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Abstract. We show three linear time algorithms for constructing planar straight-
line grid drawings of outerplanar graphs. The first and the second algorithm are
for balanced outerplanar graphs. Both require linear area. The drawings produced
by the first algorithm are not outerplanar while those produced by the second
algorithm are. On the other hand, the first algorithm constructs drawings with
better angular resolution. The third algorithm constructs outerplanar drawings of
general outerplanar graphs with O(n1.48) area. Further, we study the interplay
between the area requirements of the drawings of an outerplanar graph and the
area requirements of a special class of drawings of its dual tree.

1 Introduction

Straight-line drawings of planar graphs have been studied by several authors and consti-
tute one of the main fields of investigation in Graph Drawing. Groundbreaking works of
the end of the 20th Century [5, 13, 4] have shown that a planar graph with n vertices has
a planar straight-line drawing with integer coordinates (“grid” drawing) with O(n2)
area. Further, it has been shown [12] that there exist graphs that, for such drawings,
require quadratic area.

Planar straight-line grid drawings have also been studied for subclasses of planar
graphs, looking for subquadratic area bounds. For example a linear area algorithm for
drawing binary trees with arbitrary aspect ratio has been shown in [8].

Another subclass of planar graphs that attracted research work in this field is the
one of the outerplanar graphs. An outerplanar graph is a planar graph that has a planar
drawing such that all its vertices are on the outer face. The dual graph of an outerplanar
graph is a tree (but for the outer face). Garg and Rusu [9] proved that an n-vertex
outerplanar graph has a planar straight-line grid drawing with O(d ·n1.48) area, where d
is the maximum degree of the vertices of the graph. Biedl [1] conjectured that O(n lg n)
area is sufficient for such graphs.

In [10, 2] are presented algorithms for constructing straight-line drawings with ver-
tices in general position.

Outerplanar graphs have been studied also with respect to other types of drawings.
In [1] and in [11] are presented algorithms to construct planar polyline drawings with
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O(n log n) area and O(d · n) area, respectively. An algorithm for constructing in three
dimensions straight-line drawings with linear volume is presented in [7].

In this paper we present the following results. They always refer to planar straight-
line grid drawings. We show (Section 3) a linear time algorithm for constructing non-
outerplanar drawings of balanced outerplanar graphs in linear area and with angular
resolution ≥ c√

n
, with c constant. A balanced outerplanar graph is such that its dual

tree is balanced. We define a new type of drawings of binary trees, called star-shaped
drawings (Section 4). We show that, given a drawing of an outerplanar graph it can
be found a star-shaped drawing of its dual tree with the same area bound. Conversely,
given a star-shaped drawing of a binary tree it can be found a drawing of its dual out-
erplanar graph with the same area bound but for the placement of two special vertices.
Based on such correspondence, we show a linear time algorithm for drawing a balanced
outerplanar graph in linear area (Section 4). The drawings obtained with this algorithm
are outerplanar, but the angular resolution is worse with respect to the algorithm of Sec-
tion 3. Again, based on the above correspondence and exploiting a decomposition tech-
nique of binary trees presented in [3], we show a linear time algorithm for constructing
outerplanar drawings of general outerplanar graphs with O(n1.48) area (Section 5).

2 Preliminaries

We assume familiarity with Graph Drawing (see e.g. [6]).
An outerplanar graph is a planar graph that has a planar drawing with all its vertices

on the same (say outer) face. Such a drawing is called outerplanar drawing. In this
paper we deal with outerplanar graphs that are also biconnected. However, this is not a
limitation since an outerplanar graph can be always augmented with a linear number of
extra edges to a biconnected outerplanar graph. Hence, the algorithms and theorems we
present can be applied also to general outerplanar graphs after a simple preprocessing
step that does not alter the number of vertices of the graph.

We define the dual graph of an outerplanar graph G as follows. The vertices of the
dual graph are the faces of G, with the exception of the outer face that is not associated
to any vertex of the dual of G. Two vertices f1 and f2 of the dual graph sharing an
edge of G are connected, in the dual graph, by edge (f1, f2). The dual graph of an
outerplanar graph is always a tree. Hence, in the following we call it dual tree.

A maximal outerplanar graph is an outerplanar graph such that all its faces but,
eventually, the outer face are composed by three edges. Note that any outerplanar graph
can be augmented to a maximal outerplanar by adding extra edges. The vertices of the
dual graph of a maximal outerplanar graph have degree at most three. From now on,
unless otherwise specified, we assume that outerplanar graphs are maximal.

