
Conjunction on Processes: Full–Abstraction
Via Ready–Tree Semantics

Gerald Lüttgen1,� and Walter Vogler2

1 Department of Computer Science, University of York,
York YO10 5DD, UK

luettgen@cs.york.ac.uk
2 Institut für Informatik, Universität Augsburg,

D–86135 Augsburg, Germany
vogler@informatik.uni-augsburg.de

Abstract. A key problem in mixing operational (e.g., process–algebraic)
and declarative (e.g., logical) styles of specification is how to deal with in-
consistencies arising when composing processes under conjunction. This
paper introduces a conjunction operator on labelled transition systems
capturing the basic intuition of “a and b = false”, and considers a naive
preorder that demands that an inconsistent specification can only be
refined by an inconsistent implementation.

The main body of the paper is concerned with characterising the
largest precongruence contained in the naive preorder. This character-
isation will be based on a novel semantics called ready–tree seman-
tics, which refines ready traces but is coarser than ready simulation.
It is proved that the induced ready–tree preorder is compositional and
fully–abstract, and that the conjunction operator indeed reflects con-
junction.

The paper’s results provide a foundation for, and an important step
towards a unified framework that allows one to freely mix operators from
process algebras and temporal logics.

1 Introduction

Process algebra [2] and temporal logic [14] are two popular approaches to for-
mally specifying and reasoning about reactive systems. The process–algebraic
paradigm is founded on notions of refinement, where one typically formulates
a system specification and its implementation in the same notation and then
proves using compositional reasoning that the latter refines the former. The
underlying semantics is often given operationally, and refinement relations are
formalised as precongruences. In contrast, the temporal–logic paradigm is based
on the use of temporal logics to formulate specifications abstractly, with imple-
mentations being denoted in an operational notation. One then verifies a system
by establishing that it is a model of its specification.

� Research support was partially provided by the NSF under grant CCR–9988489.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 261–276, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

262 G. Lüttgen and W. Vogler

Recently, two papers have been published aimed at marrying process algebras
and temporal logics [5, 6]. While the first paper introduces a semantic frame-
work based on Büchi automata, the second paper considers labelled transition
systems augmented with an “unimplementability predicate”. This predicate cap-
tures inconsistencies arising when composing processes conjunctively; e.g., the
composition a∧b is contradictory since a run of a process cannot begin with both
actions a and b. Moreover, the frameworks in [5, 6] are equipped with a refine-
ment preorder based on De Nicola and Hennessy’s must–testing preorder [12].
However, the obtained results are unsatisfactory: the refinement preorder in [5] is
not a precongruence, while the ∧–operator in [6] is not conjunction with respect
to the studied precongruence.

This paper solves the deficiencies of [5, 6] within a simple setting of labelled
transition systems in which a state represents either external (non–deterministic)
or internal (disjunctive) choice. Moreover, states that are vacuously true or false
are tagged accordingly. The tagging of false states, or inconsistent states, is given
by an inductive inconsistency predicate that is defined very similar but subtly
different to the unimplementability predicate of [6]. We then equip our setting
with two operators: the conjunction operator ∧ is in essence a synchronous com-
position on observable actions and an interleaving product on the unobservable
action τ , but additionally captures inconsistencies; the disjunction operator ∨
simply resembles the process–algebraic operator of internal choice.

Our variant of labelled transition systems gives rise to a naive refinement
preorder �F requiring that an inconsistent specification cannot be refined except
by an inconsistent implementation. We characterise the consistency preorder, i.e.
the largest precongruence contained in �F when conjunctively closing under all
contexts. To do so, we define a novel semantics, called ready–tree semantics which
is — at least when disallowing divergent behaviour — finer than both must–
testing semantics [12] and ready–trace semantics [7], but coarser than ready
simulation [3]. The resulting ready–tree preorder �∼ is not only compositional
for ∧ and ∨ and fully–abstract with respect to �F , but also possesses several
other desired properties. In particular, we prove that ∧ (∨) is indeed conjunction
(disjunction) relative to �∼ , and that ∧ and ∨ satisfy the expected boolean laws,
such as the distributivity laws.

Our results are a significant first step towards the goal of developing a uni-
form calculus in which one can freely mix process–algebraic and temporal–logic
operators. This will give engineers powerful tools to model system components
at different levels of abstraction and to impose logical constraints on the exe-
cution behaviour of components. The proposed ready–tree preorder will allow
engineers to step–wise and component–wise refine systems by trading off logical
content for operational content.

Organisation. The next section presents our setting of labelled transition sys-
tems augmented with true and false predicates, together with a conjunction and
a disjunction operator. Sec. 3 defines the novel ready–tree semantics, addresses
expressiveness issues of several ready–tree variants and introduces the ready–tree
preorder. Our compositionality and full–abstraction results are stated in Sec. 4.

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 263

All proofs can be found in a technical report [11]. Finally, Sec. 5 discusses our
results in light of related work, while Sec. 6 presents our conclusions and suggests
directions for future research.

