
Towards a Reliable, Wide-Area Infrastructure
for Context-Based Self-management of

Communications

Graeme Stevenson�, Paddy Nixon�, and Simon Dobson

Systems Research Group,
School of Computer Science and Informatics,

UCD Dublin, Ireland
graeme.stevenson@ucd.ie

Abstract. In this paper we describe ConStruct, a distributed, context-
aggregation based service infrastructure which supports the develop-
ment of context-aware applications. ConStruct operates by automatically
generating and maintaining directed context-processing graphs which
connect applications to the sources of data they require at a relevant
level of abstraction. The infrastructure also supports the dynamic cre-
ation of context processing elements to bridge gaps between available
and requested information. ConStruct provides a reliable, scalable in-
frastructure; focused on self-maintenance in order to alleviate developer
workload. We describe the infrastructure design and implementation,
the associated programming model, and our planned extensions to the
infrastructure.

1 Introduction

A defining trait of pervasive computing environments is the presence of large
numbers of sensors, embedded into the physical surroundings, which provide
information on a variety of characteristics of the environment in which they
operate. This context information can be utilised by applications to modify their
behaviour in response to changes in their execution environment, or to convey
such changes to users.

The information required by an application is rarely at the same level of ab-
straction as that provided by individual data sources. For example, a sensor may
be able to indicate that a person has been detected in a room, but an application
may be interested in the current occupancy of the room, or whether a meeting is
currently taking place in the room. In order to obtain such information, an appli-
cation will frequently have to aggregate data from multiple sources. Such sources
may differ in many respects. For example, the level of accuracy they provide,
and the data formats and communication protocols they use. As a result, appli-
cation developers are required to spend the majority of their time on the details

� This work was undertaken while Stevenson and Nixon were at The University of
Strathclyde, Glasgow, Scotland.

I. Stavrakakis and M. Smirnov (Eds.): WAC 2005, LNCS 3854, pp. 115–128, 2006.

The original version of this chapter was revised: The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-32993-0 29

© 2006Springer-Verlag Berlin Heidelberg

http://dx.doi.org/10.1007/978-3-540-32993-0_29

116 G. Stevenson, P. Nixon, and S. Dobson

of obtaining the information they require, rather than on their primary goal of
defining the behavioural changes in the applications that use the information.

The aim of our research is to provide a service infrastructure which will carry
out the task of obtaining and processing sensor data from a variety of disparate
sensor technologies, and deliver it to applications at the level of abstraction
they desire. This allows developers to focus on the task of specifying application
behaviour with respect to that information.

There are four challenges in the areas of flexibility, maintainability, scalability
and inter-operability that must be met. Firstly, developers cannot anticipate at de-
velopment time the physical sources of data that will be available to their applica-
tions. Mechanismsmust therefore be providedwhich are flexible enough to support
runtime binding between an application and viable data sources. Infrastructure
support must also be provided for automatically locating potential data sources,
and for bridging the gap between available information and required information
using data-aggregation techniques. Secondly, as sensors and data-processing com-
ponents may be prone to failure, the infrastructure should automatically detect
and repair faults wherever possible. Thirdly, an infrastructure should scale to pro-
vide support for large numbers of devices, sensors and applications. Finally, as sen-
sors and applications may be deployed on a wide range of heterogeneous devices,
standard data formats and communication protocols should be used to provide
independence from hardware, operating system, and programming language. De-
tailed analysis of these requirements can be found in [1].

We have designed and implemented ConStruct, a middleware infrastructure
for context-aggregation, with the goal of meeting these challenges. ConStruct
draws from several concepts of state-of-the-art context processing research (see
Section 3) and extends from this by introducing the automatic synthesis of data
sources to bridge gaps between available and requested context information,
and by providing mechanisms to reuse components across concurrently execut-
ing applications with different data requirements. Work on ConStruct is still in
progress, with several strands of research planned to move towards the provision
of context in an autonomic computing setting.

