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Abstract. Two straight-line drawings P, Q of a graph (V, E) are called
parallel if, for every edge (u, v) ∈ E, the vector from u to v has the same
direction in both P and Q. We study problems of the form: given sim-
ple, parallel drawings P, Q does there exist a continuous transformation
between them such that intermediate drawings of the transformation
remain simple and parallel with P (and Q)? We prove that a transfor-
mation can always be found in the case of orthogonal drawings; however,
when edges are allowed to be in one of three or more slopes the problem
becomes NP-hard.

1 Introduction

The process of drawing a graph is rarely a one-time task devoid of prior geometric
information. In many situations we already have a drawing of a graph, and the
graph may change or the requirements on the drawing may change. Dynamic
graph drawing [6] deals with the situation where the graph changes incrementally.
The goals—to avoid recomputing the drawing from scratch, and to preserve the
user’s mental map [22]—are accomplished by altering the drawing as little as
possible, which makes it straightforward to animate the changes.

There are situations however, where the graph changes more dramatically or
the requirements on the drawing change, and the best approach is to compute
a new drawing. Preserving the user’s mental map is still desirable, but it is no
longer straightforward to animate a continuous transformation from the original
drawing to the new drawing [14, 15].

Transforming one geometric object to another in a continuous way is called
morphing, and is well-studied in graphics [16], where it is often accomplished
in image space by transforming each pixel. More appropriate for graph drawing
applications are object space morphs, which operate on geometric objects.

In addition to the visualization applications just mentioned, morphing graph
drawings also finds application in the medical imaging problem of creating a
3-dimensional model from 2-dimensional slices obtained e.g. by X-rays [2].

Morphing without maintaining geometric structure is easy but usually un-
helpful. The linear morph, for example, moves every vertex in a straight line
from its position in the source to its position in the target. It has the desirable
property of making minimal changes to vertex positions, but has the undesirable
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property of producing intersections between disjoint objects—for example, you
and your dance partner would change places by moving through each other.

Besides avoiding intersections, some other criteria for quality morphs are that
a vertex should not stray too far from the line between its initial and final po-
sitions, and the length and direction of an edge should not deviate radically
from the initial and final values. Criteria for evaluating interactive graph draw-
ings also apply—see Bridgeman and Tamassia [7] for the case of orthogonal
drawings.

Our aim in this paper is not to develop heuristics to address the many (con-
flicting) criteria. Rather, we concentrate on morphs that exactly preserve two
properties: planarity (i.e. simplicity) and edge directions—we call these parallel
morphs. The source and target drawings are simple straight-line drawings that
represent the same graph embedded the same way, and such that each edge in
the source drawing is parallel to its counterpart in the target drawing.

Our main result is an algorithm to find a parallel morph for the case of or-
thogonal graph drawings. The morphs produced by our algorithm are composed
of O(n) linear morphs where n is the size of the graphs. The user’s mental model
should be well preserved by these morphs. We briefly address the issue of how
edge lengths change during the morph. One application of this result arises when
VLSI compaction techniques [20] (which preserve edge directions) are used to
reduce the area of an orthogonal drawing—our morph provides a continuous
motion from the original drawing to the compacted one.

Recently, Lubiw, Petrick and Spriggs [21] devised an algorithm for morph-
ing between two orthogonal drawings of a graph, where in these drawings ver-
tices are points and edges are orthogonal paths. Morphs produced by the algo-
rithm maintain both planarity and orthogonality. The algorithm employs—as a
subroutine—the parallel-morphing algorithm described in the present paper.

On the negative side, we show that it is NP-hard to decide whether a parallel
morph exists for the case of general planar graph drawings—in fact, in a typical
2-3 dichotomy, the problem is hard for 3 edge directions, and easy for 2.

1.1 Background

There is a broad, rich body of work on transforming one object to another
while maintaining some geometric structure. Included are problems of morphing,
animation, motion planning, folding, linkage reconfiguration, rigidity theory, etc.
We will mention some of the most relevant background.

