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Abstract. Naive code generation from high-level languages that encour-
age modularity can give rise to large numbers of simple loops for array-
based programs. Collective loop fusion and array contraction can be used
on such codes to improve temporal locality and performance. The prob-
lem is typically formalised using a loop dependence graph (LDG), with
solutions denoted by fusion partitions. Much previous work has concen-
trated on approaches to the abstract formulation. We present our tech-
nique called iterative collective loop fusion based on empirically evaluating
different transformations, and show how it can provide speedups over ex-
isting approaches of up to 1.38. We also give results showing that applying
such techniques to high-level languages can provide speedups of up to 2.45
over the original code, and outperforms an equivalent code in Fortran.

1 Introduction

Advanced programming languages that encourage modularity can give rise to
programs with many loops, poor temporal locality and many temporary ar-
ray variables when used to write scientific codes. The original motivation for
this work came from the desire to optimise a package of iterative linear solvers
with exactly these characteristics, written in Aldor[l], a high level mixed func-
tional/imperative programming language for numerical and symbolic computer
algebra. Such codes can benefit greatly from a systematic approach to loop
fusion and array contraction. However, previous approaches to collective loop
fusion have chosen transformations based on models rather than real perfor-
mance. Our proposed solution to the problem is iterative collective loop fu-
sion, which brings the techniques of iterative compilation to collective loop
fusion.

The rest of the paper is organised as follows: Section [2] introduces the basic
formalism with examples, Section [ discusses previous work and motivates the
development of our technique, SectionHdldescribes the technique in detail, Section
provides experimental results and Section [6] concludes and offers some ideas
for future development.

2 Formulation and Example

A loop dependence graph (LDG) describes a program section that consists of
basic blocks and perfectly nested loops with no additional branching for which
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data dependencies are known. Figure [Tl gives an example with pseudocode for
four loops and the corresponding loop dependence graph. Nodes in the graph
represent the loops of the program section, and a directed edge exists between
two nodes if the target is data dependent on the source. The lack of branching
in the program section ensures that its LDG is acyclic.

The LDG is used to reason about loop fusion for the program section that
it represents. A dependency path (or just path) in the LDG is a set of edges
describing a path from a source node to a destination node through the graph
following the directed edges. Two loops are conformable if their headers are the
same. The nodes representing two conformable loops are possible candidates to
be directly fused if they connected by paths of length one and all the distance
vectors from the source to the target are non-negative, such as loops a and b
in Figure [ or if they are not connected by a path. In the former case such an
edge is defined as collapsible. A dependency path is collapsible if all its edges are
collapsible, and non-collapsible otherwise.

for iin 1..n do
(loop a) afi] :== ...
done

for iin 1..n do
duction := reduction + ali]
loop b e
(loop ) bli] = ...
done

(basic block) alpha := reduction

foriin 1..n do Key
(loop ¢) c[i] := ali] + bli] 0O loop node
done - true dependence
- —— fusion—preventing
foriin 1..n do true dependence
(loop d) d[i] := alpha * c[j]
done

B) ii)

Fig. 1. An example LDG. i) Pseudocode for the original program section, with four
loops and one basic block. Only array d is live out of the program section (i.e. read at
some later point), so all the other arrays can potentially be completely contracted. The
loops are all conformable, and all distance vectors are 0, except for the loop-carried
dependence in the second loop for a reduction variable, the dependence of the basic
block on said reduction variable, and the dependence of the fourth loop on the basic
block. ii) The corresponding loop dependence graph. Nodes in the graph are labelled
with the name of the array that they write to.
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2.1 Collective Loop Fusion and Fusion Partitions

A fusion partition is a partitioning of the nodes of an LDG into disjoint sets
(partitions or clusters) where the nodes in each set will be fused together to
produce the final transformed code. A fusion partition itself can be represented
by a graph where nodes are clusters, and there is an edge between cluster nodes
for every edge that exists between the loop nodes that belong to the respective
partitions in the LDG. See Figure [ for two fusion partitions of the LDG in
Figure [[l The size of a fusion partition is the number of non-empty partitions
it has (empty partitions are not allowed). For a fusion partition to be legal, it
must be possible to fuse together all the nodes within a given partition, and the
graph of the fusion partition must be acyclic. The first condition is satisfied by
the absence of non-collapsible edges within the cluster. A given LDG has a lower
bound on the size of its legal fusion partitions determined by the dependency
path with the most fusion—preventing edges in it — for example, the minimum
size fusion partition for the LDG in Figure [l is two.

