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Abstract. The shift of interest to web tables in HTML and PDF files,
coupled with the incorporation of table analysis and conversion routines
in commercial desktop document processing software, are likely to turn
table recognition into more of a systems than an algorithmic issue. We
illustrate the transition by some actual examples of web table conversion.
We then suggest that the appropriate target format for table analysis,
whether performed by conventional customized programs or by off-the-
shelf software, is a representation based on the abstract table introduced
by X. Wang in 1996. We show that the Wang model is adequate for
some useful tasks that prove elusive for less explicit representations, and
outline our plans to develop a semi-automated table processing system
to demonstrate this approach. Screen-snaphots of a prototype tool to
allow table mark-up in the style of Wang are also presented.

1 Introduction

Tables have long been widely used for presenting structured information just as
printed forms are widely used for collecting structured information. Few scien-
tific papers are considered complete without a table or two. There are several
government agencies whose main product is tables. Because most of us prefer to
“point-and-click” instead of trudging over to the library, tables available on the
web are of most use and interest.

We note parenthetically that a successful solution to the table recognition
problem will hasten the disappearance of tables, which are in any case an en-
dangered species. Traditional railroad and airplane schedules have already been
replaced by on-line Q/A forms. Five-place trigonometric tables were supplanted
by ten-digit hand-held calculators. The fat volume of values of the binomial dis-
tribution for various n’s, k ’s, and p’s is also gone. The British Royal Commission
on Mathematical Tables disbanded almost fifty years ago.

Old tables may appear on the web in scanned bitmap form, as in back issues
of the Transactions in the IEEE Digital Library. Current information, however,
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is more likely to be posted as PDF or HTML files, and XML tagging is making
headway. Archival material is being gradually converted, most often by manual
data entry. Aside from the shift from raw bitmaps to coded forms, an important
development is the rapid incorporation of table analysis routines into Microsoft
and Adobe software.

Earlier researchers were handicapped by having to build complete low-level
table processing software, including OCR, before they could even think about
putting table recognition to some use. Most of their hard work yielded only
intermediate results. Our purpose here is to initiate discussion on whether we
are now in a position to incorporate table recognition in operational applications.

The paper is organized as follows. After describing our view of low-level table
processing, we will suggest that this step can now be circumvented by judicious
us of common “office” software.1 The inter-conversion between tables in HTML,
PDF, XLM, XLS and DOC files is demonstrated. We then discuss possible ta-
ble representations for bridging the semantic gap that has so far kept table
recognition from being incorporated into routine information retrieval and data
extraction applications. The foundations of a table ontology for organizing our
current understanding of table processing techniques and tools are then sketched.
We conclude by briefly outlining our plans to develop a semi-automated table
processing system to demonstrate the approach we are proposing, and by de-
scribing a prototype tool we have developed for capturing table mark-up in the
style of Wang.

2 Low-Level Table Recognition

Low level table recognition implies table representations that allow the formal
manipulation of tables without any real understanding of their contents. The
“intelligence” comes entirely from the user, who is able to interpret the table
in the context of previously acquired knowledge. In Table 1, it is easy to tell
that the average “hepth” of “fleck” is approximately 233 “gd,” but this does not
readily connect with any other piece of generally known information.

Even low-level table recognition requires some analysis. Operations such as
computing the average of a row or column of values require, at the minimum, a
geometric model (i.e., a table frame, grid, array model).

Table 1.

gonsity hepth
fleck (ld/gg) (gd)
burlam 1.2 120
falder 2.3 230
multon 2.5 350

Table 2.

goldam 1.3 ld/gg 320 gd
falder 2.3 ld/gg 230 gd
elmer 2.9 ld/gg 350 gd

1 The functionality we will be illustrating is by no means limited to Microsoft Office,
although we use applications from that software suite to illustrate our discussion.
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Fig. 1. Array models for Tables 1 and 2

Fig. 2. Array models for more complex tables

For Tables 1 and 2, the model is simple, as shown in Fig. 1. Other tables, with
spanning top or side headers, may require merging cells. While all WFT (well-
formed table) layouts are topologically equivalent to an array model derived by
merging sets of adjacent cells in a regular grid, some models, like the one on the
far right in Fig. 2, seem implausible because larger cells are generally above or
to the left of smaller cells. We note, however, that a table author may indeed
choose to use such a layout to emphasize that a set of columns share a common
value in a given row.