We can select an edge (u, v) of the outer face of an outerplanar graph G and root the
dual tree T of G at the internal face r containing (u, v). Let w be the third vertex of r.
We call vertices u and v poles and vertex w central vertex. We also call u left vertex and
v right vertex. Consider a face f of T and suppose that f is composed in G by edges
(v1, v2), (v2, v3), and (v3, v1), in this clockwise order around f . Also, suppose that the
parent of f in T and f share edge (v1, v2) or that (f is the root) (v1, v2) = (u, v). The
face sharing with f (if any) edge (v3, v1) is the left child of f , while the face sharing
with f (if any) edge (v2, v3) is the right child of f . We obtain a binary tree.
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A balanced outerplanar graph is an outerplanar graph whose dual tree can be rooted
to a balanced binary tree. The height of an outerplanar graph is the number of nodes on
the longest path of its dual tree from the root to a leaf. A complete outerplanar graph
is an outerplanar graph whose dual tree is a complete binary tree. A grid drawing of
a graph is such that all its vertices have integer coordinates. A straight-line drawing is
such that all edges are rectilinear segments. Let Γ be a straight-line grid drawing and
consider the smallest rectangle B(Γ ) with sides parallel to the x- and y-axes that covers
Γ completely. We call B(Γ ) the bounding box of Γ . We denote with b(Γ ), t(Γ ), l(Γ )
and r(Γ ) the bottom, top, left and right side of B(Γ ), respectively. The height (width)
of Γ is one plus the height (width) of B(Γ ). The area of Γ is the height of Γ multiplied
by its width.

3 Non-outerplanar Drawings of Balanced Outerplanar Graphs

We call Gh a complete outerplanar graph with height h, Th its dual tree, and Γh its
planar straight-line grid drawing. Let also uh, vh and wh be the left vertex, the right
vertex and the central vertex of Gh, respectively.

We show an inductive algorithm to draw complete outerplanar graphs. Base case:
if h = 1, then place u1 in (0, 0), v1 in (1, 1) and w1 in (1, 0). Inductive case: if
h > 1, suppose you have drawn Γh−1; let r be the line through vh−1 and wh−1, let
b be the line through uh−1 and vh−1 and let a be the line parallel to and at horizontal
distance one unit from r, in the opposite side of the drawing with respect to r. Shift
uh−1 and vh−1 along b of one horizontal unit, moving away from Γh−1. Now mirror the
modified drawing Γh−1 with respect to a. Insert the edge from uh−1 to its symmetric
vertex, say z. Let uh = uh−1, vh = z and wh = vh−1. Examples of the drawings
produced by the algorithm are shown in Fig. 1. Showing the planarity of the obtained
drawings is trivially done by induction. Now we analyze their area requirement. Let
heighth and widthh be the height and the width of Γh, respectively. We distinguish
two cases. h is even: it’s easy to see that heighth−1 = 2 · heighth−2 + 1 and that
heighth = heighth−1 + 2. So we have heighth = 2 · heighth−2 + 3. Hence we
obtain:

heighth = . . . (((height2 ·2 + 3) · 2 + 3) . . . · 2 + 3
︸ ︷︷ ︸

h−2
2 times

= height2 ·2 h−2
2 +3 ·2 h−4

2 +

3 · 2
h−6

2 + . . . + 3. Let m = h−2
2 ; replacing height2 with its value 4 we obtain:

heighth = 4 · 2m + 3 · 2m−1 + 3 · 2m−2 + . . . + 3 = 4 · 2m + 3 · (2m−1 + 2m−2 +
. . . + 1) = 4 · 2m + 3 · (2m − 1) = 7 · 2m − 3 = 7 · 2

h−2
2 − 3 = 7

2 · 2
h
2 − 3 =

7
2 · 2(lg n)

1
2 − 3 = 7

2 · n
1
2 − 3 = 7

2 ·
√

n − 3 = O(n
1
2 ). It’s easy to see that: widthh =

2 ·heighth −1 = 7 ·
√

n−7 = O(n
1
2 ). If h is odd, using heighth = 2 ·heighth−1+1

we obtain: heighth =
(

7
2 · 2 h−1

2 − 3
)

· 2 + 1 = 7√
2

· 2
h
2 − 5 = 7√

2
· 2(lg n)

1
2 − 5 =

7√
2

·
√

n − 5 = O(n
1
2 ). It’s easy to see that the width is equal to the height, hence we

have: widthh = 7√
2

·
√

n − 5 = O(n
1
2 ).

