Odd Crossing Number Is Not Crossing Number

Michael J. Pelsmajer ${ }^{1}$, Marcus Schaefer ${ }^{2}$, and Daniel Štefankovič ${ }^{3,4}$
${ }^{1}$ Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616
pelsmajer@iit.edu
${ }^{2}$ Department of Computer Science, DePaul University, Chicago, IL 60604
mschaefer@cti.depaul.edu
${ }^{3}$ Department of Computer Science, University of Rochester, Rochester, NY 14627
${ }^{4}$ Department of Computer Science, Comenius University, Bratislava, Slovakia stefanko@cs.rochester.edu

Abstract

The crossing number of a graph is the minimum number of edge intersections in a plane drawing of a graph, where each intersection is counted separately. If instead we count the number of pairs of edges that intersect an odd number of times, we obtain the odd crossing number. We show that there is a graph for which these two concepts differ, answering a well-known open question on crossing numbers. To derive the result we study drawings of maps (graphs with rotation systems).

1 A Confusion of Crossing Numbers

Intuitively, the crossing number of a graph is the smallest number of edge crossings in any plane drawing of the graph. As it turns out, this definition leaves room for interpretation, depending on how we answer the questions: what is a drawing, what is a crossing, and how do we count crossings? The papers by Pach and Tóth [7] and Székely [9 discuss the historical development of various interpretations and, often implicit, definitions of the crossing number concept.

A drawing D of a graph G is a mapping of the vertices and edges of G to the Euclidean plane, associating a distinct point with each vertex, and a simple plane curve with each edge such that the ends of an edge map to the endpoints of the corresponding curve. For simplicity, we also require that

- a curve does not contain any endpoints of other curves in its interior,
- two curves do not touch (that is, intersect without crossing), and
- no more than two curves intersect in a point (other than at a shared endpoint).

In such a drawing the intersection of the interiors of two curves is called a crossing. Note that by the restrictions we placed on a drawing, crossings do not involve endpoints, and at most two curves can intersect in a crossing. We often identify a drawing with the graph it represents. For a drawing D of a graph G in the plane we define
$-\operatorname{cr}(D)$ - the total number of crossings in D;
$-\operatorname{pcr}(D)$ - the number of pairs of edges which cross at least once; and
$-\operatorname{ocr}(D)$ - the number of pairs of edges which cross an odd number of times.
Remark 1. For any drawing D, we have $\operatorname{ocr}(D) \leq \operatorname{pcr}(D) \leq \operatorname{cr}(D)$.
We let $\operatorname{cr}(G)=\min \operatorname{cr}(D)$, where the minimum is taken over all drawings D of G in the plane. We define $\operatorname{ocr}(G)$ and $\operatorname{pcr}(G)$ analogously.
Remark 2. For any graph G, we have $\operatorname{ocr}(G) \leq \operatorname{pcr}(G) \leq \operatorname{cr}(G)$.
The question (first asked by Pach and Tóth [7) is whether the inequalities are actually equalities 1 Pach [6] called this "perhaps the most exciting open problem in the area." The only evidence for equality is an old theorem by Chojnacki, which was later rediscovered by Tutte - and the absence of any counterexamples.
Theorem 1 (Chojnacki [4], Tutte [10]). If $\operatorname{ocr}(G)=0$ then $\operatorname{cr}(G)=02$
In this paper we will construct a simple example of a graph with $\operatorname{ocr}(G)<$ $\operatorname{pcr}(G)=\operatorname{cr}(G)$. We derive this example from studying what we call weighted maps on the annulus. Section 2 introduces the notion of weighted maps on arbitrary surfaces and gives a counterexample to $\operatorname{ocr}(M)=\operatorname{pcr}(M)$ for maps on the annulus. In Section 3 we continue the study of crossing numbers for weighted maps, proving in particular that $\operatorname{cr}(M) \leq c_{n} \cdot \operatorname{ocr}(M)$ for maps on a plane with n holes. One of the difficulties in dealing with the crossing number is that it is NP-complete [2]. In Section 4 we show that the crossing number can be computed in polynomial time for maps on the annulus. Finally, in Section 5 we show how to translate the map counterexample from Section 2 into an infinite family of simple graphs for which $\operatorname{ocr}(G)<\operatorname{pcr}(G)$.