Deriving the appropriate array model for a table with multi-line cells with-
out complete rulings has proved difficult. In the last 15 years, over 200 research
papers have been published on table recognition [1, 2, 3, 4, 5]. Most published al-
gorithms for cell alignment treat the table as a 2-D array of cells, and attempt
to identify the coordinates and contents of each cell. Methods vary depending
on whether the table is in scanned bitmap or coded (ASCII, HTML, RTF, PDF)
form, ruled, partially ruled or unruled, and on the amount of prior information
(including both “external” knowledge base and training data) available. Further-
more, some methods make use only of the layout geometry, while others bring
in font, style, lexical and syntactic information extracted from the textual cell
contents.

3 Commercial Software

We will demonstrate some of the content-preserving table conversion routines
that have been built into Microsoft and Adobe desk-top software. Consider the
table appearing in Fig. 3, Country Data Codes, rendered by Microsoft Explorer.
(FIPS 10-4 codes are intended for general use throughout the US Government.
ISO 3166 codes are activities involving exchange of data with international or-
ganizations. The Internet country code is the two-letter digraph used by the In-
ternet Assigned Numbers Authority, IANA.) Recent versions of Microsoft Word
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Fig. 3. Table as rendered by Microsoft Internet Explorer 6.0

Fig. 4. Table copied into Microsoft Word 10.2

are able to copy this table it into a .doc format file without evident loss of infor-
mation, as seen in Fig. 4. Word is more accurate in this respect than Wordpad,
we have found.

From MS-Word, any table can be loaded into MS-Excel, which is a reasonable
choice for either automated or interactive cell-level manipulation (cf. Fig. 5).
Furthermore, Excel has built-in export routines for transferring the table to a
database management system (Microsoft Access).

If the table appeared originally as ASCII text, as it might in an email, it
would look like Fig. 6. This tab-separated text file can also be loaded into the
spreadsheet program without loss of any layout information.

Another popular file format is Adobe’s Portable Document Format, which
is essentially enhanced PostScript. Fig. 7 was extracted from a PDF document
posted on the website of the Bureau of Labor Statistics. It was then saved using
the Adobe Acrobat “table picker” function with the XML tags added. We have
not yet been able to automate the recovery of table structure from either PDF
or XML, however the prototype tool we shall describe later provides support to
facilitate human mark-up of the structure of tables encoded in HTML. Some
researchers claim that recovering layout from PDF is done most easily from a
rendered pixel map!
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Fig. 5. Table copied from Microsoft Word into Microsoft Excel 10.2

Entity FIPS 10-4 ISO 3166 Internet Comment
Afghanistan AF AF AFG 004 .af
Albania AL AL ALB 008 .al
Algeria AG DZ DZA 012 .dz
American Samoa AQ AS ASM 016 .as

Fig. 6. ASCII version of the table

Fig. 7. Table rendered from a PDF file

4 High-Level Table Recognition

Some of the important applications of high-level table recognition are:

– Recreate an equivalent table for human reading by changing the spacing or
the font, or by interchanging the rows and columns.
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– Enter the attribute-value pairs (e.g., {(fleck , burlam), (gonsity,1.2 ), (hepth,
120)}) into a relational database, and re-frame queries in SQL.

– Combine several tables, or extend a selected table by adding information
from another table. For example, we could discover that the gonsity of fleck
oltan is 2.7 ld/gg, and its hepth is 100 gd, and add this row to Table 1.

– Compare several tables to determine if all or some entries are identical.
– Create conceptual models or ontologies from a large number of tables with

interlocking entries. Having seen Table 1, clever software could derive a new
average hepth of fleck (300 gd) from Table 2, or an average for all five fleck
(274 gd) by combining the two tables. We will discuss below the distant but
tantalizing possibility of machine understanding of tables.

An issue that keeps recurring in our on-going surveys of table recognition [1,
3, 4] is what should be the output of a table interpretation program. Specific
output formats differ widely, but many are equivalent to a spreadsheet where
cell contents can be addressed by coordinates. The more advanced methods allow
addressing each cell by its row or column header.

The low-level array model is inadequate for answering some queries. The
array model is identical for Tables 3 and 4 below. In order to take advantage of
the headers in Table 3, it is necessary to first recognize that they are headers
and to incorporate them in a higher-level table representation. We therefore
attempt to go beyond the current output conventions, along the lines laid out
by X. Wang [6] (who was interested in the description and manipulation of tables
as abstract data types, not in table recognition). In the case of spanning cells,
the row and headers form multiple trees. This is captured neatly by the Wang
notation. The number of tree-paths necessary to specify a content cell is called
the dimensionality of the table. (The number of content cells, in contrast, is the
size of the table.) We stop short of claiming “semantic” interpretation, which is
a murky concept in our view.

