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Abstract. Consider a drawing of a graph G in the plane such that cross-
ing edges are coloured differently. The minimum number of colours, taken
over all drawings of G, is the classical graph parameter thickness θ(G).
By restricting the edges to be straight, we obtain the geometric thick-
ness θ(G). By further restricting the vertices to be in convex position,
we obtain the book thickness bt(G). This paper studies the relationship
between these parameters and the treewidth of G. Let θ(Tk) / θ(Tk)
/ bt(Tk) denote the maximum thickness / geometric thickness / book
thickness of a graph with treewidth at most k. We prove that:
– θ(Tk) = θ(Tk) = �k/2�, and
– bt(Tk) = k for k ≤ 2, and bt(Tk) = k + 1 for k ≥ 3.

The first result says that the lower bound for thickness can be matched
by an upper bound, even in the more restrictive geometric setting. The
second result disproves the conjecture of Ganley and Heath [Discrete
Appl. Math. 2001] that bt(Tk) = k for all k. Analogous results are proved
for outerthickness, arboricity, and star-arboricity.

1 Introduction

Partitions of the edge set of a graph G into a small number of ‘nice’ subgraphs
is in the mainstream of graph theory. For example, in a proper edge colouring,
the subgraphs of the partition are matchings. When the subgraphs are required
to be planar (respectively, acyclic), then the minimum number of subgraphs in
a partition of G is the thickness (arboricity) of G. Thickness and arboricity
are classical graph parameters that have been studied since the early 1960’s.
The first results in this paper concern the relationship between treewidth and
parameters such as thickness and arboricity. Treewidth is a more modern graph
parameter which is particularly important in structural and algorithmic graph
theory. For each of thickness and arboricity (and other related parameters), we
prove tight bounds on the minimum number of subgraphs in a partition of a
graph with treewidth k. These introductory results are presented in Section 2.
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The main results of the paper concern partitions of graphs with an additional
geometric property. Namely, that there is a drawing of the graph, and each
subgraph in the partition is drawn without crossings. This type of drawing has
applications in graph visualisation (where each plane subgraph is coloured by a
distinct colour), and in multilayer VLSI (where each plane subgraph corresponds
to a set of wires that can be routed without crossings in a single layer). When
there is no restriction on the edges, the minimum number of plane subgraphs,
taken over all drawings of G, is again the thickness of G. By restricting the edges
to be straight, we obtain the geometric thickness of G. By further restricting the
vertices to be in convex position, we obtain the book thickness of G. Our main
results precisely determine the maximum geometric thickness and maximum
book thickness of all graphs with treewidth k. We also determine the analogous
value for a number of other related parameters.

The paper is organised as follows. Section 3 formally introduces all of the
geometric parameters to be studied. Section 4 states our main results. The proofs
of our two main theorems are presented in Sections 5 and 6. The remaining proofs
are in the full version of the paper [6].

2 Abstract Graph Parameters

We consider graphs G that are simple, finite, and undirected. Let V (G) and E(G)
denote the vertex and edge sets of G. For A, B ⊆ V (G), let G[A; B] denote the
bipartite subgraph of G with vertex set A ∪ B and edge set {vw ∈ E(G) : v ∈
A, w ∈ B}. A graph parameter is a function f such that f(G) ∈ N for all graphs
G. For a graph class G, let f(G) := max{f(G) : G ∈ G}. If f(G) is unbounded,
then let f(G) := ∞.

The thickness of a graph G, denoted by θ(G), is the minimum number of
planar subgraphs that partition E(G) (see [11]). A graph is outerplanar if it
has a plane drawing with all the vertices on the boundary of the outerface.
The outerthickness of a graph G, denoted by θo(G), is the minimum number of
outerplanar subgraphs that partition E(G) (see [8]). The arboricity of a graph
G, denoted by a(G), is the minimum number of forests that partition E(G). [12]
proved that a(G) = max{� |E(H)|

|V (H)|−1� : H ⊆ G}. A star-forest is graph in which
every component is a star. The star-arboricity of a graph G, denoted by sa(G),
is the minimum number of star-forests that partition E(G) (see [1]). Thickness,
outerthickness, arboricity and star-arboricity are always within a constant factor
of each other (see [6]).

In the remainder of this section we determine the maximum value of each of
the above four parameters for graphs of treewidth k. A set of k pairwise ad-
jacent vertices in a graph G is a k-clique. For a vertex v of G, let NG(v) :=
{w ∈ V (G) : vw ∈ E(G)} and NG[v] := NG(v) ∪ {v}. We say v is k-simplicial
if NG(v) is a k-clique. A k-tree is a graph G such that either G is (isomor-
phic to) the complete graph Kk, or G has a k-simplicial vertex v and G \ v
is a k-tree. The treewidth of a graph G is the minimum k ∈ N such that G
is a spanning subgraph of a k-tree. Let Tk denote the class of graphs with
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treewidth at most k. Many families of graphs have bounded treewidth. T1 is
the class of forests. Graphs in T2 are obviously planar—a 2-simplicial vertex
can always be drawn near the edge connecting its two neighbours. Graphs
in T2 are characterised as those with no K4-minor, and are sometimes called
series-parallel.

