Demonstration: On-Line Visualization and
Analysis of Real-Time Systems with TuningFork

David F. Bacon!, Perry Cheng!, Daniel Frampton?,
David Grove!, Matthias Hauswirth®, and V.T. Rajan'

1 IBM T.J. Watson Research Center
2 Department of Computer Science, The Australian National University
3 Universita della Svizzera Italiana

Abstract. TuningFork is an online, scriptable data visualization and
analysis tool that supports the development and continuous monitor-
ing of real-time systems. While TuningFork was originally designed and
tested for use with a particular real-time Java Virtual Machine, the ar-
chitecture has been designed from the ground up for extensibility by
leveraging the Eclipse plug-in architecture. This allows different client
programs to design custom data formats, new visualization and analy-
sis components, and new export formats. The TuningFork views allow
the visualization of data from time scales of microseconds to minutes,
enabling rapid understanding and analysis of system behavior.

1 Introduction

When designing and developing system software of significant complexity, meet-
ing performance goals is as important and challenging as correctness. In the case
of a real-time system, coarse-grained performance characteristics such as overall
throughput alone are not enough to verify responsiveness or determine the causes
of failure. The ability to measure and visualize fine-grained events is necessary
for determining correctness and analyzing why the system misbehaved.

The large volume of data often generated by these systems is hard to un-
derstand without visualization. In production systems where downtime is unac-
ceptable, online monitoring and analysis can be useful for problem determination
and resolution. During development, a real-time system must be tested for per-
formance regression automatically and a useful analysis tool must also support
scripting commands.

In the accompanying presentation we will demonstrate TuningFork, an on-
line, scriptable, and re-configurable data visualization and analysis tool for the
development and continuous monitoring of real-time systems. TuningFork is an
Eclipse plug-in using the Rich Client Platform (described at www.eclipse.org),
and itself exports a plug-in architecture that allows user-defined data stream for-
mats, stream filters, and visualizations. Because TuningFork is still under rapid
development, it is not yet available for download.

TuningFork is a combination of known and novel techniques and visualiza-
tions, but it is the whole that is greater than the sum of the parts. TuningFork’s

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 96-[I00} 2006.
© Springer-Verlag Berlin Heidelberg 2006

Demonstration: On-Line Visualization and Analysis of Real-Time Systems 97

features include a real-time centered design that adapts to data loss and event
reordering due to resource constraints in the traced system, the ability to handle
very large volumes of data online with a running system, an adaptive data sum-
marization framework allowing even more past data to be viewed, the ability to
play the data in forward and reverse, plugin-based extensibility of trace formats
and views, a composable data stream abstraction that allows creation of new
synthetic events, and the ability to run the same system in batch mode with a
scripting language.

Novel views include the “oscilloscope” view that presents interval data in a
sequence of “time strips”. With a large LCD display, this allows 2-3 seconds
of data to be visualized at 10us resolution, or 20-30 seconds of data at 10ms
resolution, with user-selectable continuously variable time scales. When play
mode is off, data can be viewed down to the nanosecond scale. Furthermore, a
statistical superimposition facility allows the overall behavior of huge amounts of
periodic high-resolution data to be visualized (hence the oscilloscope analogy).

The demonstration will show how TuningFork is used to diagnose run-time
anomalies in real-time behavior in Metronome, our real-time garbage collector
for Java implemented in the IBM J9 virtual machine product. The various views
allow the identification of a failure to meet a high-level response-time specifica-
tion using a time-strip animation, followed by identification of the cause using
a histogram which categorizes different atomic sections of the garbage collector,
and culminating in the identification of the precise point of failure in the ex-
ecution of the program using the oscilloscope view. We will also show how to
evaluate memory policy using a spatial view that shows the physical or logical
state of the heap.

2 Architecture

At the high level, TuningFork’s architecture consists of a thin client-side layer
which transmits application or JVM events and the server-side TuningFork vi-
sualization application which we simply call TuningFork. The client is instru-
mented at various points to collect special information and send the data in an
application-specific feed to TuningFork via a socket or to a file for post-mortem
analysis. Although our primary client of TuningFork is a JVM, any system that
emits trace files in the specified format is a suitable target for TuningFork.

At the high-level, the feed is broken into chunks which are the units of network
transmission to TuningFork. Certain initial chunks describe overall properties
as well as the format of the rest of the feed. The event chunks are the most
interesting and constitute the bulk of the feed. Each event chunk includes a
chunk identifier so that TuningFork can obtain the appropriate interpreter plug-
in for that application. Since the client application may be multi-threaded, the
data feed is broken into feedlets and each event chunk contains data only from
one feedlet.

Because TuningFork is fundamentally a time-based tool, all events have a
time stamp, typically the value of a cycle counter which on current architectures

98 D.F. Bacon et al.

provides nanosecond-scale resolution. In order to present a globally time-ordered
view of events to the rest of TuningFork, data from different feeds are merged
into a single global feed by making data at a certain time visible only after all
feeds have reached that point in time.

Because TuningFork is built on top of the Eclipse Rich Client Platform, it is
simple for the application developer to export application-specific portions such
as an event chunk interpreter to TuningFork via the plug-in architecture. The ap-
plication also can export filters which convert events to non-application-specific
streams. These streams can then be composed into figures for visualization.