About the angular resolution, let uh be the left vertex of Gh. Recall that uh−1 = uh.
Passing from Gh−1 to Gh the number of the neighbours of uh−1 increases by one,
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(a) (b)

Fig. 1. Applications of the algorithm in Section 3. (a) Γ4. (b) Γ5.

beacuse of the insertion in Γh of the symmetric vertex of uh−1. Let m (t) be the largest
odd (even) integer ≤ h. We can prove by induction that the smallest angle in the drawing
is φ, the angle between half-lines a and b starting at uh and passing respectively through
va, the neighbour of uh inserted in Γm, and through vb, the neighbour of uh inserted
in Γm−2. Let c be the half-line starting at uh and passing through vc, the neighbour of
uh inserted in Γt. Let vd be the intersection point between a and the line through vb

and orthogonal to a. Let ve be the intersection point between c and the line through vb

and orthogonal to c. Let R1 be the triangle whose vertices are uh, vb and ve. We denote
with ah, bh and ch the lengths of the segments vbve, uhve and uhvb, respectively. Note
that, by construction, bh = ah + 1. Now suppose h is odd; following the construction
of the algorithm we obtain ah = 2 · ah−2 + 4 and solving the recurrence equation
we obtain ah = 7

2 · 2
h−1
2 − 4. Hence bh = 7

2 · 2
h−1
2 − 3. Applying the Pythagorean

theorem to R1 we obtain ch =
√

a2
h + b2

h =
√

49
4 · 2h − 49 · 2

h−1
2 + 25. Observing

that vbvd =
√

2
2 , for every h, we finally obtain: φ ≈ sin φ =

√
2

2
�

49
4 ·2h−49·2 h−1

2 +25
>

c · 2−h/2 = c√
n
, where c is a constant. If h is even, in a similar way we obtain:φ ≈

sin φ =
√

2

2
�

49
8 ·2h− 35

2 ·2 h
2 +13

> c · 2−h/2 = c√
n
, where c is a constant. From the above

discussion and from the fact that a balanced outerplanar graph can be augmented to
complete without altering its height we have:

Theorem 1. Given an n-vertex balanced outerplanar graph G with height h, there
exists an O(n) time algorithm that constructs a planar straight-line grid drawing Γ of
G such that: (i) if h is even, then the height of Γ is 7

2

√
n − 3 and its width is 7

√
n − 7;

(ii) if h is odd, then the height of Γ is 7√
2

√
n − 5 and its width is 7√

2

√
n − 5; (iii) the

angular resolution of Γ is greater than c√
n

, with c constant; (iv) if G is complete, then
isomorphic subgraphs of G have congruent drawings in Γ up to a translation and a
reflection; and (v) if G is complete, then Γ is axially symmetric.

4 Outerplanar Drawings and Star-Shaped Drawings

Let T be a binary tree rooted at r. The leftmost (rightmost) path of T is the path
v0, v1, . . . , vm such that v0 = r, vi+1 is the left (right) child of vi, ∀i such that 0 ≤
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i ≤ m − 1, and vm doesn’t have a left (right) child. The outer-left set (outer-right set)
of a planar straight-line drawing Γ of T is the set of points with integer coordinates
from which we can draw edges to each one of the nodes of the leftmost (rightmost)
path of T without crossing Γ . The left-right (right-left) path of a node n ∈ T is the
path v0, v1, . . . , vm such that v0 = n, v1 is the left (right) child of v0, vi+1 is the right
(left) child of vi, ∀i such that 1 ≤ i ≤ m − 1, and vm doesn’t have a right (left) child.
The left polygon of the neighbours (right polygon of the neighbours) of a node n ∈ T
is the polygon of the segments representing in Γ the edges of the left-right path (of the
right-left path) plus an extra segment connecting vm and v0.

A planar straight-line order-preserving drawing Γ of T is star-shaped if all the fol-
lowing conditions are satisfied. (1) For each node n ∈ T its left (right) polygon of
neighbours Pl = (n, v1, . . . , vm) (Pr = (n, v1, . . . , vm)) is a simple polygon and each
segment (n, vi), 2 ≤ i ≤ m − 1 belongs to the interior of Pl (Pr), but for its endpoints
n and vi. (2) For each pair of nodes n1, n2 ∈ T the left polygon of neighbours or the
right polygon of neighbours of n1 does not intersect with the left polygon of neighbours
or with the right polygon of neighbours of n2, but, possibly, at common endpoints or
at common edges. (3) There exist point pl in the outer-left set of T and point pr in the
outer-right set of T such that segment (pl, pr) doesn’t intersect any edge of Γ .

Given a drawing Γ of an outerplanar graph we call internal subdrawing the drawing
obtained by deleting from Γ its poles and their incident edges.

Lemma 1. Let G be an n-vertex outerplanar graph such that its dual tree T has a
star-shaped drawing with f(n) area. We have that G has an outerplanar straight-line
drawing such that the area of its internal subdrawing is f(n).

