
Efficient Flow-Sensitive Interprocedural Data-Flow
Analysis in the Presence of Pointers

Teck Bok Tok1, Samuel Z. Guyer2, and Calvin Lin1

1 Department of Computer Sciences,
The University of Texas at Austin, Austin, TX 78712, USA

2 Department of Computer Science,
Tufts University, Medford, MA 02155, USA

Abstract. This paper presents a new worklist algorithm that significantly speeds
up a large class of flow-sensitive data-flow analyses, including typestate error
checking and pointer analysis. Our algorithm works particularly well for inter-
procedural analyses. By contrast, traditional algorithms work well for individual
procedures but do not scale well to interprocedural analysis because they spend
too much time unnecessarily re-analyzing large parts of the program. Our algo-
rithm solves this problem by exploiting the sparse nature of many analyses. The
key to our approach is the use of interprocedural def-use chains, which allows
our algorithm to re-analyze only those parts of the program that are affected by
changes in the flow values. Unlike other techniques for sparse analysis, our algo-
rithm does not rely on precomputed def-use chains, since this computation can
itself require costly analysis, particularly in the presence of pointers. Instead, we
compute def-use chains on the fly during the analysis, along with precise pointer
information. When applied to large programs such as nn, our techniques im-
prove analysis time by up to 90%—from 1974s to 190s—over a state of the art
algorithm.

1 Introduction

Flow-sensitive analysis is important for problems such as program slicing [22] and er-
ror checking [6, 7]. While recent work with BDD’s has produced efficient algorithms
for solving a variety of flow-insensitive analyses [24, 25], these techniques have not
translated to flow-sensitive problems. Other techniques, such as demand interprocedu-
ral analysis [11], do not apply to pointer analysis. Thus, the most general technique for
solving flow-sensitive problems continues to be iterative data-flow analysis. Existing
iterative data-flow analysis algorithms work well within a single procedure, but they
scale poorly to interprocedural analysis because they spend too much time unnecessar-
ily re-analyzing parts of the program.

At issue is the manner in which worklists are managed, which can greatly affect the
amount of work performed during each iteration. The most basic algorithm maintains
a worklist of basic blocks for each procedure. Basic blocks are repeatedly removed
from the worklist and applied with the flow functions. If any changes to the flow values
occur, all reachable blocks are added to the worklist. This basic algorithm becomes
extremely inefficient when used for interprocedural analysis: when re-analyzing a block

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 17–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 T.B. Tok, S.Z. Guyer, and C. Lin

that contains procedure calls, the algorithm may revisit all of the called procedures, even
though many of them may not require re-analysis. Extensions to this basic algorithm,
such as Hind and Pioli’s priority queue approach [10], which considers the structure of
the control flow, also suffer from this problem of useless work. For example, when the
Hind and Pioli algorithm is applied to the nn program (about 36K lines of C), we find
that only 3% of the basic block visits are useful—the others do not update any flow
values.

p = &x;
while (cond) {
y = x;

*p = 7;
p = &z;

}
y = z;

Fig. 1. A loop example

In this paper we present a new algorithm for interproce-
dural iterative data-flow analysis that is significantly more ef-
ficient than previous algorithms. The algorithm exploits data
dependences to reduce the number of times that blocks are
revisited. The algorithm builds on an insight from previous
work on intraprocedural algorithms: def-use chains can be
used to directly identify those blocks that are affected by flow
value updates [23]. This goal, however, is complicated by the
fact that the computation of def-use chains is itself an expen-
sive flow-sensitive computation, particularly in the presence
of pointers. The example in Fig.1 shows why: the first time through the loop “*p” refers
to x and therefore implies a def-use chain to the statement above it. The second time
through the loop, however, “*p” refers to z, which implies a def-use chain to the block
following the loop.

Our algorithm solves this problem by computing data dependences on the fly, along
with precise pointer information, while solving the client data-flow analysis problem.
The key to our approach is that as the pointer analysis computes the uses and defs of
variables, it builds a network of use-def and def-use chains: the use-def chains enable
fast lookup of flow values, while the def-use chains are used to narrow the scope of
re-analysis when flow values change. Initially, the framework visits all basic blocks in a
procedure to compute a first approximation of (1) the pointer information, (2) the data
dependences, and (3) the client data-flow information. Subsequent changes in the flow
values at a particular def only cause the corresponding uses to be re-analyzed. More
importantly, our system incorporates new dependences into the analysis as the pointer
analysis discovers them: changes in the points-to sets cause reevaluation of pointer ex-
pressions, which in turn may introduce new uses and defs and force reevaluation of the
appropriate parts of the client analysis problem. Occasionally, we find pairs of basic
blocks that are connected by large numbers of def-use chains. For these cases we have
explored a technique called bundling which groups these def-use chains so that they can
be efficiently treated as a single unit.