Key
a,b,c a,b 0 cluster (partition) node
— represents a fused loop

. true dependence
c a b induced by use of an array
_ fusion—preventing true dependence
induced by reduction variable

Fig. 2. The graphs of two possible fusion partitions of the LDG from Figure[Il Nodes in
the graph (clusters) are labelled with the letters representing the loop nodes within that
cluster. Both fusion partitions are the same size (2), but permit different amounts of
array contraction — partition A allows two arrays to be contracted (a and b), whereas B
allows only one (¢). This corresponds (inversely) to the inter-cluster array dependency
edges in the graphs of the fusion partitions, which are labelled with the non-contracted
array they correspond to — one for partition A and two for B.

2.2 Array Contraction

For a given array, (complete) contraction will be legal after partitioning if all the
dependencies associated with it appear in the same cluster, and they all have
distance zero. Applying array contraction to two fusion partitions of the same
size on a given LDG can give different contraction amounts. This can be seen
by the number of edges in Figure 2l and also the replacement of arrays with
scalar variables in Figure [3] which represents the end product of the transforma-
tions represented in Figure [2l Conversely, different size partitions with the same
amount of contraction are also possible.

A fusion partition can be labelled with a pair of numbers that denote the size
of the fusion partition and the amount of array contraction that it permits. For
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foriin 1..n do for ;[:}nin do
a:i= .. o .
reduction := reduction + a i’e[;}lu.citlon = reduction + a
b.:: done
cfij:==a+b

done

alpha := reduction

alpha := reduction

for iin 1..n do
— c:= ali] + bfi
for iin 1..n do d[i] -:[ }3L1pha[>J< C
d[i] := alpha * [i] done
done
A B

Fig. 3. Pseudocode representing the two fusion partitions A and B from Figure
Array contraction has been applied e.g. arrays a and b in the first loop of partition A
have been reduced to scalar variables

some LDGs there will be multiple fusion partitions with the same (contraction
amount, partition size) label.

3 Previous Work

3.1 Standard Model Based Approach

It is usual to associate a cost function with an LDG that ranks the possible
transformations that can be applied to it. The simplest example of this is prefer-
ring more fusion over less (e.g. [2] in the context of typed loop fusion), with all
fusion partitions of the same size being equal. A more sophisticated (and more
common) approach is to add to the LDG a set of edges and associated weights
that model the expected benefit of fusing the loops that they connect.

There have been numerous minor variations on the second approach. Some
examples include transformations specifically for array contraction [3], [4], and a
technique which minimises memory usage and simultaneously improves locality
whilst limiting the size of any fused loop that is produced (i.e. avoiding ”over
fusing”) [B]. One adaptation replaced edges in the cost graph with hyper edges
to better capture re-use between array operands being read [6]. There have
also been several composite approaches, such as a technique that prevents the
creation of loops with parallelisation—preventing loop—carried dependencies [2],
and a related approach that uses adjustable weights which can be altered to
favour fusion for parallelism or fusion for locality [7].

The abstract formulation of various problems has been shown to be at least
NP-hard [6], [8]. Consequently, most work on loop fusion is based on heuristic
algorithms to find some approximation to the optimum answer for the model.



206 T.J. Ashby and M.F.P. O'Boyle

Approaches have included various greedy algorithms [4], [9], and algorithms
based on max-flow min-cut heuristics [3], [6], [5].

