if M �must N then [[M ]]must 
 [[N ]]must.
So, for instance, completeness holds at nat, since e.g. if M �may N then

(((EqM) n) e) Ω⇓may implies (((EqN) n) e) Ω⇓may, and hence [[M ]]may =[[N ]]may.

Lemma 5. Completeness holds at the type nat ⇒ o ⇒ o.

Proof. Suppose e.g. M �must N . Then by soundness and adequacy, for any
d ∈ N and e ∈ {�, ⊥} we have ([[M ]]must d) e = � implies ([[N ]]must d) e = �,
and so [[M ]]must 
 [[N ]]must.

We reduce completeness at all pointed types to completeness at nat ⇒ o ⇒ o
using the notion of definable retraction.

Definition 5. Given types S, T , we write [[S]] � [[T ]] (with respect to an inter-
pretation M) if there is a retraction from [[S]] to [[T ]] definable in M: i.e. a pair
of (closed) terms (in : S ⇒ T, out : T ⇒ S) such that [[x : S � out (in x) :
S]]M = id[[S]].

Henceforth, unless noted otherwise, we will take [[S]] � [[T ]] to mean that there is
a retraction definable in both may and must interpretations.

For example, we have N∗ ⇒ N∗ ⇒ [[P ]] � N∗ ⇒ [[P ]] for any [[P ]] via the
definable retraction (λf.λx.((f fst(x)) snd(x)), λg.λy.λz.g (y ∗ z)). Note that if
(in1, out1) and (in2, out2) are definable retractions from [[S1]] to [[S2]] and from
[[T1]] to [[T2]], then (λf.λx.in2(f (out1 x)), λf.λx.out2(f (in1 x))) is a definable
retraction from [[S1 ⇒ T1]] to [[S2 ⇒ T2]].
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Let U = N∗ ⇒ Σ ⇒ Σ — i.e. U = [[nat ⇒ o ⇒ o]]. We will show that U
is universal amongst the pointed type-objects — i.e. [[P ]] � U for all pointed
types P . This is sufficient to prove completeness at all types.

Lemma 6. If [[S]] � U in M then M is complete at type S.

Proof. If M �M N then inM �M inN and so [[inM ]]M 
 [[inN ]]M and so
[[M ]]M = out[[inM ]]M 
 out[[inN ]]M = [[N ]]M as required.

We will use the fact that we may regard elements of N∗ ⇒ Σ as infinite lists
of elements of Σ: for M : o, N : nat ⇒ o, we define M :: N : nat ⇒ o =
λx.((If0 x) M) (N pred(x)), hd : (nat ⇒ o) ⇒ o = λf.f 0 and tl : (nat ⇒
o) ⇒ nat ⇒ o = λf.λx.f succ(x). Then [[hd (M :: N) = M ]] and [[tl (M ::
N)]] = [[N ]].

Lemma 7. Σ ⇒ (N∗ ⇒ Σ) ⇒ Σ � (N∗ ⇒ Σ) ⇒ Σ.

Proof. The retraction is definable via the terms in = λf.λg.(f (hd g)) (tl g) and
out = λh.λx.λk.h (x :: k).

Definition 6. Given e ∈ N∗ ⇒ A, n ∈ N∗ and d ∈ A let e[d]n ∈ N∗ ⇒ A (the
“n-insertion” of d into e) be defined:

– e[d]n(m) = d if n = m,
– e[d]n(m) = e(m), otherwise.

For terms M : nat ⇒ T , N : T and t : nat, we define the coresponding term
M [N ]t : nat ⇒ T = λx.(((Eq t) x) (N)) (M x). We use insertion to define an-
other key retraction.

Lemma 8. (N∗ ⇒ Σ) ⇒ Σ � N∗ ⇒ Σ ⇒ Σ.

Proof. (Must testing case). Let in = λf.λx.λy.f λz.(((Eq x) z) y) e and out =
λf.λg.rnd λx.(f x) (g x).