This paper makes the following contributions. First, we present a metric that al-
lows us to compare the relative efficiency of different worklist algorithms. Second, we
present a new worklist management algorithm, which significantly improves efficiency
as measured by our metric. Third, we evaluate our algorithm by using it as the data-flow
engine for an automated error checking tool [7]. We compare our algorithm against a
state-of-the-art algorithm [10] on a large suite of open source programs. We show that
improved efficiency translates into significant improvements in analysis time. For our
set of 19 open source benchmarks, our algorithm improves efficiency by an average

Efficient Flow-Sensitive Interprocedural Data-Flow Analysis 19

of 500% and improves analysis time by an average of 55.8% when compared with the
Hind and Pioli algorithm. The benefits of our algorithm increase with larger and more
complex benchmarks. For example, the nn benchmark sees an order of magnitude im-
provement in efficiency, which translates to a 90% improvement in analysis time.

This paper is organized as follows. We review related work in Section 2. Section 3
briefly describes the analysis framework. Section 4 presents our worklist algorithm,
DU that enables sparse analysis, and a variant, DUloop that exploits loop structures.
Section 5 presents our empirical setup and results. We conclude in Section 6.

2 Related Work

There are two families of data-flow algorithms: elimination methods [21] and iterative
algorithms. Elimination methods, such as interval analysis, solve systems of equations
and do not work well in the presence of pointers. The class of iterative algorithms
include worklists, round robin, and node listing algorithms [13, 1]. Both the round-robin
and node listing approaches are dense analyses in the sense that blocks are re-analyzed
needlessly.

Previous work on comparing worklist algorithms includes Atkinson and Griswold’s
work [2], which shows that the performance difference between a round-robin algo-
rithm and a worklist algorithm can be huge. They propose a hybrid algorithm that com-
bines the benefits of the two. In separate work, Hind and Pioli [10] exploit loop structure
by using a priority queue. We find that Atkinson and Griswold’s hybrid algorithm can
sometimes be better and sometimes worse than Hind and Pioli’s algorithm. To provide
a basis for comparison with our new algorithm, we use as our baseline a version of the
priority-queue approach that does not use the identity transfer function or IN/OUT sets.

Wegman and Zadeck pioneered the notion of sparse analysis in their sparse con-
stant propagation algorithm [23]. We extend their approach to handle pointers, and we
address the need to discover def-use chains on the fly as the analysis progresses.

Another possible method of exploiting sparsity is to use a sparse evaluation graph
(SEG) or its variants [4, 17], which are refinements of CFGs that eliminate irrelevant
statements. Hind and Pioli report improvement with pointer analysis when SEG is
used [10], but because their use of IN/OUT sets does not fully exploit sparsity. It is
unclear how much our sparse analysis can benefit from an SEG, and we leave this study
as future work.

For some classes of data-flow analysis problems, there exist techniques for efficient
analysis. For example, demand interprocedural data-flow analysis [11] can produce pre-
cise results in polynomial time for interprocedural, finite, distributive, subset problems
(IFDS). Unfortunately, this class excludes pointer analysis, and a separate pointer anal-
ysis phase may be required.

In the context of pointer analysis itself, previous work on flow-sensitive pointer anal-
ysis algorithms that makes use of worklists [18, 3] do not attempt to tune the worklist,
so our worklist algorithm can be applied to such work to improve their performance.
Other pointer analysis algorithms sometimes tradeoff precision for scalability [9]. Our
algorithm improves the efficiency of the worklist component that drives the analysis,
without affecting the precision of the analysis.

20 T.B. Tok, S.Z. Guyer, and C. Lin

Worklist algorithms have also been studied from other perspectives. For example,
Cobleigh et at. [5] study the effects of worklist algorithms in model checking. They
identify a few dimensions along which an algorithm can be varied. Their main result
is that different algorithms perform best during different phases of analysis. We do not
attempt to partition an analysis into phases. Similarly we do not address the issue of
partitioning the problem into subproblems [20], nor do we divide a large program into
manageable modules [19, 15].

3 Analysis Framework

This section provides background about our data-flow analysis framework, including
details about how we efficiently compute reaching definitions using dominance
information.

We assume an iterative-based whole-program flow-sensitive pointer analysis that
uses a worklist for each procedure, where each worklist maintains a list of unique
CFG blocks. An alternative is a single worklist of nodes from a supergraph [16], elim-
inating procedure boundaries, but we believe that such a large worklist would be too
expensive.

Our algorithm requires accurate def-use chains. Since definitions are created on the
fly during pointer analysis, we need to update chains whenever a new definition is dis-
covered. To perform such updates efficiently, we assume SSA form for all variables,
including heap objects. SSA has well-understood properties: every use u has a unique
reaching definition d, and d must dominate u if u is not a phi-use. These properties,
together with dominance relations (described below), allow us to quickly determine if
a newly-discovered definition invalidates any existing def-use pairs. Finally, to merge
flow values at different call sites, the system uses interprocedural φ-functions at proce-
dure entries.

