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Abstract. With a great amount of textual information are available on the 
Internet and corporate intranets, it has become a necessary to categorize large 
documents. As we known, text classification problem is representative multiclass 
problem. This paper describes a framework, which we call Strong-to-Weak- 
to-Strong (SWS). It transforms a “strong” learning algorithm to a “weak” 
algorithm by decreasing its iterative numbers of optimization while preserving its 
other characteristics like geometric properties and then makes use of the kernel 
trick for “weak” algorithms to work in high dimensional spaces, finally improves 
the performances of text classification. We analyzed the particular properties of 
learning with text and identified why this approach is appropriate for this task. 
Empirical results show that our approach is competitive with the other methods. 

1   Introduction 

Automated text classification, the supervised learning assignment of labeling free text 
document to predefined categories based on their content, is a significant component in 
many data mining and knowledge discovery tasks. Many algorithms for the multiclass 
problems have been developed recently. One directly considers all data in one 
optimization formulation. However a more general method is to reduce a multiclass 
problem to multiple binary problems [1].  

In [2] Dietterich and Bakiri described a unifying method for reducing multiclass 
problems to multiple binary problems based on error correcting output codes. However 
there might be strong statistical correlations between the resulting classifiers. The 
design problem of output coding has been introduced [3]. One can regard the design 
problem as a constrained optimization problem. However this method is extremely 
time-consuming and has too much variables to solve effectively. 

Recently a robust Minimax classifier where the probability of correct classification 
of future data should be maximized has been provided [4]. No further assumptions are 
made with respect to the each two class-conditional distributions. The minimax 
problem can be interpreted geometrically as minimizing the maximum of the 
Mahalanobis distances to the two classes. “Kernelization” version is also available.  

An important feature of the probability machine is that a worst-case bound on the 
probability of misclassification of future data is always obtained explicitly. We use this 
probability to build a heuristic algorithm and then solve the design problem of output 
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coding more effectively, while overcoming the limitation that the previous methods can 
be implemented only when given a set of binary classifiers. 

Section 2 reviews the standard feature vector representation of text. Section 3 briefly 
states the output codes framework for multiclass categorization problems. Section 4 
reviews the binary minimax machine and introduces resample for robust estimation for 
mean and covariance matrix. Section 5, the main part of the article, presents new 
algorithm in detail. In section 6, we report the experimental results. Finally, section 7 
presents conclusions and discussion of future directions. 

2   Text Categorization 

The goal of text categorization is the classification of text into a fixed number of 
predefined categories. Using machine learning, the objective is to learn classifiers from 
examples which perform the category assignments automatically. This is a supervised 
learning problem.  

The first step in text categorization is to transform text, which typically are strings of 
characters, into a representation suitable for the learning algorithm and the 
classification task. Text Analysis researches suggest that word stems work well as 
representation units and that their ordering in a text is of minor importance for many 
tasks. This leads to an attribute-value representation of text. Each distinct word 
corresponds to a feature, with the number of times word occurs in the text as its value. 
This representation scheme leads to very high-dimensional feature spaces containing 
10000 dimensions and more. Many have noted the need for feature selection to make 
use of conventional learning methods possible, to improve generalization accuracy, and 
to avoid overfitting. Following the recommendation of [5], the information gain 
criterion will be used in this paper to select a subset of features.  

3   Design of Output Codes 

In this section we briefly review the method for designing of output codes [3]. Let 

1 1{( , ),..., ( , )}m mS x y x y= be a set of m training examples where each instance 

ix belongs to a domain χ . We assume without loss of generality that each label iy  is 

an integer from the set {1,..., }kϒ = . A multiclass classifier is a function 

:H χ → ϒ that maps an instance x into an element y ∈ ϒ . An output codes M is a 

matrix of size k l×  over \  where each row of M corresponds to a class y ∈ ϒ . Then 

different binary classifiers 1,..., lh h  can be yielded. We denote the vector of predictions 

of these classifiers on an instance x as 1( ) ( ( ),..., ( ))lh x h x h x= . 