Preserving the Mental Map. Friedrich et al. [14, 15] considered the problem
of “animating” the transformation from one graph drawing (not necessarily pla-
nar) to another. They do not insist on any geometric structure being strictly
maintained, but their goal is to produce an animation that preserves the users
mental map, and the criteria they formulate to accomplish this include minimiz-
ing temporary edge crossings and maintaining some minimal distance between
nodes. Their method uses a combination of rigid motions and linear morphs,
with the addition of clustering techniques in the second paper.
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Preserving Simplicity. In 1944, long before the word “morph” was coined,
Cairns [9] showed that there is a non-intersecting morph from any planar
triangulation to any isomorphic one with the same fixed triangle as a boundary.
Thomassen [23] strengthened this in two ways: First, he generalized to con-
vex subdivisions and morphs preserving convexity. Secondly, he generalized to
straight-line drawings of planar graphs, using the technique of “compatible tri-
angulation” (discovered independently by Aronov et al. [1]) to augment both
drawings to isomorphic triangulations, thus reducing to Cairns’ result. These
results are constructive, but algorithmic issues are not explored. Although only
one vertex moves at a time, the graph is contracted down to a triangle which
does nothing for the user’s mental map.

Independently, Floater and Gotsman [13] proved Thomassen’s convex mor-
phing result using an entirely different approach based on Tutte’s method of
embedding graphs using barycentric coordinates. Their morph moves all ver-
tices at once, and computes snapshots of the graph at intermediate time points.
Combining this result with compatible triangulation [1] gives a different non-
intersecting morph for straight line drawings [17]. These morphs can be visually
pleasing, but there are no analytical results on the complexity of the vertex
trajectories, or the number of time steps required to give the appearance of
continuous motion. Erten, Kobourov, and Pitta [11, 12] have implemented the
Floater-Gotsman method, with a preliminary phase that attempts to align the
two drawings using rigid planar transformations.

Preserving Edge Directions. In addition to preserving simplicity and con-
vexity, Thomassen [23] considered the problem of preserving edge directions.
He showed that between any two simple orthogonal cycles with corresponding
edges parallel, there is a parallel morph. Thomassen’s morphs shrink edges to
infinitesimal lengths. Our main result in this paper generalizes Thomassen’s re-
sult to orthogonal graphs, rather than just cycles, and we do not shrink edges
to infinitesimal lengths.

Thomassen’s result was extended in a different direction to the case of simple
non-orthogonal cycles by Guibas et al. [19], and independently by Grenander
et al. [18]. In related work we show that there exists a parallel morph between
any two trees in any dimension, but not for orthogonal cycles in 3D even if they
represent the trivial knot [3], and not for edge graphs of genus-0 orthogonal
polyhedra in 3D [5].

Wehave also explored the possibility of parallelmorphs that change edge lengths
monotonically—the most stringent condition for nice edge-length behavior. We
show[4] thatsuchmorphsarepossible forconvexandorthogonallyconvexpolygons,
but that the decision problem becomes NP-hard for orthogonal polygons.

Preserving Edge Lengths: Linkage Reconfiguration and Rigidity. When
a morph must preserve simplicity and edge lengths (rather than directions) we ar-
rive at linkage reconfiguration problems, a topic of considerable recent interest—
see [10] and references therein. For connections with rigidity theory and parallel
redrawings, please see [3].
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2 Preliminaries

Let (V, E) be an undirected graph with vertex set V and edge set E, and let
p : V → IR2. The triple P = (V, E, p) uniquely determines a bend-free straight-
line drawing of graph (V, E) in the plane. Each edge (u, v) ∈ E is represented
in this drawing by the line segment between p(u) and p(v). We will use p(u, v)
to refer to this edge, and |p(u, v)| to denote its length. A drawing P = (V, E, p)
is called simple if each vertex lies at unique coordinates and each pair of (non-
equal) edges may intersect each other only at a common vertex. A drawing is
orthogonal if each edge of the drawing is parallel with one of the axes.

Two drawings P = (V, E, p) and Q = (V, E, q) of the same graph are called
parallel if for each edge (u, v) ∈ E, there exists some λ > 0 such that p(u)−p(v) =
λ(q(u) − q(v)). When this expression holds for a particular edge (u, v), we say
that (u, v) has the same direction in both P and Q.