Theorem 1. θ(Tk) = �k/2�

Proof. The upper bound immediately follows from a more general result by [4].
Now for the lower bound. The result is trivial if k ≤ 2. Assume k ≥ 3. Let
� := �k/2� − 1. Let G be the k-tree obtained by adding 2�k + 1 k-simplicial
vertices adjacent to each vertex of a k-clique. Suppose that θ(G) ≤ �. In the
corresponding edge �-colouring of G, consider the vector of colours on the edges
incident to each k-simplicial vertex. There are �k possible colour vectors. Thus
there are at least three k-simplicial vertices x, y, z with the same colour vector.
At least �k/�� ≥ 3 of the k edges incident to x are monochromatic. Say these
edges are xa, xb, xc. Since y and z have the same colour vector as x, the K3,3
subgraph induced by {xa, xb, xc, ya, yb, yc, za, zb, zc} is monochromatic. Since
K3,3 is not planar, θ(G) ≥ � + 1 = �k/2�. Therefore θ(Tk) ≥ �k/2�. 	


The proofs of the following two results are similar to that of Theorem 1, and
can be found in the full version of the paper [6].

Theorem 2. θo(Tk) = a(Tk) = k

Theorem 3. sa(Tk) = k + 1

3 Geometric Parameters

For our purposes, a drawing of a graph represents the vertices by a set of points
in the plane in general position (no three collinear), and represents each edge
by a simple closed curve between its endpoints, such that the only vertices that
an edge intersects are its own endpoints. Two edges cross if they intersect at
some point other than a common endpoint. A graph drawing with no cross-
ings is plane. A plane drawing in which all the vertices are on the outerface is
outerplane.

The thickness of a graph drawing is the minimum k ∈ N such that the edges
of the drawing can be partitioned into k plane subgraphs; that is, each edge
is assigned one of k colours such that monochromatic edges do not cross. Any
planar graph can be drawn with its vertices at prespecified locations [9, 13]. Thus
a graph with thickness k has a drawing with thickness k [9]. However, in such
a representation the edges may be highly curved. This motivates the notion of
geometric thickness.

A drawing of a graph is geometric if every edge is represented by a straight
line-segment. The geometric thickness of a graph G, denoted by θ(G), is the
minimum k ∈ N such that there is a geometric drawing of G with thickness k.
[10] first defined geometric thickness under the name of real linear thickness,
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and it has also been called rectilinear thickness. By the Fáry-Wagner theorem,
a graph has geometric thickness one if and only if it is planar.

We generalise the notion of geometric thickness as follows. The outerthickness
of a graph drawing is the minimum k ∈ N such that the edges of the drawing can
be partitioned into k outerplane subgraphs. The arboricity and star-arboricity
of a graph drawing are defined similarly, where it is respectively required that
each subgraph be a plane forest or a plane star-forest. Again a graph with out-
erthickness /arboricity / star-arboricity k has a drawing with outerthickness /
arboricity / star-arboricity k [9, 13]. The geometric outerthickness / geometric
arboricity / geometric star-arboricity of a graph G, denoted by θo(G) / a(G) /
sa(G), is the minimum k ∈ N such that there is a geometric drawing of G with
outerthickness / arboricity / star-arboricity k.

A geometric drawing in which the vertices are in convex position is called
a book embedding. The book thickness of a graph G, denoted by bt(G), is the
minimum k ∈ N such that there is book embedding of G with thickness k. Note
that whether two edges cross in a book embedding is simply determined by the
relative positions of their endpoints in the cyclic order of the vertices around
the convex hull. One can think of the vertices as being ordered on the spine of a
book and each plane subgraph being drawn without crossings on a single page.
Book embeddings are ubiquitous structures with a variety of applications; see [5]
for a survey with over 50 references. A graph has book thickness one if and only
if it is outerplanar [2]. A graph has a book thickness at most two if and only if it
is a subgraph of a Hamiltonian planar graph [2]. [15] proved that planar graphs
have book thickness at most four.

The book arboricity / book star-arboricity of a graph G, denoted by ba(G) /
bsa(G), is the minimum k ∈ N such that there is a book embedding of G with
arboricity / star-arboricity k. There is no point in defining “book outerthickness”
since it would always equal book thickness.

4 Main Results

In this paper we determine the value of all of the geometric graph parameters
defined in Section 3 for Tk. The following theorem, which is proved in Section 6,
is the most significant result in the paper. It says that the lower bound for the
(abstract) thickness of Tk (Theorem 1) can be matched by an upper bound, even
in the more restrictive setting of geometric thickness.

Theorem 4. θ(Tk) = �k/2�

We have the following theorem for the geometric outerthickness and geomet-
ric arboricity of Tk. It says that the lower bounds for the outerthickness and
arboricity of Tk can be matched by an upper bound on the corresponding geo-
metric parameter. By the lower bound in Theorem 2, to prove Theorem 5, it
suffices to show that a(Tk) ≤ k; we do so in [6].
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Theorem 5. θo(Tk) = a(Tk) = k

We have the following theorem for the book thickness and book arboricity
of Tk.