We denote the r th row of M by rM . Given an example x  we predict the label y for 

which the row yM is the “closest” to ( )h x . Naturally we can perform the calculations 

in some high dimensional inner-product space Z using a transformation : l Zφ →\ and 

use a general notion for closeness, then define it through an inner-product 
function : l lK × →\ \ \ , which satisfies Mercer conditions [6]. The higher the value 
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of ( ( ), )rK h x M is, the more confident we are that r is the correct labels of x  according 

to the classifiers ( )h x . Thus ( ) arg max { ( ( ), )}r rH x K h x M∈ϒ= . 

Let a bα  be 1 if the predicate α  holds and 0 otherwise, ,i jδ equals 1 if i j= , 0 

otherwise. Denote by , ,1
ii r y rb δ= − . We define the 2 norm of a matrix M and introduce 

slack variables iζ . Then the problem of finding a good matrix M can be stated as the 

following optimization problem: 

2
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(1) 

for some constant 0β ≥ and , 0i rη ≥ . Let 1i  be the vector with all components zero, 

except for the i th component which is equal to one, and let 1  be the vector whose 

components are all one. We can denote by , ,1 iyi r i rγ η= − . 

 Finally, the classifier ( )H x can be written in terms of the variable γ as: 

{ },( ) arg max ( ( ), ( ))i r iir
H x K h x h xγ= ∑  (2) 

However solving optimization problem (1) is time-consuming. In this paper our 
algorithm solves this optimization problem heuristically. 

4   A Probability Machine 

In this section we introduce a minimax probability machine (MPM) [4] proposed by 
Lanckriet et al., which tries to minimize the probability of misclassification of data. 

Let x  and y  model data from each of two classes in a binary classification 

problem, with means and covariance matrices given by ( , )xx ∑ and ( , )yy ∑ , 

respectively. We wish to determine a hyperplane ( , ) { | }TF a b z a z b= = , where 

\{0}na ∈\ and b ∈\ which separates the two classes of points with maximal 

probability with respect to all distributions having these mean and covariance matrices. 
This is expressed as: 
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(3) 

Where the notion ( , )xx ∑  refers to the class of distributions that have prescribed 

mean x and x∑ , but are otherwise arbitrary; likewise for y. In formulation (3) the term 

θ  is the minimal probability of correct classification of future data. Let us denote 
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by ( )
1

θκ θ
θ

=
−

. As the result of Marshall and Olkin [7], an optimal hyperplane 

( , )F a b∗ ∗ exists, and can be determined by solving the convex second order cone 

optimization problem, with complexity similar to SVM [6]: 

1 : min . . ( ) 1,T T T
x ya

a a a a s t a x yκ −
∗ = ∑ + ∑ − =  

(4) 

and setting b to the value T T
xb a x a aκ∗ ∗ ∗ ∗ ∗= − ∑ , where a∗  is an optimal solution of 

(3). The optimal worst-case misclassification probability is obtained via 
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(5) 

Learning large margin classifiers [8] has become an active research topic. SVM [6] 
aims to find a hyperplane, which can separate two classes of data with the maximal 
margin. However, this margin is defined in a “local” way, i.e., the margin is exclusively 
determined by some support vectors, whereas all other points are totally irrelevant to 
the decision hyperplane. MPM considers data in a global fashion, while SVM actually 
discards the global information of data including geometric information and the 
statistical trend of data occurrence. Nonlinear decision boundaries can be obtained by 
“Kernel” trick that has been used in support vector machine. 

5   SWS (Strong-to-Weak-to-Strong) Algorithm 

Assume that the binary classifiers are chosen from some hypothesis class H .The 
following natural learning problems arise, 

1. Given a matrix M, find a set binary classifiers h which have small empirical loss. 

2. Given a set of h , find a matrix M which has small empirical loss. 

3. Find both a matrix M and a set h  which have small empirical loss. 

The previous methods have focused mostly on the first problem. Most of these 
works have used predefined output codes, independently of the specific application and 
the learning algorithm. Furthermore, the “decoding” assigns the same weight to each 
learned binary classifier, regardless of its performances. 