Lemma 2. Let G be an n-vertex outerplanar graph that has an outerplanar straight-
line drawing with f(n) area. We have that its dual tree T has a planar star-shaped
straight-line drawing with an area that is at most f(n).

To prove the above lemmas we first establish a correspondence γ between the ver-
tices of G and the nodes of T , so that for each node n ∈ T there is one and only
one vertex v of G such that γ(n) = v and for each vertex v ∈ G, but for the poles,
there is one and only one node n ∈ T such that γ−1(v) = n. Consider a subtree of T
rooted at n. Suppose that (vl, vc) is the edge of G dual to the edge connecting n to its
left child (if any). Analogously, suppose that (vr, vc) is the edge of G dual to the edge
connecting n to its right child (if any). We set γ(n) = vc. Now, suppose you have a
planar star-shaped straight-line grid drawing Γ of T . Map each vertex v of G, but for
its poles, to the point where the node n such that γ−1(v) = n is drawn. Map the left
vertex ul of G to a point pl of the outer-left set and the right vertex vr of G in a point
pr of the outer-right set so that the edge (pl, pr) doesn’t intersect any of the edges of
T . Draw the edges from ul to each vertex on the leftmost path of T and the edges from
vr to each vertex on the rightmost path of T . Draw the edge (ul, vr). By Condition (3)
in the definition of star-shaped drawing and by the definitions of outer-left set and of
outer-right set, pl and pr exist and their incident edges don’t intersect Γ . For each node
n (and so for each vertex v = γ(n)) draw edges to each vertex on its left-right path and
to each vertex on its right-left path. Because of Condition 1 and 2 in the definition of
star-shaped drawing each of such segments doesn’t intersect any other segment of the
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drawing. The drawing obtained after these insertions is an outerplanar straight-line grid
drawing of G as a consequence of the construction and of the correspondence between
vertices of G and nodes of T . We have also just seen that each step preserves the initial
planarity. The area bound of Lemma 1 is easily obtained by observing that the vertices
of G (but the poles) and the nodes of T have exactly the same coordinates.

Now we can start from an outerplanar drawing Φ of G, then we can use again the
correspondence between vertices of G and nodes of T to obtain a star-shaped drawing
of T . Remove from Φ the poles of G. For each vertex v let n be the node of T such
that γ−1(v) = n and let nl and nr be the left and the right child of n, respectively.
Remove all edges incident on v, but those whose second endpoint is a vertex z such
that γ−1(z) = nl or γ−1(z) = nr. We obtain a star-shaped drawing of T : it’s easy to
see that the drawing is planar, straight-line, grid and order-preserving and that all the
conditions of a star-shaped drawing are verified, since the initial drawing Φ is a planar
straight-line grid drawing of G. Again, the area bound of Lemma 2 is easily obtained
by observing that the vertices of G (but the poles) and the nodes of T have exactly the
same coordinates.

We apply the above lemmas to construct a linear area drawing of a complete outer-
planar graph. We denote with Th a complete binary tree, rh its root, and Γh its drawing.
What follows is an inductive algorithm to construct a star-shaped drawing of a com-
plete binary tree. Base case: if h = 1, then place r1 in (0, 0). Inductive case: if h > 1,
suppose you have drawn Γh−1. Now we distiguish two subcases. h is even: let r be the
highest horizontal line such that r intersects Γh−1. Let a be the line above r parallel
to and at vertical distance one unit from r. Let b be the lowest line with slope π

4 with
respect to the x-axis and such that b intersects Γh−1. Mirror Γh−1 with respect to a.
Place rh at the intersection between a and b. Insert the edges from rh to its children. If
h is odd let r be the highest line with slope 3π

4 with respect to the x-axis and such that
r intersects Γh−1. Let a be the line above r parallel to and at vertical distance two units
from r. Let b be the lowest line with slope π

4 with respect to the x-axis and such that b
intersects Γh−1. Mirror Γh−1 respect to a. Translate the new part of the drawing by a
vector (−1, 0). Place rh at the intersection between a and b. Insert the edges from rh to
its children. A drawing produced by the algorithm is shown in Fig. 2.a.