2 Map Crossing Numbers

A weighted map M is a 2-manifold S and a set $P=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)\right\}$ of pairs of distinct points on ∂S with positive weights w_{1}, \ldots, w_{m}. A realization R of the map $M=(S, P)$ is a set of m properly embedded $\operatorname{arcs} \gamma_{1}, \ldots, \gamma_{m}$ in S where γ_{i} connects a_{i} and $b_{i}{ }^{3}$

Let

$$
\begin{aligned}
\operatorname{cr}(R) & =\sum_{1 \leq k<\ell \leq m} i\left(\gamma_{k}, \gamma_{\ell}\right) w_{k} w_{\ell}, \\
\operatorname{pcr}(R) & =\sum_{1 \leq k<\ell \leq m}\left[i\left(\gamma_{k}, \gamma_{\ell}\right)>0\right] w_{k} w_{\ell},
\end{aligned}
$$

[^0]$$
\operatorname{ocr}(R)=\sum_{1 \leq k<\ell \leq m}\left[i\left(\gamma_{k}, \gamma_{\ell}\right) \equiv 1(\bmod 2)\right] w_{k} w_{\ell}
$$
where $i\left(\gamma, \gamma^{\prime}\right)$ is the geometric intersection number of γ and γ^{\prime} and $[x]$ is 1 if the condition x is true, and 0 otherwise.

We define $\operatorname{cr}(M)=\min \operatorname{cr}(R)$, where the minimum is taken over all realizations R of M. We define $\operatorname{pcr}(M)$ and $\operatorname{ocr}(M)$ analogously.

Remark 3. For every map M, $\operatorname{ocr}(M) \leq \operatorname{pcr}(M) \leq \operatorname{cr}(M)$.
Conjecture 1. For every map $M, \operatorname{cr}(M)=\operatorname{pcr}(M)$.
Lemma 1. If Conjecture 1 is true then $\operatorname{cr}(G)=\operatorname{pcr}(G)$ for every graph G.
Proof. Let D be a drawing of G with minimal pair crossing number. Drill small holes at the vertices. We obtain a drawing R of a weighted map M. If Conjecture 1 is true, there exists a drawing of M with the same crossing number. Collapse the holes to vertices to obtain a drawing D^{\prime} of G with $\operatorname{cr}\left(D^{\prime}\right) \leq \operatorname{pcr}(G)$.

We can, however, separate the odd crossing number from the crossing number for weighted maps, even in the annulus (a disk with a hole).

Fig. 1. ocr $<\mathrm{pcr}$

When analyzing crossing numbers of drawings on the annulus, we describe curves with respect to an initial drawing of the curve and a number of Dehn twists. Consider, for example, the four curves in the left part of Figure 1 Comparing them to the corresponding curves in the right part, we see that the curves labeled c and d have not changed, but the curves labeled a and b have each undergone a single clockwise twist.

Two curves are isotopic rel boundary if they can be obtained from each other by a continuous deformation which does not move the boundary ∂M. Isotopy rel boundary is an equivalence relation, its equivalence classes are called isotopy classes. An isotopy class on annulus is determined by a properly embedded arc connecting the endpoints, together with the number of twists performed.

Lemma 2. Let $a \leq b \leq c \leq d$ be such that $a+c \geq d$. For the weighted map M in Figure $\mathbb{1}$ we have $\operatorname{cr}(M)=\operatorname{pcr}(M)=a c+b d$ and $\operatorname{ocr}(M)=b c+a d$.

Proof. The upper bounds follow from the drawings in Figure 1 the left drawing for crossing and pair crossing number, the right drawing for odd crossing number; it remains to prove the two lower bounds.

First, we claim that

$$
\operatorname{pcr}(M) \geq a c+b d
$$

Proof of the claim. Let R be a drawing of M minimizing $\operatorname{pcr}(R)$. We can apply twists so that the thick edge d is drawn as in the left part of Figure $\mathbb{1}$ Let α, β, γ be the number of clockwise twists that are applied to arcs a, b, c in the left part of Figure 1 to obtain the drawing R. Then,
$\operatorname{pcr}(R)=c d[\gamma \neq 0]+b d[\beta \neq-1]+a d[\alpha \neq 0]+b c[\beta \neq \gamma]+a b[\alpha \neq \beta]+a c[\alpha \neq \gamma+1]$.