Given two simple, parallel drawings P, Q of a graph (V, E) a parallel morph
from P to Q is a continuous motion of the vertices that takes us from P to Q such
that at all times the positions of the vertices determine a drawing of (V, E) that
is both simple and parallel with P and Q. Formally, a parallel morph from P to Q
is a continuously changing family of drawings R such that R(0) = P , R(1) = Q,
and for every t ∈ [0, 1], R(t) = (V, E, rt) where rt : V → IR2 determines a simple
drawing R(t) that is parallel with P and Q.

Given drawings P = (V, E, p) and Q = (V, E, q), the linear morph between
them is the morph in which each vertex v ∈ V moves continuously from p(v) to
q(v) at constant velocity—i.e. using the notation above, rt(v) = tq(v)+(1−t)p(v)
for each vertex v ∈ V . Notice, by this definition R(0) = P and R(1) = Q. One
can show easily that a linear morph between two parallel simple drawings keeps
each edge parallel with its realization in R(0) and R(1), and changes edge-lengths
monotonically. However, it may destroy simplicity. At the heart of our algorithm
is the result that a linear morph does maintain simplicity in some situations:
when the ordering of the coordinates of the vertices is the same in P and Q; and
more generally, when P and Q are rectangular drawings as defined in the next
section. These results are proved in [5].

3 Morphing Orthogonal Drawings

This section contains our main result—an algorithm to find a parallel morph
between any two simple parallel orthogonal graph drawings that are “bend-
free”—i.e. in which each edge is a single line segment.

Traditionally, an orthogonal graph drawing represents each edge as a path
with bends. We find it more convenient to deal with edges that are single line
segments (e.g. for defining “parallel”). Morphing of traditional orthogonal graph
drawings can be achieved via our method if each edge has the same number
and direction of bends in the source and target drawings—we simply replace
each bend by a vertex. Henceforth, “orthogonal drawing” will mean “bend-free
orthogonal drawing”.
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Fig. 1. A rectangular drawing

Theorem 1. Any two simple parallel orthogonal drawings P, Q of a connected
graph (V, E) admit a parallel morph that is composed of O(|V |) linear morphs.

3.1 Overview of the Morphing Algorithm

A rectangular drawing is a drawing in which the boundary of every face—
including the outer face—is a rectangle (Fig. 1); the side of a rectangular face
may be subdivided by any number of vertices. (A rectangular drawing is a type
of turn-regular drawing as defined by Bridgeman et al. [8], i.e. no face has “kitty
corners”.) One can show that for a pair of parallel rectangular drawings, the
linear morph is a parallel morph, i.e. it maintains both simplicity and edge di-
rections.

So given two parallel orthogonal drawings P and Q, if they are rectangu-
lar drawings, we can morph them by applying a linear morph. Otherwise, our
approach is to augment the drawings (by adding vertices, subdividing edges,
and/or adding edges) to turn them into parallel rectangular drawings. Clearly,
if we can morph two parallel augmented drawings, then we can also morph the
original drawings by using the induced morph.

Our algorithm has three stages. The first stage ensures that the boundary of
the exterior face of each drawing is a rectangle. Adding a new bounding rectangle
around each drawing is easy; the only complication is maintaining connectedness
of the graph and keeping the drawings parallel. In the target drawing Q, add a
non-intersecting vertical edge between some vertex v and a new vertex u placed
along the upper edge of the boundary rectangle. See Fig. 2 (a) and (b). We want
the source drawing P to be parallel with the new target. In the source drawing,
we can subdivide the upper edge of the bounding rectangle by vertex u, and
position it above v, but the line segment (u, v) may cross parts of the drawing.
We fix this by performing a parallel morph of the source so that (u, v) can be
added, while maintaining simplicity. The fact that such a morph can always be
performed on an orthogonal drawing is the key idea underlying our algorithm.
Details are given in Sect. 3.2.

This completes the first stage of the algorithm. At this point, we have a new
source and new target drawing. The drawings are parallel, the underlying graph
is connected, and the the exterior face is bounded by a rectangle.