2 Labelled Transition Systems and Conjunction

This section first introduces our process–algebraic setting and particularly con-
junctive composition informally, discusses semantic choices and their implica-
tions, and finally gives a formal account of our framework.

Motivation. Our setting models processes as labelled transition systems, which
may be composed conjunctively and disjunctively. As usual in process alge-
bra, transition labels are actions taken from some alphabet A = {a, b, . . .}.
When an action a is offered by the environment and the process under con-
sideration is in a state having one or more outgoing a–transitions, the process
must choose and perform one of them. If there is no outgoing a–transition, then
the process stays in its state, at least in classical process–algebraic frameworks
where the composition between a process and its environment is modelled us-
ing some parallel operator. However, in a conjunctive setting we wish to mark
the composed state between process and environment as inconsistent, if the
environment offers an action that the process cannot perform, or vice versa.
Hence, taking ordinary synchronous composition as operator for conjunction is
insufficient.

We illustrate this intuition behind our conjunction operator ∧ and its impli-
cations by the example labelled transition systems of Fig. 1. First, consider the
processes p, q and r. Process p and q specify that exactly action a and respec-
tively action b is offered initially. Similarly, process r specifies that a and b are
offered initially. From this perspective, p ∧ q as well as p ∧ r are inconsistent
and should be tagged as such. Formally, our labelled transition systems will be
augmented by an inconsistency predicate F , so that p ∧ q, p ∧ r ∈ F in our
example. We also refer to inconsistent states as false–states.

Now consider the conjunction p′ ∧ q′ shown on the right in Fig. 1. Since both
conjuncts require action a to be performed, p′ ∧ q′ should have an a–transition.
From the preceding discussion, this transition should lead to a false–state. No
sensible process can meet these requirements of being able to perform a and
being inconsistent afterwards. Thus, our inconsistency predicate will propagate
backwards to the conjunction itself, as indicated in Fig. 1.

∧ ba =
F

a b

qp
q'p'

r

∧a

p

=
c

∧
a

b

a

= a

F

(F)

Fig. 1. Basic intuition behind conjunctive composition

264 G. Lüttgen and W. Vogler

F

a b

(F)

F

a ba

τ

b

τ

F

Fig. 2. Backward propagation of inconsistencies

Fig. 2 shows more intricate examples of backward propagation. The inconsis-
tency of the target state of the a–transition of the process on the left propagates
backwards to its source state. This is the case although the source state is able
to offer a transition leading to a consistent state. However, that transition can
only be taken if the environment offers action b. The process is forced into the
inconsistency when the environment offers action a.

The situation is different for the process in the middle, which has an addi-
tional a–transition leading to a consistent state. Here, the process is consistent,
as it can choose to execute this new a–transition and thus avoid to enter a
false–state. In fact, this choice can be viewed as a disjunction between the two
a–branches. As an aside, note that in [6] the design decision was to consider a
process already as inconsistent if some a–derivative is. While there might be an
intuitive justification for that, it led to a setting where the implied conjunction
operator does not reflect conjunction for the studied refinement preorder, i.e.,
where Thm. 20(1) does not hold.

Disjunction can be made explicit by using the classical internal–choice oper-
ator. This operator may as usual be expressed by employing the special, unob-
servable action τ /∈ A as shown on the right in Fig. 2. Hence, we may identify the
internal–choice operator with the disjunction operator ∨ desired in our setting.
Moreover, a disjunction p ∨ q is inconsistent if both p and q are false–states.
In particular, the process on the right in Fig. 2 will represent false ∨ q in our
approach, with q from Fig. 1, which clearly should be consistent.

Formalisation. For notational convenience we denote A ∪ {τ} by Aτ and
use α, β, . . . as representatives of Aτ . We start off be defining our notion of
labelled transition systems (LTS). The LTSs considered here are augmented
with a false–predicate F on states, as discussed above, and dually with a true–
predicate T . A state in F represents inconsistent, empty behaviour, while a state
in T represents completely underspecified, arbitrary behaviour.

Formally, an LTS is a quadruple 〈P, −→, T, F 〉, where P is the set of processes
(states), −→ ⊆ P × Aτ × P is the transition relation, and T ⊆ P and F ⊆ P

is the true–predicate and the false–predicate, respectively. We write p
α−→ p′

instead of 〈p, α, p′〉 ∈−→, p
α−→ instead of ∃p′ ∈ P. p

α−→ p′, and p −→ instead
of ∃p′ ∈ P, α ∈ Aτ . p

α−→ p′. When p
α−→ p′, we say that process p can perform

an α–step to p′, and we call p′ an α–derivative. We also require an LTS to satisfy
the following τ–purity condition: p

τ−→ implies � ∃a ∈ A. p
a−→, for all p ∈ P .