If $\gamma \neq 0$ then $\operatorname{pcr}(R) \geq c d+a b$ because at least one of the last five conditions in (1) must be true; the last five terms contribute at least $a b$ (since $d \geq c \geq b \geq a$), and the first term contributes $c d$. Since $d(c-b) \geq a(c-b), c d+a b \geq a c+b d$, and the claim is proved in the case that $\gamma \neq 0$.

Now assume that $\gamma=0$. Equation (1) becomes

$$
\begin{equation*}
\operatorname{pcr}(R)=b d[\beta \neq-1]+b c[\beta \neq 0]+a d[\alpha \neq 0]+a c[\alpha \neq 1]+a b[\alpha \neq \beta] . \tag{2}
\end{equation*}
$$

If $\beta \neq-1$ then $\operatorname{pcr}(R) \geq b d+a c$ because either $\alpha \neq 0$ or $\alpha \neq 1$. Since $b d+a c \geq$ $b c+a d$, the claim is proved in the case that $\beta \neq-1$.

This leaves us with the case that $\beta=-1$. Equation (2) becomes

$$
\begin{equation*}
\operatorname{pcr}(R)=b c+a d[\alpha \neq 0]+a c[\alpha \neq 1]+a b[\alpha \neq-1] . \tag{3}
\end{equation*}
$$

The right-hand side of Equation (3) is minimized for $\alpha=0$. In this case $\operatorname{pcr}(R)=$ $b c+a c+a b \geq a c+b d$ because we assume that $a+c \geq d$. Second, we claim that

$$
\operatorname{ocr}(M) \geq b c+a d
$$

Proof of the claim. Let R be a drawing of M minimizing ocr (R). Let α, β, γ be as in the previous claim. We have

$$
\begin{equation*}
\operatorname{ocr}(R)=c d[\gamma]_{2}+b d[\beta+1]_{2}+a d[\alpha]_{2}+b c[\beta+\gamma]_{2}+a b[\alpha+\beta]_{2}+a c[\alpha+\gamma+1]_{2} \tag{4}
\end{equation*}
$$

where $[x]_{2}$ is 0 if $x \equiv 0(\bmod 2)$, and 1 otherwise.
If $\beta \not \equiv \gamma(\bmod 2)$ then the claim clearly follows unless $\gamma=0, \beta=1$, and $\alpha=0$ (all modulo 2). In that case $\operatorname{ocr}(R) \geq b c+a b+a c \geq b c+a d$. Hence, the claim is proved if $\beta \not \equiv \gamma(\bmod 2)$.

Assume then that $\beta \equiv \gamma(\bmod 2)$. Equation (4) becomes

$$
\begin{equation*}
\operatorname{ocr}(R)=c d[\beta]_{2}+b d[\beta+1]_{2}+a d[\alpha]_{2}+a b[\alpha+\beta]_{2}+a c[\alpha+\beta+1]_{2} \tag{5}
\end{equation*}
$$

If $\alpha \equiv 1(\bmod 2)$ then the claim clearly follows because either $c d$ or $b d$ contributes to the ocr. Thus we can assume $\alpha \equiv 0(\bmod 2)$. Equation (51) becomes

$$
\begin{equation*}
\operatorname{ocr}(R)=(c d+a b)[\beta]_{2}+(b d+a c)[\beta+1]_{2} . \tag{6}
\end{equation*}
$$

For both $\beta \equiv 0(\bmod 2)$ and $\beta \equiv 1(\bmod 2)$ we get $\operatorname{ocr}(R) \geq b c+a d$. This finishes the proof of the second claim.

We get a separation of pcr and ocr for maps with small integral weights.

Corollary 1. There is a weighted map M on the annulus with edges of weight $a=1, b=c=3$, and $d=4$ for which $\operatorname{cr}(M)=\operatorname{pcr}(M)=15$ and $\operatorname{ocr}(M)=13$.

Optimizing the gap over the reals yields $b=c=1, a=(\sqrt{3}-1) / 2$, and $d=1+a$, giving us the following separation of $\operatorname{pcr}(M)$ and $\operatorname{ocr}(M)$.