There are two major weaknesses in previous model based fusion/contraction
work. The first is the use in some approaches of overly simple search strategies
to find some approximation to the solution of the idealised NP-hard problem
(e.g. greedy search). As pointed out in [I0], the majority of LDGs encountered
in realistic programs will be small, and hence there is no real reason to emphasise
the efficiency of the search so much at the cost of the quality of the approxima-
tion. The second problem is that although all the approaches discussed above
target slightly different optimisations, it can be assumed that their ultimate goal
is to get the best performance for a given LDG, but no authors have adequately
explored the differences between their idealised problem and the implementation
details of actual hardware.

For example, for a given LDG there may be many fusion partitions all ranked
equal according to some abstract cost function (e.g. all with the same amount of
contraction). However, for any method in the literature there is not usually any
indication of how any particular one is chosen, or any indication of how the actual
quality of the equally ranked LDGs varies in practice. Another illustration is the
lack of any indication as to how fusion for locality and fusion for contraction
may conflict, how the trade-off should be managed to get the best performance,
and crucially how this may vary depending on the form of the loops and the
actual processor architecture under consideration.

3.2 Iterative Optimisation

Current implementations of computer architectures contain a wide variety of com-
plex structures, and consequently they are very difficult to model accurately — for
one example of this see [11]. To combat this, the approach of iterative optimisa-
tion treats the goal of finding good transformations as a search problem, with the
cost function as the empirical cost of executing the program that results from a
candidate transformation.

Almost all previous approaches to iterative optimisation deal with trivial
search spaces that are the Cartesian product of some number of options (e.g.
array padding and tiling and unrolling factors for a loop [12]), where all choices
are legal. A notable exception to this is [I3]. Our work similarly deals with search
spaces that are themselves nontrivial to generate (see Section [EI]). Also, loop
fusion is rarely included in iterative optimisation work, with [I3], [I4] being two
largely isolated examples. In the first of these papers loop fusion is implicitly
included in the action of generated space-time mappings, but appears to be ap-
plied in an ad hoc fashion with no mention of choosing fusion partitions etc (in
fact, fusion is almost not mentioned at all) — the primary focus of the paper is
on finding parallelisation transformations with good performance. In the second,
a small experiment on four loops with no fusion—preventing dependencies finds
that fusing all loops together gives the best reduction in energy use, but the
main emphasis is on tiling and unrolling. Again, there is no mention of fusion
partitions. In both papers there is no mention at all of array contraction.
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4 TIterative Collective Loop Fusion

The choice of fusion partition on an LDG usually involves a trade-off in locality
for different pairs of references, and so the best choice depends on how the
locality characteristics of the program interact with the architecture on which it
is being run. These include considerations such as issue width, clock rate, cache
size, miss penalty and bandwidth limits. Hence, choosing a good fusion partition
with respect to temporal locality is architecture dependent and far from trivial,
which is why we employ search.

To perform iterative loop fusion exhaustively we simply require a method
of enumerating all the legal fusion partitions for a given LDG, and the means
to empirically test their run-times. The size of the search space, that is the
number of legal fusion partitions, almost always makes testing each point in it
unfeasible, so there must be some method of selecting a subset of the search
space to test. This is a standard problem in iterative compilation. An extra
complication though is the generation of the search space of legal transformations
itself, which is discussed below.

4.1 Generating Legal Fusion Partitions

Although clusters within a fusion partition are not distinguished, it is useful to
label them with identification (ID) numbers to reason about the enumeration of
the fusion partitions for an LDG. Clusters are numbered from 1 to n giving a
total ordering on the loops produced from a fusion partition.

The naive approach to generating fusion partitions of size m is to assign
each node to a partition ¢ with 1 < ¢ < n. The vast majority of these con-
figurations will be illegal though, so a large number will have to be generated
and tested to find each legal point. An alternative is to find some algorithmic
way of enumerating only legal fusion partitions. The approach in this paper is
based on node numbering, which is described below, followed by the enumeration
algorithm.