For any g : N∗ → Σ, the set {�[g(n)]n | n ∈ N∗} is stably bounded above by
the constantly � function, and g =

�
{�[g(n)]n | n ∈ N∗}. Thus (out in(f))(g) =�

{f(�[g(n)]n) | n ∈ N∗} = f(
�

{�[g(n)]n | n ∈ N∗} = f(g) by stability.

We will now show that U ⇒ Σ � N∗ ⇒ N∗ ⇒ (N∗ ⇒ Σ) ⇒ Σ, and hence by
Lemma 8, U ⇒ Σ � U . The key to defining this retraction is the sequentiality
of the function-space U ⇒ Σ.

Definition 7. Given f ∈ (N∗ ⇒ A) ⇒ Σ, where A is a complete bidomain, we
say that f is i-strict if for all g ∈ N∗ ⇒ A, g(i) = ⊥ implies f(g) = ⊥. We write
strict(f) for the set of i ∈ N such that f is i-strict.

Lemma 9 (Sequentiality). For any complete bidomain A, every f ∈ (N∗ ⇒
A) ⇒ Σ is constant or i-strict for some i.

Proof. Note that the set {�[⊥]i | i ∈ N} ⊆ N∗ ⇒ A is stably bounded above
by �. Suppose f �= �. Then f(⊥) = f(

�
{�[⊥]i | i ∈ N∗}) = ⊥. So by stability�

{f(�[⊥]i) | i ∈ N∗} = ⊥. Hence f(�[⊥]i) = ⊥ for some i, and g(i) = ⊥ implies
g 
 �[⊥]i and so f(g) = ⊥ — i.e. f is i-strict as required.

Let I ∈ Σ ⇒ Σ be the identity function (note that I 
 �, but I �≤ �).
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Definition 8. Given f ∈ U ⇒ Σ and n ∈ N∗, let fn = λx.((x n) (f x[I]n)) �
(f x[�]n).

Lemma 10. If f is n-strict then f = fn.

Proof. Consider e ∈ N∗ ⇒ Σ ⇒ Σ.
If e(n) = ⊥, then by n-strictness of f , f(e) = ⊥, and fn(e) = (⊥ f(e[I]n) �

f(e[�]n) = ⊥.
If e(n) = I, then e = e[I]n, and fn(e) = (I f(e[I]n) � f(e[�]n) = f(e) �

f(e[�]n) = f(e) by monotonicity of f .
If e(n) = �, then e = e[�]n, and fn(e) = (� f(e[I]n)� f(e[�]n) = �� f(e) =

f(e).

Thus we can represent any (non-constant) f ∈ U ⇒ Σ as a strictness index n,
together with the two functions λx.f x[I]n and λx.f x[�]n which (as we shall
show) may be computed using a strictly smaller part of their argument.

Lemma 11. Suppose e(n)(�) = e(n)(⊥) for all n ∈ N∗. Then for any f ∈ U ⇒
Σ, f(e) =

�
{e(n)(⊥) | n ∈ strict(f)}.

Proof. If e(n)(⊥)=⊥ for some n ∈ strict(f), then f(e)=fn(e)=(e(n)(f(e[I]n)))�
f(e[�]n) = ⊥ � f(e[�]n) = ⊥. So suppose e(n)(⊥) = � for all n ∈ strict(f).
Then e �

�
{�[⊥]n | n �∈ strict(f)} and so f(e) � f(

�
{�[⊥]n | n �∈ strict(f)}) =�

{f(�[⊥]n) | n �∈ strict(f)} = � by stability.

We also require an “injective pairing” operation on N∗ ⇒ A ⇒ Σ, derived from
the fact that that N∗ ⇒ A ⇒ Σ ∼= (A ⇒ Σ)ω ∼= (A ⇒ Σ)ω × (A ⇒ Σ)ω.