It is easy to see, by induction, that the resulting drawing is star-shaped. Now we
analyze the area requirements of the above algorithm. Let heighth and widthh be the
height and the width of Γh, respectively. We distinguish two cases. h is even: it’s easy
to see that heighth−1 = heighth−2 + 2 and that heighth = 2 · heighth−1 + 1. So we
have heighth = 2 · heighth−2 + 5. Hence we obtain:

heighth = . . . (((height2 ·2 + 5) · 2 + 5) . . . · 2 + 5
︸ ︷︷ ︸

h−2
2 times

= height2 ·2 h−2
2 +5 ·2 h−4

2 +

5 · 2
h−6

2 + . . . + 5. Let m = h−2
2 ; replacing height2 with its value 3 we obtain:

heighth = 3 ·2m +5 ·2m−1+5 ·2m−2+ . . .+5 = 3 ·2m +5 ·(2m−1+2m−2+ . . .+1)

= 3 · 2m + 5 · (2m − 1) = 8 · 2m − 5 = 8 · 2 h−2
2 − 5 = 4 · 2 h

2 − 5 = 4 · 2(lg n)
1
2 − 5 =

4 · n
1
2 − 5 = 4 ·

√
n − 5 = O(n

1
2 ). It’s easy to see that widthh = heighth+1

2 = 2 ·√
n − 2 = O(n

1
2 ). If h is odd, using heighth = heighth−1 + 2 we obtain: heighth
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(a) (b)

Fig. 2. Application of the algorithm in Section 4. (a) Γ6. (b) The drawing of G6 built over Γ6.

=
(

4 · 2
h−1
2 − 5

)

+2 = 4√
2
·2 h

2 −3 = 4√
2
·2(lg n)

1
2 −3 = 4√

2
·√n−3 = O(n

1
2 ). It’s

easy to see that widthh = heighth−1 =
(

4√
2

·
√

n − 3
)

−1 = 4√
2
·
√

n−4 = O(n
1
2 ).

We exploit the above algorithm and Lemma 1 to prove the following theorem.

Theorem 2. Given an n-vertex balanced outerplanar graph G with height h, there
exists an O(n) time algorithm that constructs an outerplanar straight-line grid drawing
Γ of G such that: (i) if h is even, then the height of Γ is 4

√
n − 5 and its width is

2
√

n − 1; (ii) if h is odd, then the height of Γ is 4√
2

√
n − 3 and its width is 4√

2

√
n − 3;

(iii) the angular resolution of Γ is less than c
n , with c constant; (iv) if G is complete,

then isomorphic subgraphs of G have congruent drawings in Γ up to a translation and
a reflection; and (v) if G is complete, then Γ is axially symmetric.

Proof. Γ is constructed as follows. First, we add to G dummy vertices and edges to
make it complete without altering h. Second, we draw star-shaped its dual tree T . Third,
using the correspondence between the vertices of G and the nodes of T introduced in
the proof of Lemmas 1 and 2, we build a drawing Γ ′ of the internal subgraph of G.
Finally, we place the poles of G and their incident edges, obtaining Γ . This is done as
follows. We place the left vertex on the same line of b(Γ ′), one unit to the right of r(Γ ′)
and we place the right vertex on the same line of t(Γ ′) one unit to the right of r(Γ ′).
This placement allows to draw edges from the left vertex to each node of the leftmost
path of T and from the right vertex to each node of the rightmost path of T without
crossings. Furthermore, this placement increases by one unit the width without altering
the height of Γ . Note that similar but different placements of the poles, as the one in
Fig. 2.b, are also possible.

The bounds on height and width of Γ descend from the bounds given for star-shaped
drawings. Now we analyze the angular resolution. Namely, we show that there is an
angle that decreases faster than 1

n . If h is odd let v1 be the root of T , else (h even) let
v1 be the left child of the root of T . Let (v1, w0, w1, . . . , wm) be the left-right path of
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v1. Let φ be the angle between the half-lines a and b starting at v1 and passing through
wm−1 and wm, respectively. From trigonometry we have:

sin φ = sin( ̂wmv1w0) cos( ̂wm−1v1w0) − sin( ̂wm−1v1w0) cos( ̂wmv1w0). Observe
that v1w0 =

√
2, ∀h. Let k be the biggest even integer ≤ h − 1. We have w0wm =√

2(2 · 2 k
2 − 3); moreover w0wm−1 = w0wm −

√
2, since wm−1wm =

√
2, ∀h; hence

w0wm−1 =
√

2(2 · 2 k
2 − 4). Using the Pythagorean theorem we obtain:

sin φ =
w0wm

√

w0wm
2 + v1w0

2
· v1w0
√

w0wm−1
2 + v1w0

2
+

+
v1w0

√

w0wm
2 + v1w0

2
· w0wm−1
√

w0wm−1
2 + v1w0

2
=

=
v1w0(w0wm − w0wm−1)

√

w0wm
2 + v1w0

2
√

w0wm−1
2 + v1w0

2

=
√

2
√

2
√

2(2 · 2 k
2 − 3)2

√

2(2 · 2
k
2 − 4)2

=

=
2

2
√

4 · 2k − 12 · 2
k
2 + 10

√

4 · 2k − 16 · 2 k
2 + 17

.