The rest of the paper is organised as follows. Section 2 presents an overview of
ConStruct. Section 3 presents a discussion of relatedwork. Section 4 discussesCon-
text Entities, the building blocks of the infrastructure. Sections 5 and 6 describe
how Context Entities are dynamically composed to provide answers to application
queries. In Section 7 we discuss application mobility and communication between
multiple instances of the infrastructure services. Section 8 describes the program-
ming model used for developing Context Entities and Applications. We discuss the
work still required to meet the goal of context provision in an autonomic comput-
ing environment in Section 9, and conclude with a summary in Section 10.

2 Overview of ConStruct

ConStruct is comprised of a number of execution environments called Ranges,
which self-organise to form a partially connected overlay network referred to as

Towards a Reliable, Wide-Area Infrastructure 117

Fig. 1. The set of components which make up ConStruct

the ConStruct-NET. Each Range is functionally equivalent and contains a set
of services that are used for the management of Context Entities, independent
units of execution which provide and process context information, and Context-
Aware Applications, which use the Range services to request and consume the
context information produced by entities. Any entity or application which utilises
the services provided by a Range is referred to as being a part of that Range.
The infrastructure places no restrictions on the physical placement of Range
components within the network.

The ConStruct-NET is formed using a self-organising, self-repairing peer-to-
peer protocol [2], and provides functionality for dealing with applications which
may move between Ranges during their lifetime, and for managing the interac-
tions required to obtain context information from data sources in remote Ranges.

The services provided by a Range are grouped together to form the Context
Server. There are six services in total, as shown in Figure 1.

When an entity starts, it sends a request to the Registration Service, adver-
tising the type of information it supplies. This information is used by the Con-
figuration Service, to compose and instantiate graphs of Context Entities, called
configurations, which are capable of answering application queries. The External
Messaging Gateway is used in this process to obtain context from other Ranges
via the ConStruct-NET, whilst the Maintenance Services monitor the status of
all the entities and applications in a Range, performing repairs to configurations
as required. The Mobility Service is responsible for supporting applications relo-
cating to other Ranges. Finally, the Application Messaging Service provides an
additional mechanism for message based entity to application communication
outwith the confines of a configuration.

The current implementation of ConStruct is built using the Java Message
Service (JMS) [3], a standard, asynchronous messaging API, which supports
communication between loosely coupled, distributed components.

3 Related Work

Whilst a lot of work has been undertaken in the field of context delivery over
the last decade, the projects closest in spirit to our own are those that provide

118 G. Stevenson, P. Nixon, and S. Dobson

support for context aggregation. [4] introduces the Contextor, an extension of a
Context Widget [5]. Contextors can be composed, and recomposed, into colonies,
typed functional units which perform data-aggregation. iQueue [6], provides sim-
ilar support by automatically combining composers, data aggregation functions
written using iQL [7], a purpose built specification language. The iQueue run-
time attempts to resolve queries by selecting appropriate data sources using
application provided criteria. Finally, Solar [8] allows applications to compose
operators using operator-graphs which are instantiated at runtime using avail-
able resources. Applications may also specify policies defining how to discard or
summarize data flows wherever buffers overflow. Runtime support is provided for
load balancing operators across execution environments (planets), for restarting
failed operators, and for client mobility.

We note that although existing infrastructures have looked at the problem of
automatically generating context-processing graphs (iQueue, Contextors), and
context processing across distributed environments (Solar), no project has yet
looked at the combination of these elements in tandem with the runtime synthesis
of context-processing elements to bridge the gap between available and requested
information when only approximate matches are available. This is one of the
features of ConStruct.

4 Context Entities

A Context Entity (analogous to a Contextor [4], or Operator [9]), is a lightweight
software component which represents either a source of data or a function
which operates on the data produced, or computed, by other Context Enti-
ties. Each entity has its own thread of execution, and may consume and publish
events, which represent context information. This section describes Context En-
tity meta-data, entity architecture, and the different types of entity supported by
the infrastructure.

4.1 Entity Profiles and Naming

It is impractical to require application developers to identify the physical sources
for the information they require at development time. Not only would this be a
time consuming process for anything more than a trivial application, it would
also lead to the development of applications which were inflexible in the face of
device failures and changes in the resource pool - two prominent characteristics
of their operating environment. To overcome this challenge we require that data
sources be identified by the properties of the information they supply rather
than by their network location or unique identifier [10].