Node numbering and range finding. Given a loop dependence graph, a
target size of fusion partition, and a set of nodes with pre-assigned partition
numbers, the forward node numbering procedure provides a test to determine the
lower bound on the ID number of the partition to which any given (unassigned)
node may belong.

Two directly connected nodes joined by at least one fusion—preventing edge
must belong to different partitions. Consequently, given any path from a source
to a sink, the nodes along the path can be numbered to show the earliest partition
that they may belong to (as determined by this path) by grouping the nodes
into sets separated by fusion—preventing edges and numbering the sets (and their
elements) along the path consecutively. If a set contains a pre-assigned node with
a value different from the parent set, then the set is split into two with the second
set starting with the pre-assigned node and labelled with its value. Numbering
along the path continues as before counting upward from the new value.
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NUMBERNODESFORWARDS(preassigned, LDG)
Description: Labels each unassigned node in the LDG with the
earliest partition that it may belong to.
Input: { LDG@G, a loop dependence graph
| preassigned, a set of (node, partitionl D) pairs
Output: An integer label for each node as a set of (node,
partitionI D) pairs
(1) sources ;= {(v, partitionID = 1) |
v € SOURCES(LDG) \ NODES(preassigned) }
labelled := preassigned U sources
unlabelled :== {v | v € NODES(LDG) \ NoDEs(labelled) }
repeat
choose v € unlabelled s.t. PARENTS(v) N unlabelled = ()
rank, := 0
foreach p €PARENTS(v)
if Je € JOINS(v, p) s.t. FUSIONPREVENTING?(e)
rank,,p := 14+ RANK(p, labelled)
else
rank, p := RANK(p, labelled)
rank, := MAXIMUM( { rankyp } )
labelled := labelled U {(v,rank,)}
unlabelled := unlabelled \ {v}
until unlabelled =
return labelled \ preassigned

UL R W N R O

NN N

Fig. 4. Forward node numbering algorithm

O loop node
. collapsible edge from
any type of dependence
—— fusion-—preventing edge from
any type of dependence

Fig. 5. An example showing the results produced by RANGES() when calculating pos-
sible partitionings into four clusters for a graph containing both collapsible and fusion—
preventing edges. Each node is labelled with a (minimum partition number, mazimum
partition number) tuple, with numbers in bold indicating that the value results from
the node being either a source or a sink in the graph.

If this procedure is repeated for all paths through the graph with each node
being assigned the maximum value over all paths, then the final label P,,;, will
denote the earliest possible partition that the node may belong to in this LDG
with these pre-assigned nodes. A pseudocode for the algorithm is provided in
Figure @ The description makes use of several simple utility functions:
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— NODES(): returns the set of vertices from an aggregate data structure (either
an LDG or a set of (node, partitionI D) pairs).

— SOURCES(): returns the set of root (source) vertices in the LDG.

— PARENTS(): returns the parents of a vertex (in the current LDG).

— Joins(): returns the set of edges that joins two vertices (in the current LDG).

— FUSIONPREVENTING?(): returns a Boolean depending on whether the edge
is collapsible or not.

— RANK(): returns from a set of (node, partitionI D) pairs the partition ID
(integer) of a given vertex.

— MAXIMUM(): returns the maximum from a set of integers.

The algorithm does not actually enumerate all the paths through the LDG.
Instead it successively selects nodes from the unassigned set only after all their
parents have been processed

Given a maximum number of partitions, the same numbering can be re-
peated in reverse working from sinks to sources. This gives NUMBERNODES-
BACKWARDS(), the result of which denotes the latest possible partition that
a node may belong to, P,,... Taken together, the two procedures provide the
range of partition IDs to which any unassigned node v may belong P, pin <
ID, < P, maz , and also the size of the range for that node P, qz — Py min + 1.
Any node with a range of sizes less than or equal to zero indicates that no legal
fusion partitions of this size exist for this LDG. This information is provided by
the RANGES() function, which essentially just calls NUMBERNODESFORWARDS()
and NUMBERNODESBACKWARDS().