Hence, each process represents either an external or internal (disjunctive) choice
between its outgoing transitions. This restriction turns out to be technically

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 265

convenient, and we leave exploring the consequences of lifting it for future work.
The LTSs of interest to us need to satisfy four further properties, as stated in
the following formal definition:

Definition 1 (Logical LTS). An LTS 〈P, −→, T, F 〉 is a logical LTS if it sat-
isfies the following conditions:
1. T ∩ F = ∅
2. T ⊆ {p | p �−→}
3. F ⊆ P such that p ∈ F whenever ∃α ∈ I(p)∀p′ ∈ P. p

α−→ p′ =⇒ p′ ∈ F
4. p cannot stabilise =⇒ p ∈ F .

Naturally, we require that a process cannot be tagged true and false at the
same time. As a true–process specifies arbitrary, full behaviour, any behaviour
made explicit by outgoing transitions is already included implicitly; hence, any
outgoing transitions may simply be cut off. The third condition formalises the
backwards propagation of inconsistencies as discussed in the motivation section
above; here, I(p) stands for the set {α ∈ Aτ | p α−→} of initial actions of process p,
to which we also refer as ready set.

The fourth condition relates to divergence, i.e., infinite sequences of
τ–transitions. In many semantic frameworks, e.g. [12, 7], divergence is consid-
ered catastrophic, while in our setting catastrophic behaviour is inconsistent
behaviour. We view divergence only as catastrophic if a process cannot stabilise,
i.e., if it cannot get out of an infinite, internal computation. While this is intu-
itive, there is also a technical reason to which we will come back shortly.

To formalise our notion of stabilisation, we first introduce a weak transition
relation =⇒ ⊆ P × (Aτ ∪{ε})×P which is defined by (1) p

ε=⇒ p′ if p ≡ p′ /∈ F ,
where ≡ denotes syntactic equality, or if p /∈ F and p

τ−→ p′′ ε=⇒ p′ for some p′′,
and (2) p

a=⇒ p′ if p /∈ F and p
a−→ p′′ ε=⇒ p′ for some p′′. Our definition

of a weak transition is slightly unusual: a weak transition cannot pass through
false–states since these cannot occur in computations, and it does not abstract
from τ–transitions preceding a visible transition. However, we only will use weak
visible transitions from stable states, i.e., states with no outgoing τ–transition.
Finally, we can now formalise stabilisation: a process p can stabilise if p

ε=⇒ p′

for some stable p′.
Note that both Conds. (3) and (4) are inductively defined conditions. We refer

to them as fixed point conditions of F for LTS . For convenience, we will often
write LTS instead of logical LTS in the sequel. Moreover, whenever we mention
a process p without stating a respective LTS explicitly, we assume implicitly
that such an LTS 〈P, −→, T, F 〉 is given. We let tt (ff) stand for the true (false)
process, which is the only process of an LTS with tt ∈ T (ff ∈ F).

Operators. Our conjunction operator is essentially a synchronous composition
for visible transitions and an asynchronous composition for τ–transitions. How-
ever, we need to take care of the T – and F–predicates.

Definition 2 (Conjunction Operator). The conjunction of two logical LTSs
〈P, −→P , TP , FP 〉, 〈Q, −→Q, TQ, FQ〉 is the LTS 〈P ∧ Q, −→P∧Q, TP∧Q, FP∧Q〉
defined by:

266 G. Lüttgen and W. Vogler

– P ∧ Q =df {p ∧ q | p ∈ P, q ∈ Q}
– −→P∧Q is determined by the following operational rules:

p
τ−→P p′ =⇒ p ∧ q

τ−→P∧Q p′ ∧ q

q
τ−→Q q′ =⇒ p ∧ q

τ−→P∧Q p ∧ q′

p
a−→P p′, q

a−→Q q′ =⇒ p ∧ q
a−→P∧Q p′ ∧ q′

q ∈ TQ, p
a−→P p′ =⇒ p ∧ q

a−→P∧Q p′ ∧ q

p ∈ TP , q
a−→Q q′ =⇒ p ∧ q

a−→P∧Q p ∧ q′

– p ∧ q ∈ TP∧Q if and only if p ∈ TP and q ∈ TQ

– p ∧ q ∈ FP∧Q if at least one of the following conditions holds:
1. p ∈ FP or q ∈ FQ

2. p /∈ TP and q /∈ TQ and p ∧ q � τ−→P∧Q and I(P) �= I(Q)
3. ∃α ∈ I(p ∧ q)∀p′ ∧ q′. p ∧ q

α−→P∧Q p′ ∧ q′ =⇒ p′ ∧ q′ ∈ FP∧Q

4. p ∧ q cannot stabilise

Note that the treatment of true–processes when defining −→P∧Q and TP∧Q re-
flects our intuition that these processes allow arbitrary behaviour. We are left
with explaining Conds. (1)–(4). Firstly, a conjunction is inconsistent if any con-
junct is. Conds. (2) and (3) reflect our intuition of inconsistency and, respectively,
backward propagation stated in the motivation section above. Cond. (4) is added
to enforce Def. 1(4). We refer to Conds. (3) and (4) as fixed point conditions of F
for ∧.