The research [3] has mainly concentrated on the code design problem (problem 2). 
However , solving optimization problem (1) is time-consuming. 

 We mainly handle the 3rd problem. However it is so hard to solve the designing 
problem not to mention finding a “good” classifier and a wonderful output codes 
simultaneously by using general optimization methods. Therefore a heuristic algorithm 
has been proposed instead of solving directly the optimization problem (1). 

In our framework SWS (Strong-to-Weak-to-Strong), we generalize the notion of 
“weak” algorithm [9]. We can view an algorithm with less iterative step of optimization 
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as a “weak” algorithm and make use of the kernel trick for “weak” algorithm to work in 
high dimensional spaces, finally improve the performances. 

The model of SWS and the heuristic algorithm make it realizable to solve both 
problems mentioned above with acceptable complexion. 

Recently a number of powerful kernel-based learning machines, e.g. SVM [6], 
Kernel Fisher Discriminant [10] and Kernel Principal Component [11], have been 
proposed. In KPCA, kernel serves as preprocessing while in SVM kernel has effect on 
classification in the middle of process. 

There could be two stages for kernel to affect the result of our algorithm. The first is 
in the middle of process as it behaves in SVM. The second is where algorithm 
transforms several weak classifiers to a strong classifier. For simplicity, from now on, 

we do not make any distinction between two kernels and transformationφ . 

5.1   Strong-to-Weak Stage 

We use l  MPMs as binary classifiers and initially predefine different partitions of the 
set of the labels, on which l  binary weak classifiers are based. 

In the Strong-to-Weak stage, we transform “Strong” classifier to “Weak” classifier 
by equipping less iterative number of optimization while preserving its characteristics 
like large margin and geometric properties. 

On one hand, it significantly decreases total time-consuming in the case of large 
numbers of classes because each classifier needs less iterative step of optimization. 

On the other hand, our algorithm takes the geometric difference of classes into 
account while other methods ignore the difference because MPM uses Mahalanobis 
distance that involves geometric information. Therefore SWS preserves the 
characteristics. 

While the algorithm faces the problem with small data sets, estimation errors in the 
means and covariances of the classes would affect the results. Based on our 
experiments, we found that adding a regularization term [4] of a classical form has less 
effect and is sensitive to choices of the parameters. Thus we used some filter methods 
and found that resample method was well done. 

Therefore we are able to use a simple iterative least-squares approach [4] with less 
iterative step to solve the kernelization version of problem (4) and train the binary 
classifiers because the algorithm only requires “Weak” learning algorithms. 

5.2   Weak-to-Strong Stage 

In the Weak-to-Strong stage, we make use of the kernel trick for “Weak” algorithm to 
work in high dimensional spaces and finally improve the performances. Multiclass 
classifier obtained in our algorithm becomes a much more “Strong” learning algorithm 
according to the classification performance. 

A few previous heuristics attempting [12] to modify the output codes were 
suggested. However, they did not yield significant improvements. Unlike those 
methods, our algorithm implements implicit update in high dimensional spaces by 

using a transformation : l Zφ →\ . And the output codes update implicitly occurs in 

final discrimination from (2): 
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{ },( ) arg max{ ( ( ), )} arg max ( ( ), ( ))
update
r i r iir r

H x K h x M K h x h xγ= = ∑  (6) 

We notice that the saddle point from optimization problem (1) we are seeking is a 
minimum for the primal variables with respect to iζ . We can get 

, 1, . . 1 1 0iyi ii r
r

i e andη γ γ= ≤ ⋅ =∑  (7) 

And 1 iy may be viewed as the correct point distribution, ,i rη  could be viewed as the 

distribution obtained by the algorithm over the labels for each example. Then we can 

view iγ as the difference between the former and the later. It is natural to say that an 

example ix affects the solution (6) if and only if iη is not a point distribution 

concentrating on the correct label iy . Further we can say that only the questionable 

points contribute to the learning process and regard them as “critical points”. 
We have realized that it is difficult to solve the optimization problem (1) directly. 