1

2

3 4

7

65

8

Fig. 2. Node numbering
on an expanded domi-
nator tree

Our system does not use IN/OUT sets to propagate flow val-
ues [3] because their use would mandate a dense analysis: any
update on a node would force all of its successors to be re-
visited. Our sparse analysis instead uses dominance informa-
tion to efficiently retrieve flow values across use-def chains.
To obtain the nearest reaching definition for a given use, we
build from the CFG an expanded dominator tree where each
node represents a statement. We assign to each node n a pre-
order number and a postorder number, denoted min(n) and
max(n), respectively, so that given two distinct statements m
and n, m dominates n, denoted by DOM(m, n), if and only if
min(m) < min(n) ∧ max(m) > max(n). These numbers are assigned by perform-
ing a depth-first traversal and incrementing a counter each time we move either up or
down the tree. Fig.2 shows the numbers assigned to an example expanded dominator
tree. The number to the left of each node is its min number and the number to the right
of each node is its max number.

To use this expanded dominator tree, each definition of a variable is associated with
a unique statement, and we store all definitions of a variable in a list that satisfies the

Efficient Flow-Sensitive Interprocedural Data-Flow Analysis 21

following invariant: let di be the ith definition in the list, and let ni be the statement
associated with di, then the min of the statements are stored in decreasing order:

∀i < j : min(ni) > min(nj)
⇒ ∀i < j : ¬DOM(ni, nj) (1)

To find the nearest reaching definition that strictly dominates a statement m, we
(1) perform a binary search to obtain the minimum i such that di in the list satisfies
min(ni) < min(m); and (2) perform a linear scan from i to the end of the list to
find the first di such that max(ni) > max(m). For the resulting di, DOM(ni, m).
Without the binary search, a linear search alone (starting from i = 1) can still find the
correct result if the DOM(ni, m) test is used, because by Invariant (1) the first ni that
dominates m must also be the nearest.

4 DU : Worklist Management

Fig. 3. An example CFG

Our algorithm is based on a well-known idea: use def-use
chains to identify those blocks that may be affected by
the most recent updates, thereby exploiting the sparsity of
the analysis. To compute def-use chains in the presence of
pointers, we present DU , a worklist algorithm that is cou-
pled with pointer analysis. This algorithm can exploit both
intra- and inter-procedural def-use chains.

To simplify our presentation, we start off with a naive,
inefficient version and gradually add details to build our full
version at the end of this section. We will use Fig.3 as a
running example.

Structure of a Worklist Algorithm
The left box of Fig.4 gives a high-level description of a
generic worklist algorithm. It maintains a queue of CFG
blocks, initially set to include all blocks in reverse post-order. The pointer analysis re-
trieves and analyzes one block from the worklist. The pointer analysis then identifies
the set of changes, which is the set of variables whose flow values have been updated.
The algorithm then uses a function R to compute and add to the worklist the blocks that
will be revisited. The worklist may then be reordered, as we discuss in Section 4.1. The
entire process is repeated until the worklist becomes empty. Different implementations
differ in the computation of R and in the worklist reordering.

Naive Worklist Algorithms
The behavior of the function R is crucial to the worklist efficiency. If we do not know
which blocks are affected by the changes in the last block visit, then we must conser-
vatively return all the reachable blocks of the given block n. We refer to this version as
Rreach, shown in the right box of Fig. 4. Considering the example in Fig.3, suppose we

22 T.B. Tok, S.Z. Guyer, and C. Lin

have just revisited the loop header (block 1), where a new φ-function for variable x is
created. Rreach will return blocks 2–9, a total of 8 blocks.

Worklist Algorithm Using Intraprocedural Def-Use Chains
Rreach is easy and cheap to compute, but it adds too many blocks. We introduce RDU ,
shown in the right of Fig.4. This function iterates over the set of variable changes,
retrieves their last definitions in the block, and obtains their use sites in the procedure.
The blocks containing these use sites are returned and added to the worklist. For now,
assume that only intraprocedural def-use chains are used. In the example of Fig.3, only
two blocks (7 and 8) are returned by RDU , so RDU is more efficient than Rreach.

Initially:
WL = reverse_post_order(CFG)

Main loop:
while WL �= ∅ do

block n = remove_front(WL);
var changes = visit_block(n);
if var changes �= ∅ then

more = R(n, var changes);
merge(more,WL);

Rreach(n, var changes) {
return reachable_blocks(n);

}
RDU (n, var changes) {

for v ∈ var changes do
d = last_def_of(v,n);
for u ∈ uses(d) do

add(block_of(u), result);
return result;

}

Fig. 4. Initial version of algorithm DU . The function R computes what blocks need to be added
to the worklist. The first version, Rreach, simply returns reachable blocks from block n. RDU

uses def-use chains to compute the blocks affected by the latest variable updates during the last
block visit.

Dynamic Def-Use Computation
Def-use chains are computed on the fly as new pointer information is discovered, so the
worklist algorithm needs to be aware that some defs may temporarily have no uses. As
we shall see, the solution requires a new form of communication between the pointer
analysis and the worklist algorithm.