Table 3.

gonsity hepth
fleck (ld/gg) (gd)
burlam 1.2 120
falder 2.3 230
multon 2.5 350

Table 4.

gonsity hepth
fleck (ld/gg) (gd)
burlam 1.2 120
falder 2.3 230
multon 2.5 350

Very informally, the Wang Model consists of two components (C, δ), where C
is a finite set of labeled domains (or categories), and δ is a mapping from the
tree paths labels (or headers) to the possible values. We give the flavor with two
examples.

The Wang Model for Table 3 is:

C =
{

(fleck, {(bulram, φ), (falder, φ), (multon, φ)})
(characteristic, {(gonsity, φ), (hepth, φ)}) (1)
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δ =

⎧⎪⎪⎨
⎪⎪⎩

({fleck.burlam, characteristic.gonsity}) → 1.2
({fleck.falder, characteristic.gonsity}) → 2.3
. . .
({fleck.multon, characteristic.hepth}) → 350

(2)

Note that “characteristic” does not appear in the table at all: we had to invent
it in order to provide a root (i.e., a spanning label) for the column-header tree
paths to the content cell entries! We call such imputed headers implicit headers.
The absence of explicit headers is the major difference between high-level and
low-level table interpretation. The experienced reader is able to infer them, but
it is not easy to devise a robust algorithm that can infer them. The situation is
even worse in Table 4, where both implicit headers are missing.

Consider now the more complex table shown in Fig. 7. Here we need a span-
ning label for “BLS projections” and “Standards of comparison.” Let us call this
“BLS/STD.” Then there are three categories:

C =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Age, {(Gender age, φ), (Men age, φ), (Women age, φ)})
(BLS projections, φ)
(BLS/STD (Standards of comparison (Actual population and−

{(BLS participation rate, φ), (1988 participation rate, φ)})))
(BLS/STD (Standards of comparison (Census populations

estimate and−, {(1988 participation rate, φ)})))
(3)

Note that there are two identical column headers called “1988 participation
rate.” Therefore we need to differentiate the “actual population” and the “1988
participation rates” from the “census population estimates” and the “1988 par-
ticipation rates.” Not an easy table to understand for human or machine! Once
the correct label structure is derived, however, the tree-path specifications of the
content values are straightforward.

If the logical structure is described completely, i.e., all the headers are present
and have been clearly identified, and the geometric structure is specified (say in
Excel, with merged cells of the fundamental grid), then it is not difficult to devise
an algorithm to obtain a Wang Model of the target table. Such a model fills most
of the needs listed at the beginning of this section. It does not, however, imply
any true understanding. For instance, even if we know that burlam has only
about half the gonsity and hepth of falder, we may not know which is better
suited for some purpose, or whether one is likely to be more expensive than the
other.

5 External Information

Useful information can often be derived from the text, graphics, or other ta-
bles in the same or related documents as the target table. Currently, this is
considered outside the domain of table processing, though several research pa-
pers have began to explore the topic [7, 8]. Table captions are similar to nearby



Notes on Contemporary Table Recognition 171

ancillary information. They do not directly affect the physical or logical structure
of the table. Some of the tasks listed above can be readily performed without
considering captions.

Footnotes are also often neglected. Wang considers this the greatest shortcom-
ing of her model, because nearly half of the tables she collected had footnotes.
From our perspective, however, a footnote is simply cell content that exceeds
the physical size of the cell. Footnotes can refer to either header or content cells.

The really important external information is that which does not appear
anywhere in the vicinity of the table, but forms part of the users knowledge
base. It is possible, however, that such a knowledge base can be assembled from
studying a large collection of diverse but related tables. This, in fact, is one of
our long term research objectives [9–11].

6 Components of a Table Ontology

Table recognition is a fast-moving target. To keep up with current and future
developments, we believe that it is time to assemble the various ideas and tools so
that they can be utilized and updated effectively. We believe that the appropriate
conceptual and organizational framework for this purpose is an ontology, because
an ontology is capable of representing a very broad class of relationships and is
essentially open to new constituents and relationships. Some of the components
that should be included in any table ontology are listed below.