Definition 9. Given M, N : nat ⇒ T ⇒ o, let 〈M, N〉 : nat ⇒ T ⇒ o =
λx.λy.((If0 fst(x)) ((M snd(x)) y)) ((N snd(x)) y) and πi : (nat ⇒ T ⇒ o) ⇒
nat ⇒ T ⇒ o = λf.λx.λy.(f (i ∗ x)) y. Then πi 〈M0, M1〉 = Mi for i ∈ {0, 1}.

We finally note that � is definable as erratic binary choice: given M, N : o:
M orN : o = rnd λx.((If0 x) M) N . So [[M orN ]] = [[M ]] � [[N ]].

We now define the retraction from U ⇒ Σ to N∗ ⇒ N∗ ⇒ (N∗ ⇒ Σ) ⇒ Σ.

Definition 10. in : ((nat ⇒ o ⇒ o) ⇒ o) ⇒ nat ⇒ nat ⇒ (nat ⇒ o) ⇒ o =

YλF.λf.λx.((λg.f λu.λv.(g u)) :: 〈(F λz.f z[λw.w]x), F λz.f z[λw.e]x〉)

and out : (nat ⇒ nat ⇒ (nat ⇒ o) ⇒ o) ⇒ (nat ⇒ o ⇒ o) ⇒ o =

YλG.λh.λk.(hd (h 0)) λa.(((k a) (G (π0 (tl (h a)))) k)or(G (π1 (tl (h a))))) k)

We prove that these terms do indeed define a retraction by an ordinal induction
on the unfolding of the fixpoints. For this we require a measure on f ∈ U ⇒ Σ
of the number of unfoldings required to compute in(f).
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Definition 11. For each ordinal λ we define the set of λ-dependent elements
of U ⇒ Σ inductively, as follows:

f is λ-dependent if for all n such that f is n-strict there exists κ < λ such that
λx.f x[λw.w]n and λx.f x[λw.�]n are κ-dependent.

Proposition 6. If f is λ-dependent then out(in(f)) = f .

Proof. By induction on λ. Unfolding the definition of out, we have out(in(f))(d) =
(hd (in(f) 0)) λa.(((d a) (out(π0 (tl (in(f) a)))(d))) � (out(π1 (tl (in(f) a)))(d))).

Unfolding the recursive definition of in, we have: in(f) = λx.((λg.f λu.λv.
(g u)) :: 〈in(λz.f z[λw.w]x), in(λz.f z[λw.�]x〉)).

So π0(tl (in(f) n)) = in(λz.f z[I]n) and π1(tl (in(f) n)) = in(λz.f z[�]n), and
(hd (in(f) 0))(e) = f λu.λv.(e u). Since (λu.λv.(e u))(n)(⊥) = (λu.λv.(e u))(n)(�)
for all n, by Lemma 11 (hd (in(f) 0))(e) = f λu.λv.(e u) =

�
{e(n) | n ∈ strict(f)}.

Substituting these into the expansion of out(in(f))(d), we have: out(in(f))(d)
=

�
{(d(n) out(in(λz.f z[I]n))(d)) � out(in(λf z[�]n))(d) | n ∈ strict(f)}.

If n ∈ strict(f), then since f is λ-dependent, λz.f z[I]n and λz.f z[�]n are κ-
dependent for some κ < λ and so by induction hypothesis, out(in(λz.f z[I]n) =
λz.f z[I]n and out(in(λz.f z[�]n)) = λz.f z[�]n.

So, as required, out(in(f))(d) =
�

{(d(n) f(d[I]n)�f(d[�]n) | n ∈ strict(f)} =�
{fn(d) | n ∈ strict(f)} = f(d) by Lemma 10.

Proposition 7. Every function f ∈ U ⇒ Σ is λ-dependent for some λ.

Proof. Say that f is n-constant if f(e[⊥]n) = f(e[�]n) for all e. We show by
induction on λ that for each f ∈ U ⇒ Σ which is not λ-dependent, we can
construct a sequence of distinct values 〈nκ(f) | κ ≤ λ〉 such that f is not nκ(f)-
constant for each κ ≤ λ. Since the cardinality of such a sequence must be count-
able, f must be λ-dependent for some countable λ.