Trace Global Event Filters Streams Figures
Sequencer Base —lp Derived
o«
-~ <Dkl
D | > % Histogram ™ f
N NAY N i
@) :
N i

Fig. 1. TuningFork Architecture

2.1 Streams

In a real-time system, many quantities of interest are time-series data. Because
TuningFork can be used to monitor an online system or large post-mortem trace
files, the volume of data will generally exceed the memory capacities of Tuning-
Fork. The traditional method of implementing a ring buffer is simple but has
the disadvantage of losing data that is older than the size of the buffer, making
diagnosis of certain problems difficult and understanding of long-term trends
impossible. In addition, computation and display of data streams is complicated
by requiring a constant awareness of this possibiliy.

This problem is greatly reduced by continuing to use a stream abstraction so
that a stream appears to be a function whose domain is an ever-increasing time
range and whose range is dependent on the particular stream. For example,
a stream representing memory usage would map time values to bytes while a
stream representing interrupt handler execution would map to time intervals.
However, depending on memory pressure, the precision of older data may be
continuously degraded by aggregated data into a collection of statistics.

The functional aspect of streams simplifies the computational model by allow-
ing standard mathematical functions like addition, differentiation, and smooth-
ing via convolution. Streams are initially created by applying filters to the events
that enter the system. For example, a “used memory” filter would generate pairs
of values (¢, m) which are used to create the used memory stream which logically
consists of the function memory(t) and the range [tstart,tend]. A new stream,

Demonstration: On-Line Visualization and Analysis of Real-Time Systems 99

allocation rate, can be created by applying the differentiation filter to the “used
memory” stream.

Certain operators will take operand streams of different types. For example,
one can take a value stream (e.g. used memory) and a time interval stream (e.g.
time intervals when the garbage collector is off) and create a value stream which
shows only used memory when the garbage collector is off.

Other base types include categories which is useful for understanding the
relationship of a set of quantities. For example, we might have a categry-value
stream which would show the duration of each GC pause and the type of activity
the colletor was performing in that time interval. A histogram of such a stream
would then show not only the average and maximum pause time but also what
the collector was doing during those pauses.

2.2 Figures

At the heart of TuningFork are the visualization components, called figures. Fig-
ures are responsible for taking streams of data and displaying them to the user.
The figure architecture has been designed for extensibility, device-independent
rendering, and high performance to allow the display of live data feeds with high
data rates.

Visualizations are typically composed of several common reused subcompo-
nents. Histograms, axes, legends, and time series plots may occur many times
within different visualizations, albeit with minor differences in display charac-
teristics. This approach is important because of our goal of allowing the user to
extend the system by plugging in custom views.

In order to facilitate the rapid development of new visualization components,
TuningFork introduces two key design features: a high-level drawing interface
tailored to on-line visualization, and painters. The high level interface allows
device-independent drawing; we currently have both an SWT implementation
for the user interface, and a PDF implementation for printing functionality. The
programming interface includes simple painting functionality for basic shapes.
Painters build on top of this simple interface to provide more complex, data-
dependent visualization components such as axes, histograms, and time series
plots.

Within this design framework, the role of a figure becomes to divide the visu-
alization display into different areas, determine the precise data that needs to be
drawn, and delegate drawing to various painter implementations. Additionally,
the figure contains all state regarding the display settings for the visualization
component. This can be accessed both through a host eclipse view, and via the
programmatic conductor interface.

2.3 Conductor

The interactive visualization and analysis of TuningFork is very powerful. How-
ever, there is also a need for automated analysis, in particular for such tasks as
regression testing where the results of the analysis must be fed into automated

100 D.F. Bacon et al.

tools that report performance anomalies and automatically create work items in
the product development database.

Such text-based analyses are typically written as entirely separate tools. How-
ever, the modular stream processing, filtering, and transformation facilities in
TuningFork are extremely useful for building such analyses. In order to minimize
code duplication, facilitate the creation of automated analyses, and to provide a
more productive environment for power users, TuningFork includes the conduc-
tor — a lightweight scripting environment.

It is possible to perform nearly all visualization operations from within the
conductor, such as connecting to traces, opening figures, performing analysis, and
exporting PDF files. Additionally, due to the pluggable nature of the application,
it is possible to run the conductor outside of the graphical user interface, an
important capability for automated testing. This allows the creation of tools
produce purely textual results for use in larger programmatic systems, and for
the creation of visualizations of exceptional conditions that can be uploaded into
a web-based graphical database.

3 Comparisons and Conclusions

TuningFork has drawn on many sources of inspiration (space constraints un-
fortunately do not permit formal citations), particularly the work of Tufte on
visual display of quantitative information. It is perhaps most similar to the PV
Program Visualizer (Kimmelman et al), which can visualize very large event
traces without loading the complete trace into memory. It provides an animated
visualization of the information in a sliding window over the trace. PV supports
temporal vertical profiling, integrating information from hardware, operating
system, native libraries and native applications. It mainly focuses on visualiz-
ing events, states, and the corresponding source code, but can also visualize the
value of a metric over time.

Much prior visualization work has focused on parallel systems and their com-
plex behavior, including Paradyn (Miller et al), Jumpshot (Zaki et al), Pablo
(Reed et al), and others. Real-time behavior presents its own unique challenges,
but shared with such systems a need to coordinate the time scales of many
independent parts running on potentially distributed or unsynchronized clocks.

TuningFork is a comprehensive tool for visualization and analysis tool for
real-time systems. TuningFork allows visualization of real-time events as they
are happening, and provides views that allow data to be visualized across a very
wide range of time scales, while still providing a high degree of resolution. Our
experience has shown that the broad range of visualization capability promotes a
deep understanding of the detailed behavior of real-time systems at both macro
and micro time-scales.

	Introduction
	Architecture
	Streams
	Figures
	Conductor

	Comparisons and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