Hence φ ≈ sin φ < c · (2−k) and since k = O(h), we have φ < c
n , with c constant.

5 Outerplanar Drawings of General Outerplanar Graphs

This section is devoted to the proof of the following theorem. The main ingredients
of the proof are: (i) a recursive algorithm for constructing a star-shaped drawing of a
binary tree, (ii) Lemma 1, and (iii) Lemma 3 presented by Chan in [3].

Theorem 3. Given an n-vertex outerplanar graph G, there exists an O(n) time algo-
rithm that constructs an O(n1.48) area outerplanar straight-line grid drawing of G.

Lemma 3. [3] Let p = 0.48. Given any binary tree T of size n, there exists a root-
to-leaf path π such that for any left subree α and right subtree β of π, |α|p + |β|p ≤
(1 − δ)np, for some constant δ > 0.

First, we show two techniques, called Constructions 1–2, for constructing a star-
shaped drawing Γi, with i ∈ {1, 2}, of a general binary tree T with n nodes. Each one
is defined in terms of itself and of the other one. In the following we call spine a root-
to-leaf path S = (v0, v1, . . . , vm) of T . Let si be the non spine child of vi and let T (si)
be the subtree of T rooted at si. We denote with Wi(n) the width of Γi, with Wi,l(n)
(Wi,r(n)) the width of the part of Γi that is to the left (to the right) of S and with n(t)
the number of nodes in the subtree of T rooted at t.

Now we show Construction 1. First, we draw each vi ∈ S together with T (si),
obtaining Γ (vi); then we put all the Γ (vi) together to obtain Γ1. Construction 1 has
four subcases, labelled 1xy, x ∈ {t, b} and y ∈ {l, r}. Index x states that S is drawn
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Fig. 3. Constructions (a)1bl, (b)1tr, (c)2bl and (d)2tr. The edges (vi, vi+1) labelled r (l) are such
that vi+1 is the right (resp. left) child of vi. The thick edges show the spine (in Construction 1)
and the leftmost and the rightmost paths (in Construction 2) of T .

going towards the top (x = t) or towards the bottom (x = b) of Γ1. Index y states that
the leftmost path (y = l), or the rightmost path (y = r), is drawn going towards the left.
In the following we show the details of Construction 1bl, while the others are easily
obtained from 1bl after a reflection with respect to the x-axis and/or a switch of the left
with the right and vice-versa. Constructions 1bl and 1tr are shown in Fig. 3.

Suppose v1 is the left (right) child of v0. Let k be the first index such that vk is
the right (left) child of vk−1. In the following we denote the subtree T (sk−1) (T (s0))
also with T (sl) and we denote the subtree T (s0) (T (sk−1)) also with T (sr). Draw
T (s0) and T (sk−1) with Construction 1bl, obtaining Γ (s0) and Γ (sk−1), respectively.
Draw v0 one unit above and one unit to the left (right) of B(Γ (s0)), obtaining Γ (v0).
Draw vk−1 one unit above and one unit to the right (left) of B(Γ (sk−1)), obtaining
Γ (vk−1). Draw any other left (right) subtree with Construction 2tr (with Construction
2bl), obtaining Γ (si). If si is the left (right) child of vi, draw vi on the same horizontal
channel and one unit to the right (to the left) of si, obtaining Γ (vi).

Now we put together all the Γ (vi), 0 ≤ i ≤ m as follows. Place Γ (v0) anywhere
in the plane. For 1 ≤ i ≤ m, if vi is the left child (right child) of vi−1 and vi+1 is the
left child (right child) of vi or vi is a leaf (i = m), then draw Γ (vi) so that vi is on the
same vertical channel of vi−1 and so that b(Γ (vi−1)) is one unit above the t(Γ (vi)).
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Else (vi is the left child (right child) of vi−1 and vi+1 is the right child (left child) of
vi) if vi is a left child (right child) draw vi on the vertical channel one unit to the left
(to the right) with respect to the vertical channel of vi−1 and so that b(Γ (vi−1)) is one
unit above t(Γ (vi)).

Property 1. Construction 1bl guarantees that all the vertices of the leftmost (rightmost)
path of T are visible from any point that is above and to the left (right) of B(Γ1).

Property 2. Suppose that the drawing of Construction 2tr is star-shaped and that it
places the leftmost and the rightmost paths of the tree on the right side of its bounding
box. Suppose also that the drawing of Construction 2bl is star-shaped and that it places
the leftmost and the rightmost paths of the tree on the left side of its bounding box. We
have that the drawing obtained with Construction 1bl is star-shaped.