An example of the results produced by applying the RANGES() function to
an example problem is given in Figure Bl The labelling of the graph shows for
each node the earliest (minimum number) and latest (maximum number) cluster
that it may belong to for the case of four partitions. Note that this is not the
minimum number of partitions possible for this LDG.

Enumeration algorithm. The enumeration algorithm generates the fusion
partitions of a given size for an LDG. It starts by finding the ranges of the
nodes in the LDG, then choosing a (node,range) pair. For the chosen node,
the algorithm chooses a value in its range, treats the (node,value) pair as a
pre-assigned node, and recursively calls itself. At each step, the search is pruned
if any partition will remain empty. For subsequent calls, a different value from
the range of the last assigned node is chosen, until the range has been covered
indicating that this recursive step is complete. Note that the ranges of unassigned
nodes may change before each recursive function call, and that any unassigned
node can be selected for enumeration within a call.

The enumeration algorithm is given in Figure[fl As well as the recursive call, it
uses two other functions; RANGES(), explained above, and FUSIONPARTITION(),

L A similar algorithm to NUMBERNODESFORWARDS() , without the notion of accom-
modating preassigned nodes, can be found in an early paper on the subject [3].
However, the authors do not apply the same technique in reverse, as described here,
and do not attempt to enumerate different fusion partitions.
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ENUMERATEF USIONPARTITIONS(LDG, size, fixed)
Description: Enumerates the fusion partitions of an LDG
LDG@G, a loop dependence graph
Input: { size, the required size of fusion partition
fized, a set of (node, partitionl D) pairs
Output: the set of fusion partitions of size size in LDG
(1) if NopES(LDG) \ NODES(fized) = () then return FUSIONPARTITION( fized)

(2) fps =10
(3) ranges := RANGES(LDG, size, fized)
(4) if vp € {1,...,size} I(v,p) € fized \/ I(v,"min,Tmaz) € ranges such that

(rmin <p< 71'maz)
choose (v, ranky min, ranky maz) from ranges
for i := ranky min to ranky maq
newFized := fized U {(v,1)}
fps := fpsU ENUMERATEFUSIONPARTITIONS(LDG, size, newFized)
return fps

A~ S S
O 00 ~J S Ot
— T

Fig. 6. Fusion partition enumeration algorithm

which makes a fusion partition data structure from a list of (node, partitionI D)
pairs. In the current implementation there is no special criterion for choosing
nodes to fix (they are taken in whatever order they are provided in by the
function that calculates the ranges) or values from their ranges (currently they
are taken sequentially, from bottom to top by the loop on line []).

4.2 Search Heuristics and Search Space Reduction

Although generating legal fusion partitions is relatively cheap, the total number
of them means that generating and storing all of them (i.e. the search space)
before choosing points to tests would take far too much time and space (see
Table[)). Consequently, there needs to be some way of selecting a region of the
search space to generate. The choice of this region is governed by the charac-
teristics of the points we hope to find, and therefore determined by the search
heuristics themselves:

1. More array contraction is likely to be better.
2. A smaller size fusion partition (i.e. less clusters) is likely to better.

Both heuristics stem from the goal of improving memory performance. The
heuristics are not independent. Given some initial LDG, it is necessary to fuse
some loops (i.e. choose a fusion partition) to uncover any more array contraction.
Note that the smallest partition size may not contain the fusion partition with
the most contracted arrays. However, for a non-pathological LDG derived from a
typical program, more fusion and more contraction are likely to be related. This
last assumption allows us to use the second heuristic to guide the generation of
points in the space with the assumption that they will include (the majority of)
the good points as determined by the first heuristic.
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GENERATETESTCASES(LDG, mazCandidates, minPartitions, maxPartitions)
Description: Enumerates the fusion partitions of an LDG

LDG@G, a loop dependence graph

maxCandidates, the maximum number of fusion partitions to generate
minPartitions, the minimum size of fusion partition to generate

max Partitions, the maximum size of fusion partition to generate
Output: fusion partitions of LDG

(1) candidates := ()

Input:

(2) for i := minPartitions to maxPartitions

(3) fps := ENUMERATEFUSIONPARTITIONS(LDG, i, )
(4) total := fps U candidates

(5) candidates := SELECTBEST(mazCandidates, total)
(6) return candidates

Fig. 7. Test case generation algorithm

Using the enumerating procedure, the overall algorithm for generating cases
is given in Figure [l The algorithm starts at small fusion partition sizes, and
with each successive iteration the size of fusion partitions that are considered
increases by one. Note that the amount of search space to generate (i.e. fusion
partition size range) and the number of points to try are arguments supplied by
the user. The function SELECTBEST() orders the set total based on the search
heuristics (e.g. contraction, then partition size, then first come-first served) and
then cuts it down to the first mazCandidates elements.

4.3 Code Generation

The only requirements on the code generated from the fusion partition of an
LDG is that dependencies between partitions are respected in the final ordering
of the loops generated from them, and similarly that the dependencies within a
partition are respected in the ordering of the bodies from the original loops to
form the body of the partition. The first requirement is automatically satisfied
by ordering the loops according to the partition label sequence, and the second
can be satisfied by a simple topological sort. Basic blocks are placed in the code
between loops as early as is legal.

5 Experiments

5.1 Example LDG

The example is derived from the general step of a two-sided Krylov space algo-
rithm, the fundamental component of several sparse linear solver and eigenvalue
approximation algorithms [I7], code for which is given in [15]. It is applied to
a 3/4 dimensional simple stencil problem. A decorated version of the associated
LDG is presented in Figure B All loops are conformable, and all edge weights
are equal. Loop nodes are labeled with the variable they write to — scalars are
denoted with greek letters (a, 3 ... ), arrays with lower case letters or numbered
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tempy

bold

tempia

Key

data live-in to or live-out of LDG region
[ stmple node — a data parallel operation

on vectors such as addition, subtraction etc. - — — >
@‘ reduction node — the computation

input dependence
(present for illustration)
_____ o true dependence

__ .. anti dependence
_ fusion—preventing true
dependence

of the inner product of two vectors

Q operator application node — the application of
a nearest neighbour averaging stencil in three
or four dimensions

O basic block

Fig. 8. LDG from two-sided Krylov space update
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temporaries (wsg, tempg ...), and data for the stencil with capitals (A ...).
Data that is live-in and dependencies to an exit node for data that is live-out
are added for illustration purposes.

5.2 Enumeration of Fusion Partitions and Compilation Times

Table [I gives the four smallest fusion partition sizes (column 1), the number
of legal fusion partitions for that size (column 2), along with the time taken
to generate them (column 3). The results are further broken down to show
how many partitions of that size exist with a given amount of maximum array
contraction (columns 4 — 8). For example, of the 80 fusion partitions of size 3,
24 have a maximum of 9 array contractions. OQur heuristics prioritise partitions
with the most contraction —i.e. the column marked 10, which has a total of eight
partitions from different sizes. In fact, the best result was always produced by
one of these fusion partitions (although not necessarily the smallest). The table
shows that there are relatively few fusion partitions with the best characteristics
according to our heuristics, and so restricting empirical testing to these preferred
candidates would be cheap.

The time to find a solution depends on the time spent generating the search
space and testing points, both of which are under user control. Consequently
compile times are determined by how much search a user is willing to do to
characterise the space. The optimum points can be found for our example by
testing only eight points each time, (i.e. column four from Table[5:2]) but this may
not be enough in all cases. A characterisation of the search spaces for multiple
benchmarks on different architectures is currently in progress. Compilation times
are, however, expected to be relatively long — the approach is targeted at long-
running scientific/embedded applications where the investment will pay off.