Corollary 2. There exists a weighted map M on the annulus with $\operatorname{ocr}(M) \leq$ $\sqrt{3} / 2 \operatorname{pcr}(M)$.

Conjecture 2. For every weighted map M on the annulus, $\operatorname{ocr}(M) \geq \frac{\sqrt{3}}{2} \operatorname{pcr}(M)$.

3 Upper Bounds on Crossing Numbers

In Section 5 we will transform the separation of ocr and pcr on maps into a separation on graphs. In particular, we will show that for every $\varepsilon>0$ there is a graph G such that

$$
\operatorname{ocr}(G)<(\sqrt{3} / 2+\varepsilon) \operatorname{cr}(G)
$$

The gap, however, cannot be arbitrarily large, as Pach and Tóth showed.
Theorem 2 (Pach, Tóth [7]). Let G be a graph. Then $\operatorname{cr}(G) \leq 2(\operatorname{ocr}(G))^{2}$. [4]
This result suggests the question whether the linear separation can be improved. We do not believe this to be possible:

Conjecture 3. There is a $c>0$ such that $\operatorname{cr}(G)<c \cdot \operatorname{ocr}(G)$.
Using a graph redrawing idea from from [8] (which investigates other applications of that idea), we can show something weaker:

Theorem 3. $\operatorname{cr}(M) \leq \operatorname{ocr}(M)\binom{n+4}{4} / 5$ for weighted maps M on the plane with n holes, with strict inequality if $n>1$.

As a special case of the theorem, we have that if M is a (weighted) map on the annulus $(n=2)$ then $\operatorname{cr}(M)<3 \operatorname{ocr}(M)$, which comes reasonably close to the $\sqrt{3} / 2$ lower bound from the previous section. The theorem shows that any counterexample to Conjecture 3 cannot be constructed on a plane with a small, fixed number of holes. For reasons of space, we do not include the proof of the theorem.

4 Computing Crossing Numbers on the Annulus

Let M be a map on the annulus. We explained earlier that as far as crossing numbers are concerned we can describe a curve in the realization of M by a properly embedded arc $\gamma_{a b}$ connecting endpoints a and b on the inner and outer boundary of the annulus, and an integer $k \in \mathbb{Z}$, counting the number of twists

[^1]applied to the curve $\gamma_{a b}$. Our goal is to compute the number of intersections between two arcs after applying a number of twists to each one of them. Since twists can be positive and negative and cancel each other out, we need to count crossings more carefully. Let us orient all arcs from the inner boundary to the outer boundary. Traveling along an arc α, a crossing with β counts as +1 if β crosses from right to left, and as -1 if it crosses from left to right. Summing up these numbers over all crossings for two arcs α and β yields $\hat{i}(\alpha, \beta)$, the algebraic crossing number of α and β. Tutte [10] introduced the notion
$$
\operatorname{acr}(G)=\min _{D} \sum_{\{e, f\} \in\binom{E}{2}}\left|\hat{i}\left(\gamma_{e}, \gamma_{f}\right)\right|,
$$
the algebraic crossing number of a graph, a notion that apparently has not drawn any attention since.

Let $D^{k}(\gamma)$ denote the result of adding k twists to the curve γ. For two curves α and β connecting the inner and outer boundary we have:

$$
\begin{equation*}
\hat{i}\left(D^{k}(\alpha), D^{\ell}(\beta)\right)=k-\ell+\hat{i}(\alpha, \beta) . \tag{7}
\end{equation*}
$$

Note that $i(\alpha, \beta)=|\hat{i}(\alpha, \beta)|$ for any two curves α, β on the annulus.
Let π be a permutation of $[n]$. A map M_{π} corresponding to π is constructed as follows. Choose $n+1$ points on each of the two boundaries and number them $0,1, \ldots, n$ in the clockwise order. Let a_{i} be the vertex numbered i on the outer boundary and b_{i} be the vertex numbered π_{i} on the inner boundary, $i=1, \ldots, n$. We ask a_{i} to be connected to b_{i} in M_{π}.