It is easy to check that conjunction is well–defined, i.e., that the conjunc-
tive composition of two logical LTSs satisfies the four conditions of Def. 1. For
Def. 1(1) in particular, note that p ∧ q ∈ TP∧Q does not satisfy any of the four
conditions for FP∧Q.

c
∧

a

b

∧
aa

τ

Fig. 3. Counter–example

We may now demonstrate why we have
treated non–escapable divergence as catas-
trophic in our setting. This is because, otherwise,
our conjunction operator would not be associa-
tive as demonstrated by the example depicted in
Fig. 3. If the conjunction is computed from the
left, the result is the first conjunct. Computed
from the right, the result is the same but with
both processes being in F . Hence, in the first
case, the divergence hides the inconsistency. Since this is not really plausible
and associativity of conjunction is clearly desirable, we need some restriction for
divergence; it turns out that restricting divergence to escapable divergence, i.e.,
potential stabilisation, is sufficient for our purposes.

Definition 3 (Disjunction Operator). The disjunction of two logical LTSs
〈P, −→P , TP , FP 〉 and 〈Q, −→Q, TQ, FQ〉 satisfying (w.l.o.g.) P ∩ Q = ∅, is the
logical LTS 〈P ∨ Q, −→P∨Q, TP∨Q, FP∨Q〉 defined by:

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 267

– P ∨ Q =df {p ∨ q | p ∈ P, q ∈ Q} ∪ P ∪ Q
– −→P∨Q is determined by the following operational rules:

always =⇒ p ∨ q
τ−→P∨Q p

always =⇒ p ∨ q
τ−→P∨Q q

p
α−→P p′ =⇒ p

α−→P∨Q p′

q
α−→Q q′ =⇒ q

α−→P∨Q q′

– p ∨ q /∈ TP∨Q always
– p ∨ q ∈ FP∨Q if and only if p ∈ FP and q ∈ FQ

The definition of disjunction, which reflects internal choice, is quite straightfor-
ward and well–defined. Only the definition of TP∨Q for p ∨ q is unusual, as one
would expect to simply have p ∨ q ∈ T whenever p or q is in T . However, then
Cond. (2) of Def. 1 would be violated. Our alternative definition respects this
condition and is semantically equivalent. In the sequel we leave out indices of
relations and predicates whenever the context is clear.

Refinement Preorder. As the basis for our semantical considerations we now
define a naive refinement preorder stating that an inconsistent specification can-
not be implemented except by an inconsistent implementation.

Definition 4 (Naive Consistency Preorder). The naive consistency pre-
order �F on processes is defined by p �F q if p ∈ F =⇒ q ∈ F .

One main objective of this paper is to identify the corresponding fully–abstract
preorder with respect to conjunction and disjunction, which is contained in �F .
Our approach follow the testing idea of De Nicola and Hennessy [12], for which we
define a testing relation � as usual. Note that a process and an observer need
to be composed not simply synchronously but conjunctively. This is because
we want the observer to be sensitive to inconsistencies, so that p � q if each
“conjunctive observer” that sees an inconsistency in p also sees one in q.

Definition 5 (Consistency Testing Preorder). The consistency testing pre-
order � on processes is defined as the conjunctive closure of the naive consistency
preorder under all processes (observers), i.e., p � q if ∀o. p ∧ o �F q ∧ o.

To characterise the full–abstract precongruence contained in �F we will intro-
duce a new semantics, called ready–tree semantics, and an associated preorder,
the ready–tree preorder, which is compositional for conjunction and disjunction
and which coincides with �.

Example. As an illustration for our approach, consider process spec in Fig. 4.
For A = {a, b, c}, spec specifies that action c can only occur after action a. In
the light of the above discussions, an implementation should offer initially either
just a, or a and b, or just b, so that spec is an internal choice between three states.
Moreover, after an action a, nothing more is specified; after an action b, the same

268 G. Lüttgen and W. Vogler

τ

b τ

Ta c

a

bspec
τ

impl

a

b

c

b

aτ

τ

τ
F

F

Fig. 4. Example processes

is required as initially. While our specification of this simple behaviour may look
quite complex, we may imagine that process spec is generated automatically
from a temporal–logic formula. Fig. 4 also shows process impl which repeats
sequence abc, and spec ∧ impl. It will turn out that spec � impl (cf. Sec. 4).

3 Ready–Tree Semantics

A first guess for achieving a compositional semantics reflecting consistency test-
ing is to use a kind of ready–trace semantics [7]. Such a semantics would refine
trace semantics by checking the initial action set of every stable state along
each trace. However, this is not sufficient when dealing with inconsistencies,
since inconsistencies propagate backwards along traces as explained in Sec. 2. It
turns out that a set of tree–like observations is needed, which leads to a novel
denotational–style semantics which we call ready–tree semantics.