Table 1. Number of legal fusion partitions (FPs) of certain sizes, the time taken to
generate them and how many partitions with a given amount of array contraction exist
for that size

FP size no. legal time to enumerate no. FPs with n contracted arrays

FPs (in minutes) 10 9 8 7 6
3 80 1 2 24 39 13 2
4 3557 1 4 174 960 1395 792
5 63801 4 2 366 4974 17066 22362
6 633799 57 0 307 10350 71951 178862

5.3 Comparison Against Existing Fusion Techniques

Method. The first set of iterative search experiments compare our search tech-
nique against two algorithms representative of those in the literature that target
array contraction, a greedy [0] and a max-flow min-cut [3] algorithm, as well
as the original untransformed code (i.e. without any fusion/contraction). In all
cases simple Aldor code is generated from the fusion partitions by our proto-
type tool, followed by compilation to C code using the Aldor compiler version
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Table 2. Times in seconds for best search, control methods and untransformed code

stencil  machine size  best search  greedy max-flow  original
min-cut

3D Pentium ITT 50 136.8 186.3 163.6 329.6

Pentium 4 70 55.3 64.2 76.6 122.3

4D Pentium IIT 18 118.6 141.3 148.5 291.1

Pentium 4 24 59.7 69.7 79.2 126.9

Table 3. Times for linear solve on 3D stencil (search vs. Fortran)

machine size  best search  Fortran
Pentium III 30 43.4 64.1
50 209.1 303.7
Pentium4 30 5.26 7.20
50 24.5 33.6
70 71.6 95.6

1.01 with aggressive inlining settings. This C code is compiled using the Intel C
compiler (icc) version 8.0 to run on either a 1 GHz Pentium III (Coppermine)
or a 2.6 GHz Pentium 4 (Northwood). Flags for icc were set to target the spe-
cific processor (-xK/N), perform all but the most aggressive optimisations (-02)
and instrument the code for profiling. Timings were generated by executing a
program that calls the main function 1000 times, to give stable results.

Results. A comparison of the results produced for the first set of experiments
by our search method, the control techniques and the original code is given
in Table B Our technique provides speedups of up to 2.45 over the original
code, and up to 1.36 and 1.38 over a greedy and a max-flow min-cut algorithms
respectively. The speedup over the original code shows that there are important
gains to be had from this kind of technique, and the speedup over the other
methods shows that search is necessary to get the full potential benefit of the
transformations.

5.4 Comparison Against Fortran

Method. The second set of experiments provide some broad comparison of the
performance of Aldor code transformed with our technique against a standard
Fortran 77 package containing an equivalent algorithm, QMRpack [16]. This was
compiled using the Intel Fortran compiler version 8.0 (ifc) with the same flags
as for icc, but also with cross-file inlining and the highest level of optimisation
(-03) to enable high-level transformations such as loop fusion. QMRpack had
to be modified slightly to make the two codes more similar, by adding a stencil

2 For further results, a more in-depth analysis and a discussion of how the best solution
changes with respect to the problem and the architecture in question, please see [15].
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and removing some conditionals that skip steps based on floating point error
tolerances and may have prevented transformations such as loop fusion. Addi-
tionally, the Aldor code had to be augmented with some extra code to make it
into a full QMR solver.

Results. Results for the second set of experiments are presented in Table [3
The transformed version outperforms the Fortran version with the relative per-
formance gain being &~ 1.46 on the Pentium III and ~ 1.35 on the Pentium 4.
These results show that using an advanced language does not necessarily mean
sacrificing performance compared to lower-level languages.

6 Conclusion and Future Work

Iterative collective loop fusion applies heuristically guided search to select the
best candidate from several fusion partition sizes and contraction amounts, and
provides important performance benefits over the alternative techniques with
speedups of up to 1.38. The overall approach of applying such a technique to
a high-level language that is inherently very modular is promising, with perfor-
mance improvements over navely generated code of up to 2.45, combining ele-
gance of expression with performance more usually associated with traditional
imperative languages.

The two most important extensions to this work will be to gather further
results using more machines and LDGs derived from other codes, and to investi-
gate how loop fusion and array contraction interact with subsequent single loop
optimisations such as loop unrolling or software pipelining. In addition, inves-
tigating how to formulate the loop fusion/array contraction problem for other
abstract frameworks such as the polytope model would be interesting.
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