Property 3. W1,l(n) = max(W1(n(sl)), maxi(W2(n(si)))), where i is such that si is
the left child of vi. W1,r(n) = max(W1(n(sr)), maxi(W2(n(si)))), where i is such
that si is the right child of vi.

Analogous properties hold for Constructions 1br, 1tl,and 1tr.
Construction 2 is as follows. We have four subcases, say 2xy, where x ∈ {t, b} and

y ∈ {l, r}. Index x states that the leftmost path is drawn going towards the top (x = t) or
going towards the bottom (x = b) of Γ2. Index y states that the root is drawn on the right
side (y = r) or on the left side (y = l) of Γ2. In the following we show Construction
2bl, while the other cases are easily obtained from 2bl after a reflection with respect
to the y-axis and/or a switch of the left with the right and vice-versa. Constructions
2bl and 2tr are shown in Fig. 3.Let r be the root of T , let Cl = (ul,0, ul,1, . . . , ul,m)
(Cr = (ur,0, ur,1, . . . , ur,p)) be the leftmost (rightmost) path of T , with ul,0 = ur,0 = r.
Let sl,i (sr,i) be the right (left) child of a node ul,i ∈ Cl (ur,i ∈ Cr); we call T (sl,i)
(T (sr,i)) the subtree of T rooted in sl,i (sr,i). First, we draw each ul,i ∈ Cl together
with T (sl,i) and each ur,i ∈ Cr together with T (sr,i), obtaining Γ (ul,i) and Γ (ur,i)
respectively; then we put all the Γ (ul,i) and the Γ (ur,i) together to obtain Γ2.

Let k and j be two indexes such that k, j ∈ {l, r} and let x such that 1 ≤ x ≤ m if
k = l and such that 1 ≤ x ≤ p if k = r. Find the heaviest subtree T (sk,x) among all
the subtrees T (sj,i). Let T (sk,xl) and T (sk,xr) be the left and the right subtree of sk,x,
with root sk,xl and sk,xr, respectively. Draw T (sk,xl) with Construction 1bl and draw
T (sk,xr) with Construction 1tr, obtaining Γ (sk,xl) and Γ (sk,xr), respectively. Draw
any other subtree T (sj,i) with Construction 2bl, obtaining Γ (sj,i).

Place Γ (sk,xl) anywhere in the plane. Place Γ (sk,xr) so that b(Γ (sk,xr)) is three
vertical units above t(Γ (sk,xl)) and so that l(Γ (sk,xr)) is on the same vertical chan-
nel of l(Γ (sk,xl)). Place sk,x one unit above t(Γ (sk,xl)) and one unit to the right of
the rightmost boundary between r(Γ (sk,xl)) and r(Γ (sk,xr)). Draw uk,x on the same
horizontal channel of sk,x, one unit to the left of l(Γ (sk,xl)). If k = l (k = r) draw
uk,x−1 one unit above (one unit below) uk,x. Place Γ (sk,x−1) so that l(Γ (sk,x−1)) is
on the same vertical channel of l(Γ (sk,x)) and so that (if k = l) b(Γ (sk,x−1)) is one
unit above t(Γ (sk,x)) or (if k = r) t(Γ (sk,x−1)) is one unit below b(Γ (sk,x)), obtain-
ing Γ (uk,x−1). For each Γ (sj,i), but for Γ (sk,x−1) and Γ (sk,x), place uj,i one unit to
the left of sj,i, obtaining Γ (uj,i). Finally place all the Γ (uj,i) (and so also Γ (uk,x−1))
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so that all uj,i are on the same vertical channel, so that b(Γ (ur,i)) is one unit above
t(Γ (ur,i−1)), 2 ≤ i ≤ p, so that t(Γ (ul,i)) is one unit below b(Γ (ul,i−1)), 2 ≤ i ≤ m,
and so that t(Γ (ul,1)) is one unit below b(Γ (ur,1)).

Property 4. Construction 2bl guarantees that all the vertices of the leftmost (rightmost)
path of T are on the left side of the bounding box of Γ2.

Property 5. Suppose that the drawing of Constructions 1tr and 1bl are star-shaped.
Suppose that Construction 1tr is such that the leftmost (the rightmost) path of T (sk,xr)
is visible from any point that is below and to the right (to the left) of B(Γ (sk,xr)). Sup-
pose also that Construction 1bl is such that the leftmost (the rightmost) path of T (sk,xl)
is visible from any point that is above and to the left (to the right) of B(Γ (sk,xl)). We
have that the drawing obtained with Construction 2bl is star-shaped.