Observation trees & ready trees. A tree–like observation can itself be seen
as a deterministic LTS with empty F–predicate, reflecting that observers are
internally consistent.

Definition 6 (Observation Tree). An observation tree is a LTS 〈V, →, T, ∅〉
satisfying the following properties:

1. 〈V, −→〉 is a tree whose root is referred to as v0

2. ∀v ∈ V. v stable
3. ∀v ∈ V, a ∈ I(v) ∃1v

′ ∈ V. v
a−→ v′

We often denote such an observation tree by its root v0. Next we define the
observations of a process p, called ready trees. Note that p can only be observed
at its stable states.

Definition 7 (Ready Tree). An observation tree v0 is a ready tree of p if there
is a labelling h : V −→ P satisfying the following conditions:

1. ∀v ∈ V. h(v) stable and h(v) /∈ F

2. p
ε=⇒ h(v0)

3. ∀v ∈ V, a ∈ A. v
a−→ v′ implies (a) h(v′) = h(v) ∈ T or (b) h(v) a=⇒ h(v′)

4. ∀v ∈ V. (v /∈ T and h(v) /∈ T) implies I(v) = I(h(v))

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 269

Intuitively, nodes v in a ready tree represent stable states h(v) of p (cf. Cond. (1),
first part) and transitions represent computations containing exactly one observ-
able action (cf. Cond. (3)(b)). Since computations do not contain false–states, no
represented state is in F (cf. Cond. (1), second part). Since p might not be stable,
the root v0 of a ready tree represents a stable state reachable from p by some
internal computation (cf. Cond. (2)). If the state h(v) represented by node v
is in T , the subtree of v is arbitrary since h(v) is considered to be completely
underspecified (cf. Conds. (3)(a) and (4)). In case h(v) /∈ T , one distinguishes
two cases: (i) if v /∈ T , then v and h(v) must have the same initial actions, i.e.,
the same ready set ; (ii) if v ∈ T , the observation stops at this node and nothing
is required in Conds. (3) and (4).

In the following, we write RT(p) for the set of all ready trees of p, fRT(p) for
the set of all ready trees of p that have finite depth (finite–depth ready trees),
and cRT(p) for the set of ready trees 〈V, −→, T, ∅〉 where T = ∅ (complete ready
trees). Note that a complete ready tree is called complete as it never stops its task
of observing; hence, complete ready trees are often infinite in practice. Moreover,
false–states may be characterised as follows:

Lemma 8. RT(p) = ∅ if and only if p ∈ F .

c

a
a

b
bb

a
T

a
b

T

T

a
c

b
a

b
T

a

Fig. 5. Some ready trees of spec

We illustrate our concept of ready trees by returning to our example of Fig. 4.
Some of the ready trees of process spec are shown in Fig. 5. In the first ready
tree, the observation stops after the third b. In the second tree, we see that we
can observe an arbitrary tree after a, since the respective state of spec is in T .
An arbitrary tree can also consist of just the root, as shown for the right–most
a in the third tree; this tree is also complete. Process impl in Fig. 4 has only
one complete ready tree which is an infinite path repeating sequence abc; this is
also a ready tree of spec.

Ready–tree preorder & expressiveness. Our ready–tree semantics suggests
the following refinement preorder:

Definition 9 (Ready–Tree Preorder). The ready–tree preorder �∼ on
processes is defined as reverse ready–tree inclusion, i.e., p �∼ q if RT(q) ⊆ RT(p).

This preorder will turn out to be the desired fully–abstract preorder contained
in the naive consistency preorder. We first show that �∼ could just as well
be formulated on the basis of complete ready trees and, for finitely branch-
ing LTS, of finite–depth ready trees. A crucial notion for our results is the
following:

270 G. Lüttgen and W. Vogler

Definition 10 (Ready–Tree Prefix). Ready tree v0 is prefix of ready tree w0,
in signs v0 ≤ w0, if there exists an injective mapping ρ : V ↪→ W such that:

1. ρ(v0) = w0

2. v
a−→ v′ =⇒ ρ(v) a−→ ρ(v′)

3. ρ(v) a−→ w′ =⇒ v ∈ T or (∃v′. v
a−→ v′ and ρ(v′) = w′)

4. ρ(v) ∈ T =⇒ v ∈ T

Intuitively, one observation is a prefix of another if it stops observing earlier.
Recall that a true–node indicates that observation stops (cf. Cond. (3)). In-
tuitively, we obtain a prefix of w0 by cutting all transitions from some nodes
(and adding them to T), while cutting just some transitions of a node is not
allowed.

Lemma 11. {v0 | ∃w0 ∈ cRT(p). v0 ≤ w0 } = RT(p).