The second stage of the algorithm further modifies the drawings obtained in
the first stage so that the boundary of each interior face is a rectangle. Until
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Fig. 2. Modifying the target drawing: (a) The original target. (b) The target following
the first stage. (c) The target after adding an edge in the second stage.

every face of the target is a rectangle, iterate as follows. Pick a face f that is
not a rectangle, and add a vertical edge from one reflex vertex w of f to the
nearest edge e of f , which we subdivide by a new vertex z; see Fig. 2(c). To
maintain parallel drawings, subdivide edge e by vertex z in the source drawing.
Then, morph the source so that the vertical edge (w, z) can be added to it while
maintaining the simplicity of the drawing; refer again to Sect. 3.2 for details.

The third stage of the algorithm is a linear morph between the rectangular
source and rectangular target drawings. With that, the morph is complete.

3.2 Morphing to Add a New Edge

The first two stages of our morphing algorithm depend on the ability to morph
the source drawing to a parallel drawing that admits a non-intersecting vertical
edge between two given vertices. The idea is to draw a non-intersecting orthog-
onal path between the two vertices, and then morph the drawing (including the
path) in order to straighten the path until it has no bends—at which point it
forms the desired edge.

Not every orthogonal path can be straightened. Let Φ be a simple orthogonal
drawing of a path. Φ is balanced if we encounter an equal number of left and
right turns as we follow the path from one end to the other. In the remainder of
this section we show that a balanced path can be straightened, and that in the
above situation we can always find a balanced path between the two vertices we
wish to join by an edge. Together with an analysis of the number of morphing
steps, this will complete the proof of Theorem 1.

Straightening a Balanced Path. In this section we show that a balanced
path of m bends can be straightened using O(m) linear morphs.

Suppose that P and Φ are drawings. We define P ∪ Φ in the natural way,
noting that any vertex common to P and Φ must be in the same location in
both drawings.

Lemma 1. Let P = (V, E, p) and Φ = (VΦ, EΦ, φ) be simple orthogonal draw-
ings with vα, vβ ∈ V ∩ VΦ such that Φ is a balanced drawing of a path with
end-vertices vα and vβ, and P ∪ Φ is simple. There exists a parallel morph from
P to a drawing P ′ = (V, E, p′) such that p′(vα) and p′(vβ) can be connected by a
horizontal or vertical line segment whose interior does not intersect P ′. Further,
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Fig. 3. The arrangement of the path vertices

the morph is composed of a sequence of O(m) linear morphs, where m is the
number of vertices in Φ.

Proof. As we follow Φ from vα to vβ , we pass an equal number of left and right
turns. We prove the lemma by induction on the number of left turns in Φ. If Φ
contains no left turns, then it contains no right turns either and must be a line
segment, and we are done. So assume that Φ contains k > 0 left turns. Since Φ is
balanced, somewhere a left turn must be followed by a right turn or vice versa;
so assume that va, vb, vc, vd ∈ VΦ is a sub-path with a right turn at vb followed
by a left turn at vc. We will show below how to remove these two turns with a
linear morph; this proves the lemma by induction.

Assume w.l.o.g. that the arrangement of φ(va), φ(vb), φ(vc), φ(vd) is as shown
in Fig. 3(a). Let V ⊂ V ∪ VΦ be those vertices that lie either:

1. Strictly above the ray originating at φ(vb) and going leftward; or
2. On or above the ray originating at φ(vc) and going rightward.

The vertices in V are shown black in Fig. 3, while the others are drawn white.
Let R be the linear morph from P ∪ Φ in which each v ∈ V moves upward

at a uniform rate a distance of |φ(vb, vc)| while other vertices remain fixed; see
Fig. 3(b). Let P ′ = (V, E, p′) denote the drawing of graph (V, E) following this
linear morph. Notice, R reduces the distance between vb and vc to zero. Simplify
the path graph (VΦ, EΦ) by removing vb and vc and adding the horizontal edge
(va, vd). The resulting path Φ′ has one fewer left turn and one fewer right turn
than Φ, so it is a balanced path between vα and vβ with fewer than k left turns.

To complete the proof we must show that R keeps edges parallel, and—
excepting vertices vα and vβ—maintains simplicity. This is proved easily (we
omit details) by observing the following properties of our morph: (1) Vertices
move only vertically and upward. (2) If a vertex moves, then any vertex vertically
above it (with the exception of vb) moves by exactly the same amount. (3) By
simplicity of Φ ∪ P , no horizontal edge of P has one vertex in V and the other
vertex outside V . ��
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(b)(a)

Fig. 4. A path from a vertex in P to infinity: In (a) the path has an excess of eight
left turns, and in (b) the path is balanced

Finding a Balanced Path in the First Stage. Recall that for the first stage
we want a balanced path in the source drawing between vertex v lying on the
original outer face and a vertex u on the upper edge of the bounding rectangle.
It suffices to show that we can build a simple balanced path from v that ends in
an upward-directed vertical ray.