New definitions are created at indirect assignments, function calls, and φ-functions.
There are three cases to consider: (i) a new def leads to a new φ-function; (ii) a new
def resides between an existing def-use pair; (iii) a new def temporarily has no reaching
definition.

Consider case (i). SSA form requires that whenever a new definition d is created, a
φ-function is also created at dominance frontiers. Because pointer information is not
yet available, many φ-functions cannot be computed in advance.1 Therefore after d
is created, the algorithm must make sure that the dominance frontiers are eventually
revisited, so that the φ-functions can be created.

Cases (ii) and (iii) are similar because any existing use below the new def d may
need to update its reaching definition. Such situations often occur in the presence of
loops when a use is visited before its reaching definition is created. In the example of
Fig.3, if a new φ-function for p is created at the loop header, we need to make sure that
block 7 is revisited, even if the new def has no known use yet.

1 Short of exhaustive up-front creation.

Efficient Flow-Sensitive Interprocedural Data-Flow Analysis 23

There are two possible solutions. The first method identifies those uses that need to
be revisited by simply searching through existing def-use chains and through existing
uses without defs. (It only needs to inspect those chains whose def is the nearest defi-
nition above d.) The second solution handles (iii) as follows: whenever a use u without
a reaching definition is discovered, statements above u are marked if they are merge
points or if they contain indirect assignments or function calls. Later when d is discov-
ered at one of these statements, u is revisited.

benchmarks (not labeled)

1

10

100

1000

av
g/

m
ax

 r
at

io

max ratio avg ratio

Fig. 5. Maximum and average ratio r =
C/(B + 1), in log scale. The set of bench-
marks is explained in Section 5. The high ra-
tios indicate potential for high overhead due
to def-use chains.

The first method can be quite expensive,
while the second method does not handle
case (ii). We have found that combining
the two is cost effective. We use the sec-
ond method on case (iii) by marking only
loop headers, and we use the first method
otherwise. This combination works well in
practice, most likely because uses that ini-
tially have no reaching definition typically
occur in loops, so marking and inspecting
loop headers is sufficient. Because in prac-
tice there is usually a small, fixed number of
loop headers in any procedure, the overhead
due to the markings is small.

Bundles
One problem with RDU is that it can be expensive to follow du-chains if there are many
du-chains that connect the same two basic blocks. We can measure the extent of this
problem as follows. Define C to be the number of variables whose flow values change
after analyzing a given basic block. Define B to be the number of unique basic blocks
that contain uses of these C variables. If the ratio r = C/(B + 1) is large, then there
is a large amount of redundancy in the dependence information represented by the du-
chains. (The +1 term prevents division by zero.) Fig.5 shows the maximum and average
values of this ratio for the benchmarks that we use in our later experiments. We omit
the minimums, which are all close to zero. We see that the average ratios hover between
two and ten, while the maximums are two orders of magnitude larger. One reason for
the large maximums is the large number of global and heap variables defined at merge
points near the end of procedures, which leads to large values of C with no further uses
in the procedure (B = 0).

Rbundle(n, changes) {
bundles = set of bundles {〈n, ∗〉};
for b ∈ bundles do
if b contains var∈ changes then

let b = 〈n, u〉;
add u to result;

return result;
}

Fig. 6. Efficient Rbundle that uses bundles

To handle the cases where the
value of r is large, we define a bun-
dle 〈D, U〉 to be the set of all def-
use chains whose definitions and
uses share the blocks D and U , re-
spectively. A bundle is used as fol-
lows (see Fig.6). After analyzing a
block n, all bundles of the form
〈n, u〉 are retrieved. Rbundle then
iterates through these bundles: for

24 T.B. Tok, S.Z. Guyer, and C. Lin

each bundle that contains a variable in the changes set, the u stored in the bundle
is added to the worklist. When there is no bundle (B = 0), no overhead will be incurred
even if there is a large number of changes.

Our experimental results with an earlier implementation of our DU algorithm shows
that bundles are quite effective for reducing analysis time. Our results also show that
bundles can consume considerable space. Given the space overhead of bundles and the
bi-modal distribution of r values, we use a simple heuristic to apply bundles selectively.
This heuristic compares C to a threshold that is defined as some factor of the size of the
basic block in question (as defined by the number of statements in the block).

Because we have not yet tuned the selective use of bundles for the current imple-
mentation of our worklist algorithms, the results shown later in this paper do not use
bundles. We expect to see improved results once this tuning has been completed.

Handling Interprocedural Def-Use Chains
Our system allows def-use chains to cross procedure boundaries, which typically occurs
when a procedure accesses global variables or accesses variables indirectly through
pointers. The framework treats these variables as if they were inputs or outputs to the
procedure but not explicitly mentioned in the formal parameters. During interprocedural
analysis, these def-use chains can be used to further improve worklist efficiency.

A procedure input is a variable that has a use inside a procedure and a reaching
definition inside a caller. When re-analyzing a procedure due to changes to procedure
inputs, we revisit only the affected use sites—which are often a subset of the procedure’s
blocks—because we know which inputs’ flow values have changed. To identify these
changed flow values, we use interprocedural φ-functions, which merge flow values at
procedure entries. As before, these φ-functions are created on the fly.