As a consequence, we obtain the following corollary:

Corollary 12

1. RT(p) is uniquely determined by cRT(p), and vice versa.
2. RT(p) ⊆ RT(q) ⇐⇒ cRT(p) ⊆ cRT(q)
3. fRT(p) = {v0 of finite depth | ∃w0 ∈ cRT(p). v0 ≤ w0}

Before stating the next lemma we introduce the following definitions that allow
us to approximate ready trees:

Definition 13 (k–Ready Tree). A k–tree 〈V, −→, T, ∅〉, where k ∈ N0, is an
observation tree where all nodes have depth at most k, and T is the set of all
nodes of depth k. A k–ready tree of p is a ready tree of p that is also a k–tree.
Moreover, k–RT(p) =df {v0 ∈ RT(p) | v0 is a k–tree }.

Intuitively, k–trees represent observations of k steps.

Definition 14 (Limit). Let v be an infinite sequence (vk)k∈N where vk ∈
k–RT(p) and vk ≤ vk+1, with the identity as injection, for all k ∈ N. Then,
limv is the component–wise union of all vk with T set to empty; lim v is called
a limit of p.

Observe that a node of some vk in such a sequence is not in Tk+1, whence nodes
in T are successively pushed out. In the limit, we may thus set T to empty.
Moreover, if vk = vk+1 = vk+2 = . . . for some k, then the limit is vk; this
happens exactly when vk is complete. According to the following definition, we
base the notion of finite branching on the weak transition relation α=⇒.

Definition 15 (Finite Branching). A process p is finite branching if, for ev-
ery p′ reachable from p, there are only finitely many 〈α, p′′〉 with p′ α=⇒ p′′.
For finite–branching processes p, cRT(p) is characterised by the limits of p.

Lemma 16. If p is finite branching, cRT(p) equals the set of all limits of p.

Note that the premise “p is finite branching” is only needed for direction “⊇” in
the above lemma. We may now obtain the following corollary of Cor. 12(3) and

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 271

of Lemma 16, which is key to proving compositionality and full abstraction of
our ready–tree preorder in the next section.

Corollary 17

1. cRT(p) ⊆ cRT(q) =⇒ fRT(p) ⊆ fRT(q), always.
2. cRT(p) ⊆ cRT(q) ⇐= fRT(p) ⊆ fRT(q), if p is finite branching.

4 Compositionality and Full Abstraction

This section establishes our full–abstraction result of the ready–tree preorder �∼
with respect to the consistency testing preorder �, and proves that ∧ and ∨
are indeed conjunction and, respectively, disjunction for �∼ . To do so, we first
show that ∧ and ∨ correspond to intersection and union on the semantic level,
respectively. While the correspondence for ∨ holds for ready trees in general, the
correspondence for ∧ only holds for complete ready trees.

Theorem 18 (Set–Theoretic Interpretation of ∧ and ∨)
1. cRT(p ∧ q) = cRT(p) ∩ cRT(q) 2. RT(p ∨ q) = RT(p) ∪ RT(q)

ba ca a
T

Fig. 6. Necessity of considering complete ready trees for conjunction

Fig. 6 illustrates that Thm. 18(1) is invalid when considering all ready trees
instead of complete ready trees. The two processes displayed on the left and in
the middle have the ready tree displayed on the right in common. However, the
conjunction of the two processes is false and has no ready trees. Intuitively, the
shown common ready tree formalises an observation that finished too early to
encounter the inconsistency. Compositionality of our conjunction and disjunction
operators for �∼ is now an immediate consequence of Thm. 18:

Theorem 19 (Compositionality)
1. p �∼ q =⇒ p ∧ r �∼ q ∧ r 2. p �∼ q =⇒ p ∨ r �∼ q ∨ r

Thm. 18 also allows us to prove that ∧ and ∨ really behave as conjunction and
disjunction with respect to our refinement relation.

Theorem 20 (∧ is And & ∨ is Or)
1. p ∧ q �∼ r ⇐⇒ p �∼ r and q �∼ r 2. r �∼ p ∨ q ⇐⇒ r �∼ p and r �∼ q

In order to see that ready trees are indeed fully–abstract with respect to
our naive consistency preorder, it now suffices to prove that �∼ coincides with
our consistency testing preorder. This means that �∼ is the adequate preorder
in our setting of logical LTSs with conjunction and disjunction.

272 G. Lüttgen and W. Vogler

Theorem 21 (Full Abstraction) � = �∼
The following proposition states the validity of several boolean properties desired
of conjunction and disjunction operators. Here, = denotes the kernel of our
consistency testing preorder (ready–tree preorder).