We will encode a drawing R of M_{π} by a sequence of n integers x_{1}, \ldots, x_{n} as follows. Fix a curve β connecting the a_{0} and b_{0} and choose γ_{i} be such that $i\left(\beta, \gamma_{i}\right)=0$ (for all i). We will connect a_{i}, b_{i} with the $\operatorname{arc} D^{x_{i}}\left(\gamma_{i}\right)$ in R. Note that for $i<j, \hat{i}\left(\gamma_{i}, \gamma_{j}\right)=\left[\pi_{i}>\pi_{j}\right]$ and hence

$$
\hat{i}\left(D^{x_{i}}\left(\gamma_{i}\right), D^{x_{j}}\left(\gamma_{j}\right)\right)=x_{i}-x_{j}+\left[\pi_{i}>\pi_{j}\right] .
$$

We have

$$
\begin{gather*}
\operatorname{acr}\left(M_{\pi}\right)=\operatorname{cr}\left(M_{\pi}\right)=\min \left\{\sum_{i<j}\left|x_{i}-x_{j}+\left[\pi_{i}>\pi_{j}\right]\right| w_{i} w_{j}: x_{i} \in \mathbb{Z}, i \in[n]\right\}, \tag{8}\\
\operatorname{pcr}\left(M_{\pi}\right)=\min \left\{\sum_{i<j}\left[x_{i}-x_{j}+\left[\pi_{i}>\pi_{j}\right] \neq 0\right] w_{i} w_{j}: x_{i} \in \mathbb{Z}, i \in[n]\right\}, \tag{9}\\
\operatorname{ocr}\left(M_{\pi}\right)=\min \left\{\sum_{i<j}\left[x_{i}-x_{j}+\left[\pi_{i}>\pi_{j}\right] \not \equiv 0(\bmod 2)\right] w_{i} w_{j}: x_{i} \in \mathbb{Z}, i \in[n]\right\} . \tag{10}
\end{gather*}
$$

Consider the relaxation of the integer program for $\operatorname{cr}\left(M_{\pi}\right)$:

$$
\begin{equation*}
\operatorname{cr}^{\prime}\left(M_{\pi}\right)=\min \left\{\sum_{i<j}\left|x_{i}-x_{j}+\left[\pi_{i}>\pi_{j}\right]\right| w_{i} w_{j}: x_{i} \in \mathbb{R}, i \in[n]\right\} \tag{11}
\end{equation*}
$$

Since (11) is a relaxation of (8), we have $\operatorname{cr}^{\prime}\left(M_{\pi}\right) \leq \operatorname{cr}\left(M_{\pi}\right)$. The following lemma shows that $\operatorname{cr}^{\prime}\left(M_{\pi}\right)=\operatorname{cr}\left(M_{\pi}\right)$.

Lemma 3. Let n be a positive integer. Let $b_{i j} \in \mathbb{Z}$ and let $a_{i j} \in \mathbb{R}$ be nonnegative, $1 \leq i<j \leq n$. Then

$$
\min \left\{\sum_{i<j} a_{i j}\left|x_{i}-x_{j}+b_{i j}\right|: x_{i} \in \mathbb{R}, i \in[n]\right\}
$$

has an optimal solution with $x_{i} \in \mathbb{Z}, i \in[n]$.
Proof. Let \bar{x}^{*} be an optimal solution which satisfies the maximum number of $x_{i}-x_{j}+b_{i j}=0,1 \leq i<j \leq n$. Without loss of generality, we can assume $x_{1}^{*}=0$. Let G be a graph on vertex set $[n]$ with an edge between vertices i, j if $x_{i}^{*}-x_{j}^{*}+b_{i j}=0$. Note that if i, j are connected by an edge and one of x_{i}^{*}, x_{j}^{*} is an integer then both x_{i}^{*} and x_{j}^{*} are integers. It is then enough to show that G is connected.

Suppose that G is not connected. There exists non-empty $A \subsetneq V(G)$ such that there are no edges between A and $V(G)-A$. Let χ_{A} be the characteristic vector of the set A, that is, $\left(\chi_{A}\right)_{i}=[i \in A]$. Let $f(\lambda)$ be the value of the objective function on $\bar{x}=\bar{x}^{*}+\lambda \cdot \chi_{A}$. Let I be the interval on which the signs of the $x_{i}-x_{j}+b_{i j}, 1 \leq i<j \leq n$ are the same as for \bar{x}^{*}. Then I is not the entire line (otherwise G would be connected). Since $f(\lambda)$ is linear on I and an open neighborhood of 0 belongs to I we conclude that f is constant on I. Choosing $x=x^{*}+\lambda \chi_{A}$ for λ an endpoint of I gives an optimal solution satisfying more $x_{i}-x_{j}+b_{i j}=0,1 \leq i<j \leq n$, a contradiction.