In order to achieve this, each Context Entity is associated with a profile -
XML formatted meta-data which describes the properties of the information
supplied by the entity. An entity profile consists of four parts: a classification
(see Section 4.3), a location, a description of the output generated by the entity,
and descriptions of any inputs the entity requires.

Towards a Reliable, Wide-Area Infrastructure 119

The location parameter describes the logical placement of the Context Entity
in the network (based on the Intentional Naming System [11]). For example, an
entity representing a coffee machine in room 10 on level 11 of the Livingstone
Tower would have the location [LivingstoneTower/L11/R1110].

The description of the output supplied by the entity consists of two parts: a
reference to an ontology which describes the format of the events published by
the entity, and a set of attribute-value pairs which describe the static properties
of the events published by that entity. The property names correspond to those
outlined in the ontology.

The combination of entity location and output event description is used to
identify resources within the network. This is similar in spirit to Solar [9] and
iQueue [6]. It is this format which entities use to express any input requirements
they may have.

There is an ongoing effort in the research community towards developing
ontologies which can describe the data supplied by a multitude of diverse data
sources (e.g., [12]). We assume the existence of such ontologies, although their
provision is outside the scope of this work.

We are currently looking at ways in which we can improve the expressiveness
of our context specifications. There are two extensions of particular interest. The
first allows for the input requirements of a Context Entity to be derived from the
output required of it. For example, an entity which will compute the distance in
metres between two people (specified at runtime) given their GPS coordinates.
The second extension allows Context Entities to define the properties of one in-
put requirement based on the runtime output of another. For example, an entity
that provides a list of all the occupants collocated with a given person. This entity
requires two inputs: the location of the person we are interested in, and events
that describe the detection of people within that location. In order to correctly
set up the latter input, we must first have access to the data from the former.

4.2 Entity Architecture

Context Entities consist of three main parts: a control channel, an event channel,
and a functional core. Context Entities can send messages to the control channels

Fig. 2. The architecture of a Context Entity

120 G. Stevenson, P. Nixon, and S. Dobson

belonging to other entities (or infrastructure services), and may also receive
events from the event channels belonging to other entities. This is illustrated in
Figure 2.

The functional core of a Context Entity defines how the value of its output
events are calculated from its input events, while the control channel of an entity
may receive events from the infrastructure services in order to check its status, or
from other Context Entities asking it to calculate a new value. These functions
discussed in more detail later.

In our current implementation, the control channel corresponds to a JMS
Queue - which has one-to-one delivery semantics, whilst the output event channel
corresponds to a JMS Topic - which has one-to-many delivery semantics.

4.3 Entity Classification

Context Entities may use data from a wide variety of sources to perform a
number of different computations. Influenced by the work in [4], we provide
support for seven different flavours of Context Entity. A source represents any
physical or computational component from which data originates (e.g., a door
sensor, or an entity which delivers user preferences). A fusioner obtains input
from multiple entities which supply events of the same type (X), and outputs
events (also of type X) whose quality has improved over that of the input events
(e.g., a more accurate estimation of the location of a person based on events
produced by RFID and IR sensors). An aggregator outputs an event of arbi-
trary type based on one or more input events, also of arbitrary type (e.g., de-
tecting the activity taking place in a room based on the time, the identity of
the people in that room, and the associated noise level). A transformer takes
an input event of type X and recasts the data into another format without
altering its level of abstraction. The output event may be of the same type
(e.g., converting a temperature reading from Celsius to Fahrenheit) or a dif-
ferent type (converting data from one event ontology to another). A gener-
aliser takes in, and outputs data of type X, where the output data is at a
lower level of granularity than that of the input data. We envision the gener-
aliser being used to implement privacy policies, where users may wish to re-
strict the accuracy of any personal data which is made available to other users
(e.g., reducing the accuracy of a location measurement from a room name to
a building name). A filter takes a single input of type X and outputs a sub-
set of its input events based on some criteria (e.g., to filter out location events
about a specific person from a general location service). Finally, a merger takes
in multiple inputs of type X and outputs each event received without alter-
ation. The purpose of the merger is to aid reuse of event streams and operators
(see Section 6.2).