Proposition 22 (Properties of ∧ and ∨)

Commutativity: p ∧ q = q ∧ p p ∨ q = q ∨ p
Associativity: (p ∧ q) ∧ r = p ∧ (q ∧ r) (p ∨ q) ∨ r = p ∨ (q ∨ r)
Idempotence: p ∧ p = p p ∨ p = p

False: p ∧ ff = ff p ∨ ff = p
True: p ∧ tt = p p ∨ tt = tt
Distributivity: p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

These properties follow directly from Thm. 18 and Cor. 12(2), as do the following:

Proposition 23 (Relating ∧, ∨ to �)
1. p ∧ q = q ⇐⇒ p � q 2. p ∨ q = p ⇐⇒ p � q

We conclude this section by briefly returning to the illustrative processes spec and
impl of Fig. 4. We have already remarked that the only complete ready tree of the
latter is also one of the former. Hence, by Thm. 21, impl is indeed a refinement of
spec according to our ready–tree preorder. Considering the conjunction of these
processes, also shown in Fig. 4, it might be easier to see this using Prop. 23(1).

5 Related Work

Traditionally, process–algebraic and temporal–logic formalisms are not mixed
but co–exist side by side. Indeed, the process–algebra school often uses syn-
chronous composition and internal choice to model conjunction and disjunction,
respectively. The compositionality of classic process–algebraic refinement pre-
orders, such as failures semantics [4] and must–testing [12], enables component–
based reasoning. However, inconsistencies in specifications are not captured so
that, e.g., the conjunctive composition of a and b is identified with deadlock
rather than ff. In contrast, the temporal–logic school distinguishes between dead-
lock and ff, but does not support component–based refinement.

Much research on mixing operational and logical styles of specification avoids
dealing with inconsistencies by translating one style into the other. On the one
hand, operational content may be translated into logic formulas, as is implicitly
done in Lamport’s TLA [10] or in the work of Graf and Sifakis [8]. In these
approaches, logical implication serves as refinement relation. On the other hand,
logical content may be translated into operational content. This is the case in
automata–theoretic work, such as Kurshan’s work on ω–automata [9], which
includes synchronous and asynchronous composition operators and uses maximal
trace inclusion as refinement relation. However, both logical implication and
trace inclusion are insensitive to deadlock.

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 273

A seminal approach to compositional refinement relations in a mixed set-
ting was proposed by Olderog in [13], where process–algebraic constructs are
combined with trace formulas expressed in a predicate logic. In this approach,
trace formulas can serve as processes, but not vice versa. Thus, freely mixing
operational and logical styles is not supported and, in particular, conjunction
cannot be applied to processes. For his setting, Olderog develops a denotational
semantics that is a slight variation of standard failures semantics. Remarkably,
an inconsistent formula is given a semantics that is not an element of the appro-
priate domain, as is stated on pp. 172–173 of [13].

Recently, a more general approach to combining process–algebraic and tem-
poral–logic approaches was proposed in two papers by Cleaveland and Lüttgen
[5, 6], which adopt a variant of De Nicola and Hennessy’s must–testing pre-
order [12] as refinement preorder. However, Cleaveland and Lüttgen have not
successfully solved the challenge of defining a semantics that is both deadlock–
sensitive and compositional, and in which the conjunction operator and the
refinement relation are compatible in the sense of Prop. 23(1). Our work solves
this problem in the basic setting of logical LTS. Key for the solution is our new
understanding of inconsistency, which is reflected by the fact that we consider
processes a and a + b as inconsistent, whereas they were treated as consistent
in [6]. Observe that also in failure semantics and must–testing, a and a + b are
inconsistent in the sense that they do not have a common implementation.

a

c

a

c cFb
∧

a a a

=

Fig. 7. Backward propagation of inconsistency

In addition, our backward propagation of inconsistency, as formalised in
Def. 1(3), is in line with traditional semantics, as is illustrated in Fig. 7. The first
conjunct would be a specification of the second conjunct with respect to failures
semantics and must–testing, whence their conjunction should be consistent. In
fact, the conjunction equals the second process in our ready–tree semantics.

Comparing Ready–Tree Semantics to Other Semantics

To the best of our knowledge, ready–tree semantics is novel and has not been
studied in the literature before. We thus briefly compare it to three popular
semantics, namely ready–trace semantics, failures semantics and ready simula-
tion [7]. Since our treatment of divergence is different from the one of failures
semantics, we restrict our discussion to τ–free processes.

A ready trace [1] of a process is a sequence of actions that it can perform and
where, at the beginning of the trace, between any two actions and at the end,
the ready set of the process reached at the respective stage is inserted. Such a

274 G. Lüttgen and W. Vogler

a a

c b

d

cb

d

a a

c b

d

cb

d

a

b

d

c

Fig. 8. Ready–tree semantics is strictly finer than ready–trace semantics

ready trace can be understood as a particular type of ready tree that consists
only of a single path and includes additional transitions representing the ready
sets. These additional transitions ensure that each state on the path has, for
each action in its ready set, exactly one transition that either belongs to the
path or ends in a true–state. For example, the first ready tree in Fig. 5 in Sec. 3
represents the ready trace {a, b}b{b}b{a, b}. Consequently, the ready traces of
a process can be read off from its ready trees, and ready–tree inclusion implies
ready–trace inclusion. The reverse implication does not hold: the two left–most
processes in Fig. 8 possess the same ready traces; however, the observation tree
on the right–hand side is a ready tree of the first, but not of the second process.