Theorem 4. The crossing number of maps on the annulus can be computed in polynomial time.

Proof. Note that $\operatorname{cr}^{\prime}\left(M_{\pi}\right)$ is computed by the following linear program L_{π} :

$$
\begin{aligned}
& \min \sum_{i<j} y_{i j} w_{i} w_{j} \\
& \quad y_{i j} \geq x_{i}-x_{j}+\left[\pi_{i}>\pi_{j}\right], \\
& \quad y_{i j} \geq-x_{i}+x_{j}-\left[\pi_{i}>\pi_{j}\right], \\
& 1 \leq i<j \leq n \\
& y_{i j} \leq i \leq n
\end{aligned}
$$

Question 1. Let M be a map on the annulus. Can $\operatorname{ocr}(M)$ be computed in polynomial time?

Conjecture 4. For any map M on the annulus $\operatorname{cr}(M)=\operatorname{pcr}(M)$.

5 Separating Crossing Numbers of Graphs

We modify the map from Lemma 2 to obtain a graph G separating ocr (G) and $\operatorname{pcr}(G)$. The graph G will have integral weights on edges. From G we can get an unweighted graph G^{\prime} with $\operatorname{ocr}\left(G^{\prime}\right)=\operatorname{ocr}(G)$ and $\operatorname{pcr}\left(G^{\prime}\right)=\operatorname{pcr}(G)$ by replacing an edge of weight w by w parallel edges of weight 1 (this does not change any of the crossing numbers). If needed we can get rid of parallel edges by subdividing edges, which does not change any of the crossing numbers.

We start with the map M from Lemma 2 with the following integral weights:

$$
a=\left\lfloor\frac{\sqrt{3}-1}{2} m\right\rfloor, b=c=m, d=\left\lfloor\frac{\sqrt{3}+1}{2} m\right\rfloor,
$$

where $m \in \mathbb{N}$ will be chosen later.
We replace each pair $\left(a_{i}, b_{i}\right)$ of M by w_{i} pairs $\left(a_{i, 1}, b_{i, 1}\right), \ldots,\left(a_{i, w_{i}}, b_{i, w_{i}}\right)$ where the $a_{i, j}\left(b_{i, j}\right)$ occur on ∂S in clockwise order in a small interval around of $a_{i}\left(b_{i}\right)$. We can argue that all the curves corresponding to (a_{i}, b_{i}) can be routed in parallel in an optimal drawing, and, therefore, the resulting map N with unit weights will have the same crossing numbers as M.

We then replace the boundaries of the annulus by cycles (using one vertex for each $a_{i, j}$ and $b_{i, j}$, obtaining a graph G. We assign weight $W=1+\operatorname{cr}(N)$ to the edges in the cycles. This ensures that in a drawing of G minimizing any of the crossing numbers the boundary cycles are embedded without any intersections. This means that a drawing of G minimizing any of the crossing numbers looks very much like the drawing of a map on the annulus. With one subtle difference: one of the boundaries may flip.

Given the map N on the annulus, the flipped map N^{\prime} is obtained by flipping the order of the points on one of the boundaries. In other words, there are essentially two different ways of embedding the two boundary cycles of G on the sphere without intersections depending on the relative orientation of the boundaries. In one of the cases the drawing D of G gives a drawing of N, in the other case it gives a drawing of the flipped map N^{\prime}. Fortunately, in the flipped case the group of edges corresponding to the weighted edge from a_{i} to b_{i} must intersect often with each other (as illustrated in Figure 24).

Fig. 2. The inside flipped
Now we know that

$$
\begin{aligned}
\operatorname{ocr}(G) & \leq \operatorname{ocr}(N) \quad(\text { since every drawing of } N \text { is a drawing of } G) \\
& \leq w_{1} w_{3}+w_{2} w_{4} \quad \text { (by Lemma 2) } \\
& \leq \frac{3}{2} m^{2} \quad(\text { by the choice of weights })
\end{aligned}
$$

We will presently prove the following estimate on the flipped map.