– Table spotting, location, isolation, demarcation and classification
– Recognition of within-document and external references, including titles,

captions, footnotes and citations
– Frame or border detection (box surrounding table)

• Vertical rules
• Horizontal rules
• Line thickness, style, color

– Layout analysis to recover underlying array model
• Ruled, partially ruled, unruled tables
• White-space analysis
• Horizontal text-line segmentationandalignment (single andmultiple lines)
• Vertical text alignment (justification, indentation, centering)

– Font analysis
• Type size
• Typeface (at least font family), color
• Style (bold, italic, sub/superscript)
• Case (capitalization)
• Code translation or OCR

– Determination of cell-content similarities and affinities according to
• Geometry (alignment, size)
• Typography (type size and face)
• Lexical category (words, phrases, commensurable decimal/integer values,

abbreviations, units)
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• Grammatical construct (part of speech)
• Semantics (to the extent possible)

– Extraction and codification of cell contents
• Common and proper nouns (dictionaries and directories)
• Phrases
• Numeric fields (cardinal, ordinal, interval, integer, decimal)
• Common data types (date, time, address, telephone number, email)
• Punctuation (ellipsis, parenthesis, hyphen, comma)
• Special symbols ($, ditto marks, leaders)

– Construction of logical table interpretation as a Wang Model or equivalent
data structure

7 Work in Progress

In this paper we have laid the foundation for work that is still very much in
progress. Our goal — which we shall demonstrate at least in part at the DAS
workshop — is to explore an area of table understanding that has hitherto re-
mained unexamined: the transformation of table data presented in a simple array
model to its full Wang representation. This is perhaps best illustrated in Fig. 8,
where we show the most common formats for encoding tables, transitions be-
tween formats that are adequately supported by current commercial software
solutions (solid arrows), transitions that have been the subject of much past re-
search (thin dashed arrows), and the research we are targeting (the thick dashed
arrow in the lower center of the figure).

Fig. 8. Existing table conversion software. Solid arrows indicate available commercial
software. Thin dashed arrows show focus of past research systems. Thick dashed arrow
shows planned research.
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Fig. 9. Screen snapshot of a tool for supporting Wang-style table mark-up

We are currently in the process of implementing a graphical mark-up tool
to semi-automate data capture from web tables, transforming a table in cell
array format into its Wang Model. Our operating hypothesis is that this ap-
proach, like past experience with Computer Assisted Visual Interactive Recog-
nition (CAVIAR) [12, 13], will be both more accurate than a fully automated
system while at the same time faster than an unaided human. This work is in-
tended, of course, to be a first step towards the ultimate goal of autonomous
table understanding.

Figures 9 and 10 show screen snapshots of our prototype which is written in
Tcl/Tk, a popular scripting language for developing user interfaces. The table in
Figure 9 should look familiar as it is simply the table from Figure 7 re-rendered
in HTML, the input format used by our tool. The table in Figure 10 is the
canonical example of a 3-D table used by Wang in her thesis [6].

Given an input table, the user first annotates the category structure, which
consists of a set of trees specifying the row and column headers. Each logical
dimension of the table corresponds to a single tree: the table in Figures 9 is
2-D, while Figure 10 shows a 3-D table. Note that every data cell in the table
is uniquely specified (indexed) by a set of paths from the root of a tree to a
leaf: one such path for each tree. After specifying the category trees, the user
then populates the nodes by first clicking on the appropriate cell in the input
table and then on the tree node that represents it. Once the category trees are
completely populated, the mapping from sets of paths to individual data cells
can be stepped through, one by one, with the user selecting at each step the
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Fig. 10. Another example of Wang-style mark-up created using our prototype tool

appropriate cell in the input table. The tool then outputs the marked-up table
in HTML format, with additional tags encoding the Wang structure.

While still just a prototype, this approach appears to be quite effective: the
editing time for an expert user to create the annotation shown in Figure 9
was less than 30 seconds, requiring a total of 18 mouse-clicks. The larger, more
complicated table in Figure 10, on the other hand, needed two minutes and 40
seconds and 116 mouse-clicks. We continue to work, of course, on refining our
tool and plan more extensive user studies in the near future.

We close by citing some other recent developments that appear promising. The
work by Pivk, et al. presents an approach for generating F-Logic frames from
web tables which can then be used to populate ontologies [14]. They develop
not only the methodology, but also an unusually thorough evaluation paradigm.
Zanibbi, et al. present a language for representing table recognition strategies
which exposes previously hidden assumptions buried within an implementation
and offers to shed new light on the decision making process during table process-
ing [15]. Both of these efforts relate to our own.
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