The failures semantics of a process is the set of its refusal pairs. Such a pair
consists of a trace followed by a refusal set, i.e., a set of actions that the process
reached by the trace cannot perform. Such a refusal pair can be read off from
the respective ready trace by deleting all its ready sets and adding a set of
actions having an empty intersection with the last ready set on the trace. Thus,
ready–tree semantics is finer than failures semantics.

c

a

b

a

c

a

b

dd

bb

Fig. 9. The ready–tree preorder is strictly
coarser than ready simulation

A process q ready–simulates some
process p if there exists a simulation
relation from p to q such that related
states have identical ready sets. When
tracing a ready tree of p, it is easy
to see that such a simulation trans-
lates this ready tree to the same ready
tree for q. Thus, the ready–tree pre-
order is coarser than ready simulation.
Fig. 9 shows that it is indeed strictly
coarser. Both processes displayed have
the same ready trees; all of these trees
are paths. However, the second process cannot even simulate the first process.

6 Conclusions and Future Work

This paper introduced a new semantics, the ready–tree semantics, that lies be-
tween ready–trace semantics and ready simulation. Our framework was one of
τ–pure LTSs, with distinguished true– and false–states, and is equipped with

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 275

conjunction and disjunction operators. Key for defining the conjunction opera-
tor was the careful, inductive formalisation of an inconsistency predicate. The
implied ready–tree preorder proved to be compositional and fully–abstract with
respect to a naive preorder that allows inconsistent specifications to be refined
only by inconsistent implementations. Standard laws of boolean algebra hold as
expected, due to the fact that conjunction and disjunction on LTSs correspond
to intersection and union on ready trees, respectively.

Consequently, this paper solves the problems of defining conjunction which
are reported in closely related work [5, 6], albeit in a simpler setting that does
not consider process–algebraic operators but only conjunction and disjunction.
However, it is the simplicity of our setting that brought the subtleties of defining
a fully–abstract semantics in the presence of conjunction to light, and which
offered a way forward in addressing the challenge of defining “logical” process
calculi, i.e., process calculi that allow one to freely mix process–algebraic and
temporal–logic operators [6].

Future work shall extend our results to richer frameworks. Firstly, we plan to
lift our requirement of τ–purity on LTS and extend our framework by standard
process–algebraic operators such as parallel composition, hiding and recursion.
In particular hiding is likely to prove challenging due to its transformation of
observable infinite behaviour into divergent behaviour. Secondly, our framework
shall be semantically extended from LTS to Büchi LTS [5] so that one may ex-
press liveness and fairness properties, and syntactically to linear–time temporal–
logic formulas [6]. Last, but not least, we wish to explore tool support.

Acknowledgements. We thank Rance Cleaveland for many fruitful discussions
and particularly for suggesting the use of an inconsistency predicate.

References

[1] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Ready-trace semantics for concrete
process algebra with the priority operator. Computer J., 30(6):498–506, 1987.

[2] J.A. Bergstra, A. Ponse, and S.A. Smolka. Handbook of Process Algebra. Elsevier
Science, 2001.

[3] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995.

[4] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-
quential processes. J. ACM, 31(3):560–599, 1984.

[5] R. Cleaveland and G. Lüttgen. A semantic theory for heterogeneous system de-
sign. In FSTTCS 2000, vol. 1974 of LNCS, pp. 312–324. Springer-Verlag, 2000.

[6] R. Cleaveland and G. Lüttgen. A logical process calculus. In EXPRESS 2002,
vol. 68,2 of ENTCS. Elsevier Science, 2002.

[7] R. van Glabbeek. The linear time – branching time spectrum II. In CONCUR ’93,
vol. 715 of LNCS, pp. 66–81. Springer-Verlag, 1993.

[8] S. Graf and J. Sifakis. A logic for the description of non-deterministic programs
and their properties. Information and Control, 68(1–3):254–270, 1986.

[9] R.P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton Univ. Press, 1994.

276 G. Lüttgen and W. Vogler

[10] L. Lamport. The temporal logic of actions. TOPLAS, 16(3):872–923, 1994.
[11] G. Lüttgen and W. Vogler. Conjunction on processes: Full-abstraction via ready-

tree semantics. Tech. Rep. YCS-2005-396, Dept. of Comp. Sci., Univ. of York,
UK, 2005.

[12] R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. TCS,
34:83–133, 1983.

[13] E.R. Olderog. Nets, Terms and Formulas. Cambridge Tracts in Theoretical Com-
puter Science 23. Cambridge Univ. Press, 1991.

[14] A. Pnueli. The temporal logic of programs. In FOCS ’77, pp. 46–57. IEEE
Computer Society Press, 1977.

	Introduction
	Labelled Transition Systems and Conjunction
	Ready--Tree Semantics
	Compositionality and Full Abstraction
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