Lemma 4. $\operatorname{ocr}\left(N^{\prime}\right) \geq 2 m^{2}-4 m$.
With that estimate and our discussion of flipped maps, we have

$$
\begin{aligned}
\operatorname{cr}(G) & =\min \left\{\operatorname{cr}(N), \operatorname{cr}\left(N^{\prime}\right)\right\} \\
& \geq \min \left\{\operatorname{cr}(N), \operatorname{ocr}\left(N^{\prime}\right)\right\} \quad(\text { since ocr } \leq \operatorname{cr}) \\
& \geq \min \left\{\sqrt{3} m^{2}-2 m, 2 m^{2}-4 m\right\} \quad \text { (choice of } w, \text { and Lemma (4). }
\end{aligned}
$$

By making m sufficiently large, we can make the ratio of $\operatorname{ocr}(G)$ and $\operatorname{cr}(G)$ arbitrarily close to $\sqrt{3} / 2$.

Theorem 5. For any $\varepsilon>0$ there is a graph G such that

$$
\operatorname{ocr}(G)<(\sqrt{3} / 2+\varepsilon) \operatorname{cr}(G) .
$$

The proof of Lemma 4 will require the following estimate.
Lemma 5. Let $0 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ be such that $a_{n} \leq a_{1}+\cdots+a_{n-1}$. Then

$$
\max _{\left|y_{i}\right| \leq a_{i}}\left(\left(\sum_{i=1}^{n} y_{i}\right)^{2}-2 \sum_{i=1}^{n} y_{i}^{2}\right)=\left(\sum_{i=1}^{n} a_{i}\right)^{2}-2 \sum_{i=1}^{n} a_{i}^{2} .
$$

Proof of Lemma 4. Let $w_{1}=a, w_{2}=b, w_{3}=d, w_{4}=c$ (with a, b, c, d as in the definition of N). In any drawing of N^{\prime} each group of the edges split into two classes, those with an even number of twists and those with an odd number of twists (two twists make the same contribution to $\operatorname{ocr}\left(M^{\prime}\right)$ as no twists). Consequently, we can estimate $\operatorname{ocr}\left(N^{\prime}\right)$ as follows.

$$
\begin{align*}
\operatorname{ocr}\left(N^{\prime}\right) & =\min _{0 \leq k_{i} \leq w_{i}}\left(\sum_{i=1}^{4}\binom{k_{i}}{2}+\sum_{i=1}^{4}\binom{w_{i}-k_{i}}{2}+\sum_{i \neq j} k_{i}\left(w_{j}-k_{j}\right)\right) \\
& \geq-\frac{1}{2} \sum_{i=1}^{4} w_{i}+\min _{0 \leq x_{i} \leq w_{i}}\left(\sum_{i=1}^{4} \frac{x_{i}^{2}}{2}+\sum_{i=1}^{4} \frac{\left(w_{i}-x_{i}\right)^{2}}{2}+\sum_{i \neq j} x_{i}\left(w_{j}-x_{j}\right)\right) \\
& =-\frac{1}{2} \sum_{i=1}^{4} w_{i}+\frac{1}{4}\left(\sum_{i=1}^{4} w_{i}\right)^{2}+\min _{\left|y_{i}\right| \leq w_{i} / 2}\left(2 \sum_{i=1}^{4} y_{i}^{2}-\left(\sum_{i=1}^{4} y_{i}\right)^{2}\right) \\
& \geq \frac{1}{2} \sum_{i=1}^{4} w_{i}^{2}-\frac{1}{2} \sum_{i=1}^{4} w_{i} \quad(\text { using Lemma 5) } \\
& \geq \frac{1}{2}\left(\left(\frac{\sqrt{3}+1}{2} m-1\right)^{2}+2 m^{2}+\left(\frac{\sqrt{3}-1}{2} m-1\right)^{2}-4 m\right) \\
& \geq 2 m^{2}-4 m . \tag{12}
\end{align*}
$$

The equality between the second and third line can be verified by substituting $y_{i}=x_{i}-w_{i} / 2$.