Property 6. W2(n)=max(2+W1(n(sk,xl)),2+W1(n(sk,xr)),max(1+W2(n(sj,i)))),
where j ∈ {l, r} and i is not equal to x.

Analogous properties hold for Constructions 2br, 2tl,and 2tr.
We can use Constructions 1–2 for constructing a star-shaped drawing Γ of a binary

tree T as follows. First, we select any spine. Second, we apply Construction 1bl. Third,
we recursively apply all the constructions in the appropriate cases. From the above
properties we have that Γ is star-shaped.

At this point we can draw a general outerplanar graph G with dual tree T as follows.
First, we draw T with the above algorithm. Second, we apply Lemma 1 to construct an
outerplanar drawing of the internal subgraph of G with the same height and width of T .
Third, exploiting Property 1 we place the poles of G obtaining a drawing that has the
same height and width plus one unit.

Now we analyze the height and the width of Γ . About the height, it’s easy to see that
there is at least one vertex for each horizontal line that intersects Γ . So we immediately
obtain that the height of Γ is O(n). About the width W (n), let n1 (n2) be the number
of vertices of the heaviest left (right) subtree of the spine S. We want to show that
W (n) ≤ W (n1) + W (n2) + 6.

We focus on W1,l(n) to show that W1,l(n) ≤ W (n1) + 2. For this purpose we
start from the expression of W1,l(n) as a function of W1(n) and of W2(n), then we
substitute W2(n) with its definition as function of W1(n) and of W2(n). We repeat this
substitution until we have obtained that W1,l(n) is defined only in terms of W1(n).

Let n(s∗j ) be the maximum number of nodes of a subtree recursively drawn with
Construction 2, after that j substitutions of W2(n) with its definition (as a function of
W1(n) and of W2(n)) have been made. Let n(s∗j,l) and n(s∗j,r) be the number of nodes
of the left and the right subtrees of s∗j , respectively.

By Property 3 we have W1,l(n) = max(W1(n(sl)), max(W2(n(si)))), with i such
that T (si) is the left subtree of a spine node vi. By applying several times Property 6
to the above equation we have: W1,l(n) = max(W1(n(sl)), 2 + W1(n(sk,xl)), 2 +
W1(n(sk,xr)), 1+W2(n(s∗1)))≤max(W1(n(sl)), 2+W1(n(sk,xl)), 2+W1(n(sk,xr)),
3+W1(n(s∗1,l)), 3+W1(n(s∗1,r)), 2+W2(n(s∗2)))≤max(W1(n(sl)), 2+W1(n(sk,xl)),
2+W1(n(sk,xr)), 3+W1(n(s∗1,l)), 3+W1(n(s∗1,r)), 4+W1(n(s∗2,l)), 4+W1(n(s∗2,r)),
3 + W2(n(s∗3))) ≤ . . . ≤ max(W1(n(sl)), 2 + W1(n(sk,xl)), 2 + W1(n(sk,xr)), 3 +
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W1(n(s∗1,l)), 3 + W1(n(s∗1,r)), 4 + W1(n(s∗2,l)), 4 + W1(n(s∗2,r)), 5 + W1(n(s∗3,l)),
5 + W1(n(s∗3,r)), . . .)

Observe that n(s∗j+1) ≤ 1
2n(s∗j ), since we draw the heaviest subtree T ′ of T (s∗j)

with Construction 1 and a subtree T ′′ with size greater than 1
2n(s∗j ) implies n(T ′) +

n(T ′′) > n(s∗j ), that is impossible by definition. Hence, assuming W1(n) > lg n,
we obtain W1,l(n) ≤ max(W1(n(sl)), 2 + W1(n(sk,xl)), 2 + W1(n(sk,xr))) ≤ 2 +
W1(n1). With similar arguments we obtain W1,r(n) ≤ 2 + W1(n2). Observing that S
is drawn on two adjacent vertical channels we have W1(n) = W1,l(n) + W1,r(n) + 2,
hence we obtain W (n) = W1(n) ≤ W1(n1) + W1(n2) + 6 ≤ W (n1) + W (n2) + 6.
As done in [3], we can choose in linear time a spine of T by maintaining the invariance
that n1

p + n2
p ≤ (1 − δ)np. Observe that W (n) ≤ maxnp

l +np
r≤(1−δ)np(W (nl) +

W (nr) + 6), for any left (right) subtree of S with nl (nr) nodes; by induction this
solves to W (n) = O(np) and applying Lemma 3, we can complete the analysis of the
width of Γ concluding that is possible to get W (n) = O(n0.48).

From the results on the height and on the width, we obtain the O(n1.48) area bound
on Γ . It is easy to see that the algorithm can be implemented to run in linear time.
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