A procedure output has a definition inside the procedure with some use inside a
caller. The output can export a new variable, for example, a heap allocated object, or it
can export a side effect on an input. We use information about the procedure output to
help manage the worklists of the callers: if there is change in flow value in an output
variable, the worklist of each caller marks the sites that need to be revisited. For this
idea to work, we require a departure from the usual way worklists are used.

In many existing algorithms, analysis is performed one procedure at a time: analy-
sis of a procedure P is started by placing all of its blocks on its worklist. To exploit
interprocedural def-use chains, we no longer initialize the worklist to all blocks, except
when the procedure is analyzed for the first time. Instead, a procedure P ’s blocks are
marked to identify callers of P that change P ’s inputs and to identify callers of P that
are affected by P ’s outputs.

In conjunction with a call graph worklist, this strategy allows us to exploit sparsity
at the granularity of the procedure level. Thus, a procedure need not appear in the call
graph worklist if its corresponding worklist is empty.

Full Version of Algorithm DU
Fig.7 presents our full algorithm. It first computes the reverse post-order, rpo, of the
procedure, which is used as the worklist if the procedure is analyzed for the first time.
Otherwise, the inputs are processed, searching for those with new flow values, so that

Efficient Flow-Sensitive Interprocedural Data-Flow Analysis 25

Initially:
if analyze proc for 1st time then

rpo = reverse_post_order(CFG);
WL = rpo;
marked = ∅;

else
WL = process_proc_inputs();
merge(marked ,WL);
sort WL according to rpo;

Main loop:
while WL �= ∅ do

n = remove_front(WL);
changes = visit_block(n);
if changes �= ∅ then

more = Rbundle(n, changes);
merge(more,WL);

Finally:
// worklist done; export variables.
outputs = vars to export;
if outputs �= ∅ then

add(exit_block(), outputs);

Addition interface:
add(e, changes) {

bundles = set of {〈e, ∗〉};
for b ∈ bundles do
if b contains var∈
changes then

let b=〈e, u〉;
p=proc_of(u);
p marked=marked_set(p);
add u to p marked;

}

Fig. 7. Full version of algorithm DU , when it considers both intra- and interprocedural def-use
chains. Note that we also use bundles to export variables.

their use sites are put in the worklist. Those blocks marked for re-analysis are placed on
the worklist, which is then sorted according to rpo.

The main loop is the same as that of Fig.4. After the loop, all outputs with changed
flow values are gathered, and the callers’ callsites are processed. During this final stage,
bundles can again be used in the add routine to avoid looping through all the variables
in changes. We assume that there is a definition for each output variable at the callee’s
exit block e. Each bundle of the form 〈e, u〉 therefore has a use site in a caller. We can
then mark this use site in the caller’s marked set, enabling the caller to re-analyze it later.

4.1 Exploiting Loop Structure

By always adding blocks to the rear of the worklist, our DU algorithm ignores loop
structure, which would seem to be a mistake because CFG structure seems to be closely

(a) (b) (c)

Fig. 8. Three loop examples: s simple
loop, a nested loop, and a loop with multi-
ple back-edges

related to convergence. For example, Kam and
Ullman [14] show that for certain types of
data-flow analyses, convergence requires at
most d + 3 iterations, where d is the largest
number of back edges found in any cycle-free
path of the CFG. Thus, it seems desirable to
exploit knowledge of CFG structure when or-
dering the worklist, which is precisely what
Hind and Pioli’s algorithm does [10], although
their algorithm does not distinguish different
types of loops.

To understand the complexities that arise
from handling different types of loops, con-
sider two types of loops. First, in a nested loop

26 T.B. Tok, S.Z. Guyer, and C. Lin

(Fig.8(a)), which loop should we converge first? Second, in a loop with multiple back-
edges (Fig.8(b)), which back edge should get priority, ie, after visiting V2 in the figure,
should V1 be revisited before or after V3? After exploring many different heuristics,
we evaluate a minor variant of our DU algorithm that ignores inner loops and uses a
round-robin schedule for each loop. This algorithm, DUloop does not try to converge
an inner loop because the loop will be revisited when trying to converge the outer loop.
The round-robin schedule ensures that all blocks in a loop are visited before any block
is revisited.

In general, we believe that exploiting loop structure alone is not enough to yield sig-
nificant improvement—we need to also account for data dependences in loops. Unfor-
tunately, these dependences can be indirect. For example, in Fig.8(c) we have implicitly
assumed that there is only a forward dependence from block T2 to T3. However, a back-
ward, indirect dependence from block T3 to T2 can exist via a sequence of interprocedu-
ral def-use chains, so that a change in T3 could force T2 to be revisited. This phenomenon
reduces the effectiveness of any techniques that try to exploit loop structures.

5 Experiments

5.1 Benchmarks and Metrics

Our experiments use 19 open source C programs (see Table 1), which—except for
sendmail—were used in previous work [7]. In addition to measuring analysis time,
we define metrics to evaluate the efficiency of worklist algorithms.