Lemma 2. Let P = (V, E, p) be an orthogonal drawing of a connected graph and
let v ∈ V be a vertex that has no incident vertical segment above it, such that
the face immediately above p(v) is the outer face. Drawing P admits a balanced
simple path Φ of complexity O(|V |) that starts at p(v), goes upward, and ends
with an upward-directed vertical ray.

Proof. We construct a path that goes upward some small distance ε from p(v)
and then walks around the boundary of the outer face until we reach a point
where an upward-directed ray does not intersect P . If this path is balanced we
are done. Otherwise, add the appropriate number of turns of opposite direction,
as illustrated in Fig. 4(b). ��

Lemma 1 and Lemma 2 together prove that the first stage of the algorithm
runs correctly, and is composed of O(n) morphing steps.

Finding a Balanced Path in the Second Stage. We augment the target
drawing by Θ(n) edges to produce a rectangular drawing, and, for each such edge,
find a corresponding orthogonal path in the source which we then straighten by
morphing. If we were to add the target edges in arbitrary order, each of the Θ(n)
paths in the source might have Θ(n) bends to straighten, for a total of Θ(n2)
morphing steps in this stage. We can avoid this by choosing the new target edges
carefully. We use only vertical edges. Each new vertical edge cuts a face in two.
We choose an edge s.t. one of the new faces is a rectangle. In the source drawing,
we find a balanced path with O(1) turns by walking just inside the perimeter
of this rectangular face. Straightening this balanced path takes O(1) morphing
steps, for a total of O(n) morphing steps in the second stage.

This finishes the proof of Theorem 1. We note here that while only O(n) lin-
ear morphs are needed, each of them might require Ω(n) time for updating the
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coordinates of vertices (which are needed for computing later morphs correctly).
Hence the total time to perform all morphs is O(n2).

4 Edge Lengths in Morphing Orthogonal Drawings

In this section we explore how edge lengths change during parallel morphs be-
tween orthogonal drawings. There seems to be a trade-off between the number
of times an edge increases and decreases in length, and the amount by which
an edge deviates from its lengths in the source and target. Morphs produced by
the algorithm of Sect. 3 are well-behaved with respect to the first measure, but
not the second. In these morphs, each edge is non-decreasing in length until the
third stage when a linear morph to the target is performed. If, prior to the final
linear morph, we scale up the drawing so that every edge is longer than its target
length, we obtain a two-phase morph where edges are non-decreasing in the first
phase, and non-increasing in the second phase. Call this a (+, −)-morph. We can
prove any (+, −)-morph will, in some cases, dramatically alter edge lengths.

For a parallel morph R(t) = (V, E, rt), define the stretch factor ∆(R) as:

∆(R) = max
(u,v)∈E

{
maxt∈[0,1]{|rt(u, v)|}

max{|r0(u, v)|, |r1(u, v)|} ,
min{|r0(u, v)|, |r1(u, v)|}

mint∈[0,1]{|rt(u, v)|}

}
(1)

The stretch factor is the largest factor by which some edge of the graph deviates
from the range delimited by its lengths in the source and target drawings.

Theorem 2. For any positive integer n there exists a pair of parallel orthogonal
drawings with n vertices such that for any (+, −)-morph R between the drawings,
∆(R) ≥ 2Ω(n)/n.

Due to space limitations we omit the proof, but an example of the construction
is given in Fig. 5. Curiously, we have been unable to construct situations where
(−, +)-morphs have such bad stretch factors. If we allow more fluctuations in
edge lengths we can do much better.

a

d
c

b

Fig. 5. The source drawing for Theorem 2. The target drawing is similar, except that
spirals b and c are “disentwined” while spirals a and d are “entwined.”