Proof of Lemma 5, Let y_{1}, \ldots, y_{n} achieve the maximum value. Replacing the y_{i} by $\left|y_{i}\right|$ does not decrease the objective function. Without loss of generality, we can assume $0 \leq y_{1} \leq y_{2} \leq \cdots \leq y_{n}$. Note that $y_{i}<y_{j}$ then $y_{i}=a_{i}$ (otherwise increasing y_{i} by ε and decreasing y_{j} by ε increases the objective function for small ε).

Let k be the largest i such that $y_{i}=a_{i}$. Let $k=0$ if no such i exists. We have $y_{i}=a_{i}$ for $i \leq k$ and $y_{k+1}=\cdots=y_{n}$. If $k=n$ we are done. Let

$$
f(t)=\left(\sum_{i=1}^{k} a_{i}+(n-k) t\right)^{2}-2\left(\sum_{i=1}^{k} a_{i}^{2}+(n-k) t^{2}\right) .
$$

We have

$$
f^{\prime}(t)=2(n-k)\left(\sum_{i=1}^{k} a_{i}+(n-k-2) t\right)
$$

Note that for $t<a_{k+1}$ we have $f^{\prime}(t)>0$ and hence the only optimal choice is $t=a_{k+1}$. Hence $y_{k+1}=a_{k+1}$, a contradiction with our choice of k.

6 Conclusion

The relationship between the different crossing numbers remains mysterious, and we have already mentioned several open questions and conjectures. Here we want to revive a question first asked by Tutte (in slightly different form). Recall the definition of the algebraic crossing number from Section 4 :

$$
\operatorname{acr}(G)=\min _{D} \sum_{\{e, f\} \in\binom{E}{2}}\left|\hat{i}\left(\gamma_{e}, \gamma_{f}\right)\right|,
$$

where γ_{e} is a curve representing edge e in a drawing D of G. It is clear that

$$
\operatorname{acr}(G) \leq \operatorname{cr}(G)
$$

Does equality hold?

References

1. Dan Archdeacon. Problems in topological graph theory. http://www.emba. uvm.edu/~archdeac/problems/altcross.html (accessed April 7th, 2005).
2. Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods, 4(3):312-316, 1983.
3. Jonathan L. Gross and Thomas W. Tucker. Topological graph theory. Dover Publications Inc., Mineola, NY, 2001. Reprint of the 1987 original.
4. Chaim Chojnacki (Haim Hanani). Über wesentlich unplättbare Kurven im dreidimensionalen Raume. Fundamenta Mathematicae, 23:135-142, 1934.
5. Petr Kolman and Jiří Matoušek. Crossing number, pair-crossing number, and expansion. J. Combin. Theory Ser. B, 92(1):99-113, 2004.
6. János Pach. Crossing numbers. In Discrete and computational geometry (Tokyo, 1998), volume 1763 of Lecture Notes in Comput. Sci., pages 267-273. Springer, Berlin, 2000.
7. János Pach and Géza Tóth. Which crossing number is it anyway? J. Combin. Theory Ser. B, 80(2):225-246, 2000.
8. Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Removing even crossings. Manuscript, April 2005.
9. László A. Székely. A successful concept for measuring non-planarity of graphs: the crossing number. Discrete Math., 276(1-3):331-352, 2004. 6th International Conference on Graph Theory.
10. W. T. Tutte. Toward a theory of crossing numbers. J. Combinatorial Theory, 8:45-53, 1970.
11. Pavel Valtr. On the pair-crossing number. Manuscript.
12. Douglas West. Open problems - graph theory and combinatorics. http:// www.math.uiuc.edu/~west/openp/ (accessed April 7th, 2005).

[^0]: ${ }^{1}$ Doug West lists the problem on his page of open problems in graph theory [12]. Dan Archdeacon even conjectured that equality holds (1).
 ${ }^{2}$ In fact they proved something stronger, namely that in any drawing of a non-planar graph there are two non-adjacent edges crossing an odd number of times. Also see 8.
 ${ }^{3}$ If we take a realization R of a map M, and contract each boundary component to a vertex, we obtain a drawing of a graph with a given rotation system [3]. For our purposes, maps are a more visual way to look at graphs with a rotation system.

[^1]: ${ }^{4}$ In terms of $\operatorname{pcr}(G)$ better upper bounds on $\operatorname{cr}(G)$ are known 11,5.