Table 1. Properties of the benchmarks. Lines of code (LOC) are given before preprocessing.

Program Description LOC Procs Stmts CFG nodes Call sites
stunnel 3.8 Secure TCP wrapper 2K 42 2,067 511 417
pfingerd 0.7.8 Finger daemon 5K 47 3,593 899 545
muh 2.05c IRC proxy 5K 84 4,711 1,173 666
muh 2.05d IRC proxy 5K 84 4,921 1,245 669
pure-ftpd 1.0.15 FTP server 13K 116 10,772 2,537 1,180
crond (fcron-2.9.3) cron daemon 9K 100 11,252 2,426 1,249
apache 1.3.12 (core only) Web server 30K 313 16,717 3,933 1,727
make 3.75 make 21K 167 18,787 4,629 1,855
BlackHole 1.0.9 E-mail filter 12K 71 20,227 4,910 2,850
openssh client 3.5p1 Secure shell client 38K 441 21,601 5,084 4,504
wu-ftpd 2.6.0 FTP server 21K 183 22,185 5,377 2,869
wu-ftpd 2.6.2 FTP server 22K 205 23,130 5,629 2,946
named (BIND 4.9.4) DNS server 26K 210 23,405 5,741 2,194
privoxy 3.0.0 Web server proxy 27K 223 23,615 5,765 3,364
openssh daemon 3.5p1 Secure shell server 50K 601 28,877 6,993 5,415
cfengine 1.5.4 System admin tool 34K 421 38,232 10,201 6,235
sqlite 2.7.6 SQL database 36K 386 43,489 10,529 3,787
nn 6.5.6 News reader 36K 493 47,058 11,739 4,104
sendmail 8.11.6 Mail server 69K 416 67,773 15,153 7,573

Efficient Flow-Sensitive Interprocedural Data-Flow Analysis 27

1. Basic block visitation, or BB-visit, is the number of times blocks are retrieved from
the worklists and analyzed.

2. Basic block changes, or BB-change, is the number of basic block visitations that
update some data-flow information. BB-change is a measure of useful work.

3. Efficiency, E , is the percentage of basic block visitations that are useful, i.e. the
ratio BB-change/BB-visit.

5.2 Setup

We implement our worklist algorithms using the Broadway compiler system [8], which
employs an interprocedural pointer analysis that computes points-to sets for all vari-
ables. The system supports flexible precision policies, such as fixed-modes context sen-
sitive (CS) and insensitive modes (CI), and Client Driven (CD) mode [7]. CD allows a
subset of procedures to be analyzed context sensitively, according to the needs of the
client analysis. To handle context sensitivity correctly, the DU algorithm is modified to
mark a block for re-analysis under specific contexts. Broadway also supports flexible
heap models; in this paper we use one abstract heap object per allocation site in CI
mode, and one object per allocation context in CS mode.

To evaluate our worklist algorithm, we need to choose a pointer analysis algorithm.
Because the characteristics of the pointer analysis will affect the performance of our
worklist algorithm, we present results for pointer analysis algorithms that represent two
extreme points, CI and CS.

All experiments are performed on a 1.7GHz Pentium 4 with 2GB of main memory,
running Linux 2.4.29. We compare our algorithms against a priority-queue worklist.
This algorithm assigns a unique priority to each block in a CFG, and uses Rreach.
Procedure exits always have lowest priority, so loops are always converged first. This
algorithm is similar to that used by Hind and Pioli [10], except we don’t use IN/OUT
sets. When we tried using IN/OUT sets, the compiler ran out of memory for many of
the larger benchmarks.

5.3 Empirical Lower Bound Analysis

To see how much room there is for further improvement, we empirically estimate a
lower bound as follows. First, we execute DU to produce a trace of block visitations
where data-flow information is updated, so the length of the trace is BB-change. We then
re-execute the analysis, visiting blocks using the trace. In theory, this second execution
should yield 100% efficiency. In practice we do not get 100% efficiency because, due
to implementation details, the compiler has to visit additional blocks to ensure state
consistency between useful visits. We measure this second execution to approximate a
lower bound,2 which on subsequent graphs is labeled as ‘bound’.

5.4 Results

We first consider the behavior of our worklist algorithms in conjunction with CI pointer
analysis. Each graph in Fig.9 shows the performance of DU , DUloop and our

2 Note that a better ordering of the visits in the first execution may lead to an even lower bound.

28 T.B. Tok, S.Z. Guyer, and C. Lin

 stunnel
 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd
 fcron

 apache
 make

 BlackHole

 openssh-client

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

 bind
 privoxy

 openssh-server

 cfengine
 sqlite

 nn sendmail

0

50

100

nor
ma

lize
d ti

me
 (pe

rce
nt)

priority-queue DU DUloop bound

0.6 2.5 2.1 2.1 5.9 7.7 26 229 44.
6

81.
4

19.
7

27.
7

27.
7

142 185 125 738 197
4

628
3

(a) Normalized analysis time

 stunnel
 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd
 fcron

 apache
 make

 BlackHole

 openssh-client

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

 bind
 privoxy

 openssh-server

 cfengine
 sqlite

 nn sendmail

0

50

100

nor
ma

lize
d B

B-v
isit

 (pe
rce

nt)