Theorem 3. There exists a parallel morph R between any two simple orthogonal
drawings P, Q of a graph (V, E) such that ∆(R) ≤ n − 1, where n = |V |.
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By Theorem 1 there exists a parallel morph R′ from P to Q. The idea—for
proving Theorem 3—is to decompose R′ by a sequence of breakpoints such that
between breakpoints no two vertices change order in w.r.t. a coordinate axis.
The drawings at the breakpoints can be realized on nice-sized grids, and a new
parallel morph R can be generated by a sequence of linear morphs between
successive drawings on these nice-sized grids. Edge lengths are well-behaved on
the grid, and linear morphs change edge-lengths monotonically. R has a linear
stretch factor and each edge will alternately expand and shrink O(n3) times.

5 Non-orthogonal Morphing Is NP-Hard

Previous sections deal with orthogonal drawings. We now consider general draw-
ings, and prove that it is NP-hard to decide whether parallel non-orthogonal
drawings of a graph admit a parallel morph—even if there are only three possi-
ble edge directions. We note that the algorithm of Sect. 3 together with a shear
can be used to morph any parallel graphs drawn using two edge directions.

Our NP-hardness reduction is from a closely related problem called Parallel
Morphing with Static Edges (PM-Static):

– Given parallel orthogonal polygons P = (V, E, p) and Q = (V, E, q) and a
subset E ⊂ E such that for each edge (u, v) ∈ E , |p(u, v)| = |q(u, v)|,

– does P, Q admit a parallel morph such that all edges in E remain of fixed
length throughout the morph?

We call the edges in E , static edges, and the remaining edges of E are called
elastic edges. The proof that PM-Static is NP-hard appears in [5]; we use a
similar reduction to prove it NP-hard to decide whether two parallel orthogonal
polygons admit a monotone morph [4].

Theorem 4. Given two parallel drawings of a graph, it is NP-hard to decide
whether there exists a parallel morph between them—even in the case where
edges can only be horizontal, vertical, or of slope 1.

Proof. We reduce from PM-Static. Let P = (V, E, p) and Q = (V, E, q) be a
pair of parallel orthogonal polygons and let E ⊆ E be a set of static edges, whose
lengths in P and Q are equal. Assume w.l.o.g. that both P and Q are embedded
on a unit grid, i.e., all vertices are located at integer coordinates; one can show
(details omitted) that this can be done with coordinates polynomial in n = |V |.

Construct a drawing P ′ from P as follows. Fix a value ε = (4n)−1. For each
vertex v ∈ V , include a drawing of an ε× ε-square in P ′, centered at p(v), with a
diagonal edge between the lower-left and upper-right corners. Observe that such
a square permits only translation and scaling during a parallel morph.

For each edge (u, v) ∈ E, in P ′ connect the diagonalized squares corresponding
to u and v as follows. An elastic edge of P is encoded in P ′ by two parallel axis-
aligned edges, and a static edge is encoded by a series of diagonalized squares; see
Fig. 6. The encoding of a static edge in P ′ permits only translation and scaling
in a parallel morph, while the encoding of an elastic edge also permits changes
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P’P

Fig. 6. An orthogonal polygon P and corresponding drawing P ′

to the length of the two parallel edges. We construct Q′ from Q in the same
way. One can easily verify that P ′ and Q′ are simple, and also show (details are
omitted here) that they admit a parallel morph if and only if P and Q admit a
parallel morph that does not change the length any static edge. ��

6 Conclusion

This paper addressed the problem of morphing one planar graph drawing to
another when corresponding edges have the same direction and the morph should
maintain this property. We showed how to morph orthogonal graph drawings;
our morphs are computationally and visually well-behaved. However, as soon
we allow edges to have one of three slopes the problem becomes NP-hard. We
conclude with some open problems.

The morphing algorithm of Sect. 3 works for orthogonal point-drawings (ver-
tices are points), but not necessarily for orthogonal box-drawings (vertices are
disjoint boxes that must remain of the same dimensions throughout the morph).
What is the complexity of this problem? In more practical situations, corre-
sponding edges will not be parallel in the source and target drawings. A morph
should not change edge directions more than necessary. Is it possible to design
morphs that minimize changes to edge directions, or to angles? Even the follow-
ing is open: given two polygons, is there a non-intersecting morph between them
that preserves convexity/non-convexity of angles?
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