What have been mentioned above motivate us to develop a heuristic algorithm to 
solve the problem. We notice that one “critical point” may contribute to more than 
one class while “support vector”[6] contributes to only one class. Further we believe 
that it is limitation with SVM. It is typically assumed that the set of labels has no 
underlying structure, however there exist lots of different relation among category in 
practice especially in the case of document classification. It means that it is 
reasonable that one example makes different contributions to some classes or 
classifiers simultaneously. 

We denote the critical degree by element ,
c
i jB  of a m k×  weight matrix cB . The i th 

training data contributes to the j th class with degree ,
c
i jB and row c

iB of weight matrix 

is approximation of iγ . Note that we need a partition of l classifiers into k sets ( l k≠ ). 

That is to say elements of each set correspond one certain class not one classifier. There 
are two confidence matrices: :cW m k× , whose elements are confidences of examples 

to classes, and :mW m l× , whose elements are confidences of examples to classifiers. 

Row c
iW of confidence matrix is approximation of iη . We can easily obtain cW  from 

mW that can be directly constructed according to margin magnitude ( )Ta x b− . 

Therefore we can construct cB  from cW as shown in Fig. 2. For simplicity, from now 
on, we do not make any distinction between cW  and mW . We call them as confidence 

matrix. Especially c mW W=  if l=k. We then propose a heuristic strategy using vector 
cV whose elements are probability outputs of MPMs in Fig. 1 and example margin to 

build confidence matrix whose elements are feasible solution to the optimization 
problem (1), further to construct weight matrix. 

The algorithm enforces that each row of weight matrix satisfies the constraint (7). It 
is easy to verify rationality of these approximations for probability and margin indicate 
contributive degree of an example to a class as ,i rη  behaves. 
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Fig. 1. Algorithm description of constructing confidence matrix. Note: 
c
jV

 has been normalized. 

 
Fig. 2. Algorithm description of constructing weight matrix 

One can obtain worst-case bound on the probability of misclassification of future 
data in MPM. This probability belongs to one binary classifier and each training data x 
classified by a certain binary classifier has a corresponding margin magnitude in Fig. 1. 
If this point can be correctly predicted by a classifier jh , corresponding element of 

confidence matrix should be T T
ja x b− (positive), otherwise this element should be zero 

that indicates the point rejects the class except for one case, where we should set this 
element to be T T

ja x b−  (negative) if no classifiers can correctly predict the 

corresponding point. Although the value is negative, it actually carries available 
information that could predict one class, to which this point most possibly belongs. 
Once all conditions above are available, for each class we pick some maximal negative 
(their absolute value are small), which indicate that corresponding data reject the class 
with least degree, from each column of this matrix according to a predefined parameter 
that controls tolerance level of class to errors if there are some negative in this column. 
Then algorithm removes all other negative in the same column and adds absolute value 
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of the smallest negative chosen to all the non-zero elements in the same column. We get 
maximal value in each column and subtract each non-zero element in the same column 
from this maximal value. Then we choose some elements, whose corresponding data 
are ‘critical points’ in descending order according to a parameter that controls 
sparseness, then construct weight matrix in Fig. 2. We make the matrix elements satisfy 
the constraint (7). In addition, one can find underlying patterns among classes through 
relation between data and classes. 

After training and constructing weight matrix, one can predicate a label given an 
instance: 

{ },( ) arg max ( ( ), ( ))c
i r iir

H x B K h x h x= ∑  (8) 

6   Experiments 

In our experiment we set l k= , i.e. one-against-rest method that is less competitive as 
shown in most researches [13,14]. However our experiments report that better 
performances can be achieved although using one-against-rest method. We use tf×idf 
and feature selection based on information gained to build training and test data. 

The following experiment compares the performance of the new algorithm with five 
conventional learning methods commonly used for text categorization. 

The empirical evaluation is done on the “ModApte” spite of the Reuters-21578 
dataset that was compiled by Lewis at AT&T. The ModApte spite, which has 12,902 
stories and the average length of 200 words, leads to a corpus of 9603 training stories 
(75% of the total) and 3299 test stories (25% of the total). Of the 135 potential topic 
categories only those 90 are used for that reason that there is at least one training and 
one test example, after preprocessing the training corpus, containing 9962 distinct 
terms. 