2k 9k 8k 8k 27k 24k 51k 369
k

78k 84k 71k 99k 86k 171
k

125
k

214
k

588
k

900
k

401
5k

(b) Normalized BB-visits

 stunnel
 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd
 fcron

 apache
 make

 BlackHole

 openssh-client

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

 bind
 privoxy

 openssh-server

 cfengine

 sqlite
 nn sendmail

0

20

40

60

80

100

effi
cie

ncy
 (p

erc
ent

)

(c) Efficiency

 stunnel
 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 fcron
 apache

 make
 BlackHole

 openssh-client

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

 bind
 privoxy

 openssh-server

 cfengine

 sqlite
 nn sendmail

80

90

100

110

no
rm

ali
zed

 m
em

ory
 us

age
 (p

erc
ent

)

3M 3M 4M 4M 8M 11
M

22
M

37
M

45
M

49
M

23
M

25
M

18
M

60
M

72
M

63
M

12
2M

13
6M

25
5M

(d) Normalized memory usage

Fig. 9. Performance results of DU and its variant, on CI pointer analysis

Efficient Flow-Sensitive Interprocedural Data-Flow Analysis 29

empirical lower bound normalized against our baseline, which uses Hind and Pioli’s
priority queue. The benchmarks are listed in order of increasing size, so we see that DU
significantly reduces analysis time, with an average reduction of 56%, and that larger
benchmarks tend to benefit the most. For example, DU analyzes sendmail 74% faster
than the baseline. We also see that DUloop only improves upon DU by a few percent-
age points and that the main source of improvement is the increased efficiency. For
example, for the large benchmarks, the efficiency of the baseline is just a few percent,
but for DU it is in the 30-60% range. The cost of this reduced analysis time is a mod-
est increase in memory usage. Finally, we see that there theoretically is still room for
increased efficiency.

Fig.10 shows similar results for context sensitive pointer analysis. Results are only
shown for benchmarks that complete under the baseline. The benefit of DU is larger
for CS mode than CI mode because the number of large number of contexts exacer-
bates any inefficiencies in the worklist. For example, DU improves the analysis time
of wu-ftpd-2.6.2 by about 80%, while in CI mode its improvement is only about
53%. These results are encouraging, and currently we are extending our algorithm to
Client Driven mode. We also see that the memory overhead of our algorithms increases
under CS mode.

We have repeated our experiments with five different error-checking clients [7].
These are interprocedural analyses that generally yield better precision with

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

0

50

100

no
rm

al
iz

ed
 ti

m
e

(p
er

ce
nt

)

priority-queue DU DUloop bound

2.
3

10 9 9.
1

18
38

73
3

20
99

(a) Normalized analysis time

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

0

50

100

no
rm

al
iz

ed
 B

B
-v

is
it

 (p
er

ce
nt

)

15
k

60
k

59
k

60
k

25
46

k

49
97

k

11
59

3k

(b) Normalized BB-visits

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

0

20

40

60

80

100

ef
fi

ci
en

cy
 (

p
er

ce
n

t)

(c) Efficiency

 stunnel

 pfinger

 muh-2.05c

 muh-2.05d

 pureftpd

 wu-ftpd-2.6.0

 wu-ftpd-2.6.2

80

90

100

110

n
o

rm
a

li
ze

d
 m

em
o
ry

 u
sa

g
e

(p
er

ce
n

t)

7
M

1
0

M

9
M

9
M

3
7

2
M

3
9

1
M

7
7

2
M

(d) Normalized memory usage

Fig. 10. Performance results of DU and its variant, on CS pointer analysis

30 T.B. Tok, S.Z. Guyer, and C. Lin

flow-sensitivity. We run each client concurrently with the pointer analysis, and the re-
sults generally follow the same pattern as those in Figures 10 and 9, so we omit these
to conserve space.

6 Conclusion

The ability to accurately analyze large programs is becoming increasingly important,
particularly for software engineering problems such as error checking and program un-
derstanding, which often require high precision interprocedural analysis. This paper
shows that by tuning the worklist, data-flow analysis can be made much more efficient
without sacrificing precision.

We have implemented and evaluated a worklist algorithm that utilizes def-use chains.
When compared with previous work, our DU algorithm shows substantial improve-
ment, reducing analysis time for large programs by up to 90% for a context-insensitive
analysis and by up to 80% for a context-sensitive analysis. The DU algorithm works
well because it avoids a huge amount of unnecessary work, eliminating 65% to 90%
of basic block visitations. We have also explored methods of exploiting CFG structure,
and we have found that exploiting loop structure provides a small benefit for most of
our benchmarks.

An empirical lower bound analysis reveals that there is room for further improve-
ment. More study is required to determine whether some technique that considers
both CFG structure and its interaction with data dependences can lead to further
improvement.