5 Configuration Model

As we described earlier, ConStruct uses the functionality provided by Context
Entities to generate answers to queries submitted by Context-Aware

Towards a Reliable, Wide-Area Infrastructure 121

Applications. This is achieved by connecting Context Entities together to form
directed, acyclic graphs which produce the required context information as a re-
sult. We call these graphs configurations. This section describes the architectural
style used as the basis for configurations, and describes the interaction model
which controls communication between Context Entities.

5.1 Architecture of a Configuration

The architectural style we use for configurations is based upon Chiron-2 (C2)
[13], which was originally devised to support component reuse in GUI based sys-
tems. The style consists of a number of components (Context Entities), which
are connected together to form a hierarchy using message routing devices (con-
trol and event channels). The key property of this style is that components are
only aware of other components which reside directly above it in the hierarchy,
and have no knowledge of those components which reside lower down. The C2
style supports two forms of communication: notifications, which are passed down
the architecture, and requests, which are passed up the architecture. In our case
notifications (events) are passed using event channels, while requests are com-
municated using control channels. Applications represent the lowest level of the
hierarchy and form the sinks of the graph.

5.2 Entity Interaction

The interaction model used by ConStruct supports both active and passive Con-
text Entities. Active entities are characterised by the fact they automatically
publish new context information when it becomes available, while passive en-
tities wait until data is requested from them before supplying it. In order to
accommodate both types of Context Entity, we use the following interaction
model, based on [6]:

– When an Context Entity receives an event from one of its input sources, it
will send an event-request message to the entities which lie in the level of the
hierarchy directly above it (with the exception of the entity which sent the
original event). Once it has received a new event from each of these sources
it will calculate and publish a new value.

– When a Context Entity receives an event-request message from an entity
(or application) in the level of the hierarchy directly below it, it will send
an event-request message to each of the entities which lie in the level of the
hierarchy directly above it. Once new values have been returned, the entity
will calculate and publish a new value.

We wish to extend our configuration model to provide support for cyclic graphs.
This would allow us to support applications and services which employ feed-
back techniques. We would also like to support the provision of services where
entities require to coordinate their efforts with their peers (such as the traffic
monitoring/route planning application described in [10]).

122 G. Stevenson, P. Nixon, and S. Dobson

6 Query Resolution

The Configuration Service employs Automatic Path Creation (APC) techniques
in order to generate configurations that are capable of satisfying application
queries. This section describes three aspects of this process: the APC mech-
anism itself, the techniques implemented to reuse existing configurations and
entities where possible, and the process of maintaining configurations during
their lifetime.

6.1 Query Processing

Restricting, for now, discussion of the resolution process to a single Range, the
process carried out by the Configuration Service upon receipt of a query is as
follows:

1. First, the Configuration Service searches for Context Entities which match
the desired location and output event type requested by the application.

2. The attribute-value pairs describing the output supplied by each candidate
entity are then compared to the application’s requirements. Entities are clas-
sified into one of four categories: no match, partial match, exact match, and
over match. The no match category contains entities which have conflicting
attribute-value pairs to that of the application request. The partial match
category contains entities who’s attribute-value pairs are a subset of those re-
quired by the application. The exact match category includes entities who’s
attribute-value pairs have exactly one-to-one correspondence with the ap-
plication request. Finally, the over match category contains entities who’s
attributes form a superset of those required by the application.

3. If any exact match category contains at least one entity, the next step is
to examine each of their input requirements (if any) in turn, and determine
if they can be satisfied (using this procedure). This is a recursive process
which continues until physical sources of data are found (i.e., Source entities).
If there is a choice to be made among multiple entities, the one with the
classification that provides the higher quality of data is chosen (e.g., Fusioner
> Source > Aggregator).

4. If there are no exact matches, the next step is to examine the input require-
ments for any partial matches in a similar manner. If a complete configu-
ration can be formed, a filter is automatically generated and configured to
bridge the gap between the output of the configuration and the requirement
of the application.

5. Should the previous two groups fail to yield a positive result, the final option
is to evaluate the group of entities in the over match category. The results
of all successfully evaluated configurations can then be merged together to
provide the application with the best possible match available.