For the induction case, suppose f is not λ-dependent. Then for some m ∈
N∗ such that f is m-strict, and for some C ∈ {I, �}, λx.f x[C]m is not κ-
dependent for all κ < λ. Then m �= nκ(λx.f x[C]m) for κ < λ, as λx.f x[C]m
is m-constant by definition. If f is n-constant, then so is λx.f x[C]m, and so f
is not nκ(λx.f x[C]m)-constant for any κ < λ. Hence we may define nλ(f) = m
and nκ(f) = nκ(λx.f x[C]m) for κ < λ.

Combining Propositions 6 and 7, we have shown:

Proposition 8. U ⇒ Σ � N∗ ⇒ N∗ ⇒ (N∗ ⇒ Σ) ⇒ Σ

By composing definable retractions we may now show that U is a (definably)
“reflexive object” (i.e. U ⇒ U is a definable retract of U).

Proposition 9. U ⇒ U � U .

Proof. We have U ⇒ U ∼= N∗ ⇒ Σ ⇒ (U ⇒ Σ)
� N∗ ⇒ Σ ⇒ (N∗ ⇒ N∗ ⇒ (N∗ ⇒ Σ) ⇒ Σ) (by Proposition 8)
∼= N∗ ⇒ N∗ ⇒ N∗ ⇒ (Σ ⇒ (N∗ ⇒ Σ) ⇒ Σ)
� N∗ ⇒ N∗ ⇒ N∗ ⇒ ((N∗ ⇒ Σ) ⇒ Σ) (by Lemma 7)
�N∗ ⇒ N∗ ⇒ N∗ ⇒ U by (Lemma 8)
�U .
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Corollary 2. For every pointed type-object P , P � U .

Proof. By structural induction on P . Clearly Σ � U : if P = N∗ ⇒ Q then
P � N∗ ⇒ U � U , and if P = Q1 ⇒ Q2 then P � U ⇒ U � U .

Thus we have extended inequational completeness to all types and proved full
abstraction.

Theorem 1. For all terms M, N , M �may N if and only if [[M ]]may 
 [[N ]]may

and M �must N if and only if [[M ]]must 
 [[N ]]must.

6 Conclusions and Further Directions

For the purposes of exposition we have restricted our attention to a very simple
functional language, but bidomains have the potential to model a range of pro-
gramming languages with non-deterministic features. As we have observed, one
possible route to describing more expressive languages is via CPS interpretation.
Alternatively, we may interpret lifted types such as call-by-value functions and
lifted sums via the powerdomain monad: for a pre-bidomain (D, 
, ≤), we define
a complete bidomain P(D) as follows:

– elements are up-closed subsets of D, together with a least element ⊥,
– 
 is the Smyth ordering — i.e. reverse inclusion, with ⊥ 
 X for all X ,
– ≤ is the intersection of the Smyth and Egli-Milner orders: X ≤ Y if X = ⊥

or Y ⊆ X and for all x ∈ X there exists y ∈ Y such that x ≤ y.

In general, using powerdomains to interpret lifting leads to models with “first-
order” control operators (jumps) rather than all first-class continuations (we
note that P(N∗) ∼= (N∗ ⇒ Σ) ⇒ Σ). It should also be possible to develop a
semantics of recursive types in complete bidomains, based on limits of countable
chains of approximants, as investigated in [5].

We have shown that the elements of our model are sequential functions: it
would be interesting to relate them to strategies in game semantics, in which fully
abstract models of functional-imperative languages with bounded non-
determinism have been described [6]. Comparison with our extensional model
may yield an approach to unbounded choice. (As we have suggested, we may
interpret bounded choice using Berry’s original notion of bidomain (which does
require 
-continuity). As shown in [4], (Berry’s) bidomains have a decomposi-
tion into a bistructure model of classical linear logic, yielding possible connections
between models of concurrency and our semantics of bounded and unbounded
non-determinism.
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