Acknowledgments. We thank Ben Hardekopf and Kathryn McKinley for their valu-
able comments on early drafts of this paper. This work is supported by NSF grant
ACI-0313263, DARPA Contract #F30602-97-1-0150, and an IBM Faculty Partnership
Award.

References

1. A. V. Aho and J. D. Ullman. Node listings for reducible flow graphs. In Proc. 7th Annual
ACM Symp. on Theory of Computing, pages 177–185, 1975.

2. Darren C. Atkinson and William G. Griswold. Implementation techniques for efficient
data-flow analysis of large programs. In Proc. IEEE Int’l Conf. on Software Maintenance
(ICSM’01), pages 52–61, November 2001.

3. J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In POPL, pages 232–245, 1993.

4. J. Choi, R. Cytron, and J. Ferrante. Automatic construction of sparse data flow evaluation
graphs. In POPL, pages 55–66, 1991.

5. Jamieson M. Cobleigh, Lori A. Clarke, and Leon J. Osterweil. The right algorithm at the
right time: comparing data flow analysis algorithms for finite state verification. In Int’l Conf.
on Software Engineering, pages 37–46, May 2001.

6. Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In ACM
SIGPLAN’02 Proc. 2002 PLDI, pages 1–12, June 2002.

Efficient Flow-Sensitive Interprocedural Data-Flow Analysis 31

7. Samuel Z. Guyer and Calvin Lin. Client driven pointer analysis. In Radhia Cousot, editor,
10th Annual Int’l Static Analysis Symp. (SAS’03), volume 2694 of Lecture Notes on Computer
Science, pages 214–236, June 2003.

8. Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software libraries.
In 2nd Conf. on Domain Specific Languages, pages 39–53, October 1999.

9. Michael Hind and Anthony Pioli. Which pointer analysis should I use? In ACM SIGSOFT
Int’l Symp. on Software Testing and Analysis (ISSTA 2000), pages 113–123, August 2000.

10. Michael Hind and Anthony Pioli. Assessing the effects of flow-sensitivity on pointer alias
analysis. In 5th Annual Int’l Static Analysis Symp. (SAS’98), volume 1503 of Lecture Notes
on Computer Science, pages 57–81, September 1998.

11. Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand interprocedural dataflow analysis.
In ACM 3rd Symp. on the Foundations of Software Engineering, pages 104–115, 1995.

12. Matthew S. Hecht and Jeffrey D. Ullman. Analysis of a simple algorithm for global data
flow problems. In POPL, pages 207–217, 1973.

13. K. W. Kennedy. Node listings applied to data flow analysis. In Proc. 2th ACM Symp. on
Principles of Programming Languages, pages 10–21, 1975.

14. John B. Kam and Jeffrey D. Ullman. Global Data Flow Analysis and Iterative Algorithms.
Journal of ACM, 23(1):158–171, 1976.

15. Sungdo Moon et al. SYZYGY — a framework for scalable cross-module IPO. In 2004 Int’l
Symp. on Code Generation and Optimization with Special Emphasis on Feedback-Directed
and Runtime Optimization, pages 65–74, March 2004.

16. Eugene M. Myers. A precise inter-procedural data flow algorithm. In Proc. 8th ACM Symp.
on Principles of Programming Languages, pages 219–230, January 1981.

17. G. Ramalingam. On sparse evaluation representations. Research Report RC 21245(94831),
IBM Research, July 1998.

18. Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, and Rita Altucher. A
schema for interprocedural modification side-effect analysis with pointer aliasing”, In ACM
Transactions on Programming Languages and Systems, 23(1):105–186, March 2001.

19. Atanas Rountev, Barbara G. Ryder, and William A. Landi. Data-flow Analysis of Program
Fragments. In Proc. 7th Symposium on the Foundations of Software Engineering, pages
235–253, September 1999.

20. Erik Ruf. Partitioning dataflow analyses using types. In Proc. 24th ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, pages 15–26, January 1997.

21. Barbara G. Ryder and Marvin C. Paull. Elimination algorithms for data flow analysis. ACM
Computing Surveys (CSUR), 18(3):277–316, September 1986.

22. Frank Tip. A survey of program slicing techniques. Journal of Programming Languages, 3,
1995.

23. Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems, 13(2):181–210, April 1991.

24. John Whaley and Monica S. Lam. Cloning-Based Context-Sensitive Pointer Alias Analyses
Using Binary Decision Diagrams. In ACM SIGPLAN’04 Proc. 2004 PLDI, pages 131–144,
June 2004.

25. Jianwen Zhu and Silvian Calman. Symbolic Pointer Analysis Revisited. In ACM SIG-
PLAN’04 Proc. 2004 PLDI, pages 145–157, June 2004.

	Introduction
	Related Work
	Analysis Framework
	DU: Worklist Management
	Exploiting Loop Structure

	Experiments
	Benchmarks and Metrics
	Setup
	Empirical Lower Bound Analysis
	Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