If the above procedure succeeds in generating a configuration, the Configuration
Service sends messages to each entity involved, detailing the identity of the
event streams that each should subscribe to. On completion, the Configuration

Towards a Reliable, Wide-Area Infrastructure 123

Service then sends a message to the application informing it about the identity
of the event channel representing the end point of the configuration, to which
the application will subscribe.

6.2 Reuse of Event Streams and Context Entities

In the process of generating a configuration, the Configuration Service will try
to reuse active event streams and Context Entities (i.e., those which are part of
an existing configuration) wherever possible. In the case of event streams, this
is a straightforward process. If the output of an active entity is found to satisfy
either the application query itself, or one of the inputs required by a entity within
the new configuration, the Configuration Service will utilise the existing event
stream, thus satisfying that particular branch of the configuration completely.

In the case of Context Entities, the process is slightly more involved. When
we talk about reusing a Context Entity, we refer to the functionality of the
entity, rather than the role it plays in an existing configuration. For example,
an entity that converts context information from one ontology to another can
perform the same role in multiple configurations which require information from
different sources. The process of reusing an entity in multiple configurations in-
volves merging the desired event streams, tagging each stream with an identifier,
passing the event stream through the reusable entities, and finally filtering out
the original event streams. This is illustrated in Figure 3.

Fig. 3. Example showing the reuse of a transformer entity across two configurations

6.3 Runtime Maintenance

Pervasive computing environments are considered to be dynamic with respect
to the resources available within them at any one time. Another tenet of such
environments is that the failure of computational devices should be treated as
commonplace. To deal with these features, ConStruct provides a suite of main-
tenance services that: monitors Context Entities and Applications for failure;
performs repairs to configurations where possible; and re-evaluates configura-
tions when new resources become available.

Application and Context Entity monitoring takes the form of periodic pass-
ing of ping/pong style messages. If the control channel of an application/entity

124 G. Stevenson, P. Nixon, and S. Dobson

has been closed or if a response has not been received within a set number of
iterations the application/entity is assumed to have failed. In the case of an ap-
plication failure, any configurations to which they were the sole subscriber can
be removed, and the involved entities told to deactivate. In the case of an entity
failure, the Configuration Service will be used to try and repair the branches
of any configurations which utilise the entity. If a configuration can be repaired
successfully and the end point of the configuration is unchanged there is no need
to inform the application. Otherwise, the application is told to change their
subscription, or that their requirements can no longer be satisfied.

Periodic re-evaluations of queries are performed in order to take advantage
of additions to the resource pool. Should a preferable configuration be found
to one already in use, the affected branches of a configuration are altered, old
branches deactivated and applications informed as above if necessary. We are
currently working on providing support for runtime configuration adaption based
on changing Quality of Service parameters (e.g., accuracy, confidence, error,
and bandwidth). Although this information has always been available (should
an entity choose to provide it), its interpretation was previously left to data
consumers. As different data types have different QoS parameters associated with
them, we aim to develop an model which is extensible, allowing us to perform
informed analysis of the QoS parameters of new data types as they emerge.

7 ConStruct-NET

The ConStruct-NET facilitates the communication of context information over
a wide-area by connecting distributed Ranges. This allows applications (by way
of the infrastructure services) access to the context information they require,
irrespective of their network location and Range they are part of. This section
gives a brief overview of the communication mechanisms employed to form the
ConStruct-NET, the extension of the configuration model to communicate with
data sources located in remote Ranges, and the infrastructure mechanisms that
support application mobility between Ranges.

7.1 Inter-range Communication

The External Messaging Gateway (EMG) component of a Range is responsible
for initialising (or joining) the ConStruct-NET, and for all communication be-
tween remote Ranges and its own. The ConStruct-NET is implemented using
Pastry [2], which provides the basis for communications, and message routing
within peer-to-peer applications. Details on the message routing algorithm em-
ployed by Pastry, and the self-organising and self-repairing characteristics of a
Pastry network are described in [2].