We try to replicate the experimental setup in [15, 16], and the best results of all the 
methods are described in Table 1. Table 2 displays the results of using different 
iterative steps of optimization for “Weak” algorithm. 

Table 1. Precision/recall-breakeven point on the ten largest categories 

 Bayes Rocchio C4.5 k-NN SVM SWS 
Earn 95.9 96.1 96.1 97.3 98.5 98.0 
Acq 91.5 92.1 85.3 92.0 95.4 93.5 
Money-fx 62.9 67.6 69.4 78.2 76.3 82.5 
Grain 72.5 79.5 89.1 82.2 93.1 92.5 
Crude 81.0 81.5 75.5 85.7 89.0 89.2 
Trade 50.0 77.4 59.2 77.4 78.0 82.1 
Interest 58.0 72.5 49.1 74.0 76.2 79.3 
Ship 78.7 83.1 80.9 79.2 87.6 89.1 
Wheat 60.6 79.4 85.5 76.6 85.9 86.6 
Corn 47.3 62.2 87.7 77.9 85.7 90.3 
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Table 2. Precision/recall-breakeven point with various iterative numbers of weak algorithm 

Iterative numbers 5 10 30 50 100 150 
Earn 98.0 98.0 98.0 98.0 98.0 98.0 
Acq 92.7 93.5 93.5 93.5 93.5 93.5 
Money-fx 81.2 82.5 82.5 82.5 81.5 81.7 
Grain 91.0 92.5 92.5 92.5 92.5 90.0 
Crude 88.3 89.2 89.2 89.2 89.2 87.5 
Trade 82.1 82.1 82.1 82.1 79.7 78.0 
Interest 76.2 79.3 79.3 79.3 78.0 76.5 
Ship 89.0 89.1 89.1 89.1 89.1 89.1 
Wheat 86.0 86.6 86.6 86.6 86.1 85.0 
Corn 88.7 90.3 90.3 90.3 90.3 90.3 

Best results can be achieved by choosing 2-degree polynomial kernel in SWS. 
From Table 1 we observe an interesting phenomenon that our algorithm (SWS) 

outperforms others in the case that much poor performances could be achieved by all 
other methods, while in other cases our results are somewhat worse than the best 
performances. 

This phenomenon also inspires us to try to find the reason from the characteristic of 
MPM that considers data in a geometric fashion, while SVM [6] ignores this kind of 
information. As known in chapter 4 MPM uses Mahalanobis distance that involves 
geometric information. It could be the reason that large difference between subspaces 
of classes leads to poor performance. 

It is clear that Table 2 shows the algorithm of SWS can preserve whole 
performances although decreasing total iterative step of optimization. 

7   Conclusion and Future Works 

We have introduced a new method for multiclass problems. Results suggest that our 
algorithm outperforms other algorithms although using one-against-rest strategy. 

The subspace of each category of text is quite different from others. This could be 
the reason why some methods like SVM fail to achieve high performance on some 
“difficult” datasets where subspaces of different categories are quite different. 

Our algorithm takes the geometric difference of classes into account while other 
methods ignore the difference because MPM uses Mahalanobis distance involving 
geometric information. Therefore SWS can improve the performance on some 
“difficult” datasets for taking the different information of subspaces into account. 

Generally there are large numbers of categories in text classification problem. 
Traditional methods are immersed in complex computation. 

Our algorithm achieved acceptable complexion through transforming a “strong” 
learning algorithm to “weak” one. SWS also makes it possible to be insensitive to 
optimization approach, therefore it can use a simple iterative least-squares approach. 

Finally, a nonlinear transformation is utilized to improve the performance. 
These characteristics make our method appropriate for text classification. 
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As we mentioned in section 5, there is a parameter that controls sparseness in the 
algorithm. How to adaptively tune this parameter is an interesting topic for future work. 
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