7.2 Extending the Configuration Model

In order that the context information supplied by entities in remote Ranges
can be utilised, we impose two additional requirements on the single Range

Towards a Reliable, Wide-Area Infrastructure 125

Fig. 4. Example showing the use of a proxy to communicate information across the
ConStruct-NET

model described above. Firstly, that the query resolution algorithm incorporates
searches across multiple Ranges. Secondly, that the model used for executing
configurations is extended to provide support for obtaining information from
and sending requests to entities across the ConStruct-NET.

If part (or all) of a configuration cannot be resolved locally, the Configura-
tion Service will route a request through the EMG to the Configuration Services
belonging to other Ranges, which will attempt to complete the configuration.
Should a remote Configuration Service be able to contribute to the configu-
ration, the process will recurse from that point in a similar manner until the
configuration is completed, or the process fails.

In order that that our configuration model remains consistent, we have in-
troduced proxy Context Entities, which bridge the gap between Ranges,
serving as a local representation of a remote entity. Proxy entities use the
EMG to communicate with the entity they represent. This is illustrated in
Figure 4.

7.3 Application Mobility

Mobile applications may use the Mobility Service to retain their configurations
whilst they relocate to another Range, or during periods where they experience
temporary loss of connectivity (e.g., out of range of a Wi-Fi access point). The
Mobility Service acts as a proxy between an application and the end point of
its configurations. Should message delivery to the application fail, the Mobility
Service will cache events on the applications behalf. When an application re-
joins the ConStruct-NET (either in the same or a different Range), it uses the
infrastructure to route a message to the Mobility Service, asking it to resume
message delivery. Should an application fail to reappear within a reasonable time
period (set by the administrator of a Range), the assumption is made that the
application will not return. At this point the Mobility Service will stop acting on
the application’s behalf, and the maintenance procedures will perform cleanup
operations as normal.

126 G. Stevenson, P. Nixon, and S. Dobson

8 Programming Model

ConStruct provides a simple two-step programming model that allows developers
to easily create their own Context-Aware Applications and Context Entities.

To create a new Context Entity, the first step is to extend from the entity
base class which provides all the functionality required to interact with the in-
frastructure services. Developers are required only to provide an implementation
for the evaluate() method, which returns an XML encoded String representing
the event produced by that entity. Access to any inputs required by the entity
are achieved by calling the getSource(“sourceName”) method. Updated events
for these inputs are obtained automatically (see Section 5.2) before the evalu-
ate() method is called. The developer has the option of specifying how often the
entity should evaluate as part of its constructor. If no value is given, the entity
is treated as being passive.

Similarly, the base class from which applications extend only requires devel-
opers to provide an implementation for the eventHook() method. This is called
automatically when an application receives a new event.

The second step in the development process is to write the XML context
specification for the entity (its profile) or application (its queries). Profiles in-
clude the entity location, input, and output details of a entity as discussed in
Section 4.1, whilst the format used for a specifying each application query in-
cludes a local name (used as a parameter when the eventHook() method is called,
signalling which query the event is associated with), location, event type, and
associated attribute-value property list. Context specifications are stored in an
external text file, and identified to the entity/application through the object’s
constructor. The process of verifying and using the data provided by the profiles
and queries is handled automatically.

We have build several applications using our programming model, including
an In/Out Board, a Context-Aware Coffee Break Notifier, and a Smart To-Do
List. Details of these can be found in [1].

9 Towards Context Provision in an AC Environment

Up to this point, the focus of our work has been on investigating the necessary
abstractions to allow us to decompose high-level services into low-level building
blocks, and on the mechanisms to facilitate their communication and reuse. The
techniques we use in this process have allowed us to place all the maintenance
complexity and communication logic into the software, minimising the effort
required of developers to build mobile applications which can source data from
any location within the ConStruct-NET.

In addition to the ongoing work we have described throughout this paper,
there are several issues which we must address before we reach the stage of
providing a context delivery mechanism which is suitable for an autonomous
networking environment.

Whilst the infrastructure has self-organising and self-healing properties at
the Range level, both in terms of the Pastry network protocol used to form the

Towards a Reliable, Wide-Area Infrastructure 127

ConStruct-NET and the fact that it provides automatic creation and mainte-
nance of configurations within a Range, at the macro level we have a reliance on
centralised services. This single point of failure, whilst effective at lessening the
processing burden on individual devices, is a fair criticism of our work from an
autonomic communications perspective.

We aim look at the feasibility of decentralising our protocols. This raises
a number of issues, such as: the efficiency of the discovery protocol; the time
required to construct a configuration; memory footprint; CPU load, which will
be of critical importance for battery powered devices; and preserving the facility
to source data from remote locations. Another key issue involves the synthesis
and reuse of data sources - where we currently use the infrastructure services to
do this work, another approach will be required. The concept of a domain, as
we have with a Range is useful, and retaining this concept when decentralising
our protocol is something to consider.

Finally, security of data is also an important issue - primarily in terms of
access control, although encryption may be a requirement in some cases. Pro-
viding access control mechanisms for dealing with context is a complex issue.
Challenges include the need to determine ownership of the data; to resolve con-
flicting privacy preferences (between users and/or administrative domains), and
to provide mechanisms for permitting access to information at different levels of
granularity (e.g., granting access to your location information at room, building,
or city level depending on the identity of the interested party).

10 Summary

In this paper we have described ConStruct, a service infrastructure designed
to enable the collection and aggregation of context information from a myr-
iad of distributed data sources, and the distribution of that information to the
applications that require it at an appropriate level of abstraction. We detailed
the mechanisms which we use to allow runtime synthesis of new data sources
to bridge processing gaps, and the techniques we use to support the reuse of
processing elements across multiple configurations. We also described how Con-
Struct facilitates context processing and dissemination over a wide-area using
multiple deployments of the infrastructure services. We concluded this paper by
discussing some of the issues that we still need to address in order to apply our
technology to the autonomic computing domain.

References

1. Graeme Stevenson. A Service Infrastructure for Change-Tolerant Context-Aware
Applications. Master’s thesis, University of Strathclyde, Glasgow, Scotland, 2005.

2. Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object Lo-
cation, and Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Com-
puter Science, 2218:329–350, 2001.

3. R. Monson-Haefel and D. Chappell. Java Message Service. O’Reilley & Associates,
December 2000.

128 G. Stevenson, P. Nixon, and S. Dobson

4. Jolle Coutaz and Gatan Rey. Foundations for a Theory of Contextors. In
Computer-Aided Design of User Interface (CADUI02), 2002.

5. Anind Dey. Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, Providing Architectural Support for Building Context-Aware
Applications, November 2000.

6. Norman H. Cohen, Apratim Purakayastha, Luke Wong, and Danny L. Yeh. iQueue:
A Pervasive Data Composition Framework. In Third International Conference on
Mobile Data Management (MDM‘02), pages 146–153, Singapore, January 2002.

7. Norman H. Cohen, Hui Lei, Paul Castro, John S. Davis II, and Apratim Pu-
rakayastha. Composing Pervasive Data Using iQL. In Proceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and Applications, page 94. IEEE
Computer Society, 2002.

8. Guanling Chen and David Kotz. Application-controlled loss-tolerant data dissem-
ination. Technical Report TR2004-488, Dartmouth College, Computer Science,
Hanover, NH, February 2004.

9. Guanling Chen and David Kotz. Context Aggregation and Dissemination in Ubiq-
uitous Computing Systems. In The Fourth IEEE Workshop on Mobile Computing
Systems and Applications., pages 115–114, Callicoon, New York, June 2002.

10. Norman H. Cohen, Apratim Purakayastha, John Turek, Luke Wong, and Danny
Yeh. Challenges in Flexible Aggregation of Pervasive Data, 2001.

11. William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The
design and implementation of an intentional naming system. In Symposium on
Operating Systems Principles, pages 186–201, 1999.

12. Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Standard On-
tology for Ubiquitous and Pervasive Applications. In First Annual International
Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQ-
uitous’04), Boston, Massachussets, USA, August 2004.

13. Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, E. James Whitehead
Jr., Jason E. Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L. Dubrow. A
Component- and Message-Based Architectural Style for GUI Software. Software
Engineering, 22(6):390–406, 1996.

	Towards a Reliable, Wide-Area Infrastructure for Context-Based Self-management of Communications