Theorem 6. bt(Tk) = ba(Tk) =

{
k for k ≤ 2
k + 1 for k ≥ 3

This theorem gives an example of an abstract parameter that is not matched
by its geometric counterpart. In particular, bt(Tk) > θo(Tk) = k for k ≥ 3.
Theorem 6 with k = 1 was proved by [2]. That bt(T2) ≤ 2 was independently
proved by [14] and [3]. Note that bt(T2) = 2 since there are series parallel graphs
that are not outerplanar, K2,3 being the primary example. We prove the stronger
result that ba(T2) = 2 in [6]. [7] proved that every k-tree has a book embedding
with thickness at most k +1. It is easily seen that each plane subgraph is in fact
a star-forest. Thus bt(Tk) ≤ ba(Tk) ≤ bsa(Tk) ≤ k + 1. We give an alternative
proof of this result in [6]. [7] proved a lower bound of bt(Tk) ≥ k, and conjectured
that bt(Tk) = k. Thus Theorem 6 refutes this conjecture. The proof is given in
Section 5, where we construct a k-tree G with bt(G) > k.

Finally observe that the upper bound of [7] mentioned above and the lower
bound in Theorem 3 prove the following result for the star-arboricity of Tk.

Theorem 7. sa(Tk) = sa(Tk) = bsa(Tk) = k + 1

5 Book Thickness: Proof of Theorem 6 (k ≥ 3)

By the discussion in Section 4, it suffices to show that for all k ≥ 3, there is a
k-tree G with book thickness bt(G) > k. Define G by the following construction:

– Start with a k-clique V1.
– Add k(2k + 1) k-simplicial vertices adjacent to each vertex in V1; call this

set of vertices V2.
– For each vertex v ∈ V2, choose three distinct vertices x1, x2, x3 ∈ V1, and for

each 1 ≤ i ≤ 3, add four k-simplicial vertices adjacent to each vertex of the
clique (V1 ∪ {v}) \ {xi}. Each set of four vertices is called an i-block of v.
Let V3 be the set of vertices added in this step.

Clearly G is a k-tree. Assume for the sake of contradiction that G has a book
embedding with thickness k. Let {E1, E2, . . . , Ek} be the corresponding partition
of the edges. For each ordered pair of vertices v, w ∈ V (G), let the arc-set V

�vw

be the list of vertices in clockwise order from v to w (not including v and w).
Say V1 = (y1, y2, . . . , yk) in anticlockwise order. There are k(2k + 1) vertices in
V2. Without loss of generality there are at least 2k +1 vertices in V2 ∩V

�y1yk
. Let

(v1, v2, . . . , v2k+1) be 2k + 1 vertices in V2 ∩ V
�y1yk

in clockwise order.
Observe that the k edges {yivk−i+1 : 1 ≤ i ≤ k} are pairwise crossing,

and thus receive distinct colours, as illustrated in Figure 1(a). Without loss of
generality, each yivk−i+1 ∈ Ei. As illustrated in Figure 1(b), this implies that



134 V. Dujmović and D.R. Wood

y1v2k+1 ∈ E1, since y1v2k+1 crosses all of {yivk−i+1 : 2 ≤ i ≤ k} which are
coloured {2, 3, . . . , k}. As illustrated in Figure 1(c), this in turn implies y2v2k ∈
E2, and so on. By an easy induction, we obtain that yiv2k+2−i ∈ Ei for all
1 ≤ i ≤ k, as illustrated in Figure 1(d). It follows that for all 1 ≤ i ≤ k and
k − i + 1 ≤ j ≤ 2k + 2 − i, the edge yivj ∈ Ei, as illustrated in Figure 1(e).
Finally, as illustrated in 1(f), we have:

If qyi ∈ E(G) and q ∈ V
̂vk−1vk+3

, then qyi ∈ Ei. (�)

y1

y2

y3

v1

v2

v3
v4 v5

v6

v7
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(f)

Fig. 1. Example in the proof of Theorem 6 with k = 3

Consider any of the twelve vertices w ∈ V3 that are added onto a clique
that contain vk+1. Then w is adjacent to vk+1. Moreover, w is in V

̂vkvk+1
or

V
̂vk+1vk+2

, as otherwise the edge wvk+1 crosses k edges of G[{vk−1, vk+1}; V1]
that are all coloured differently, which is a contradiction. By the pigeon-hole
principle, one of V

̂vkvk+1
and V

̂vk+1vk+2
contains at least two vertices from two

distinct p-blocks of vk+1. Without loss of generality, V
̂vkvk+1

does. Let these four
vertices be (a, b, c, d) in clockwise order.

Each vertex in {b, c, d} is adjacent to k − 1 vertices of V1. Not all of b, c, d
are adjacent to the same subset of k − 1 vertices in V1, as otherwise all of b, c, d
would belong to the same p-block. Hence each vertex in V1 has a neighbour in
{b, c, d}. By (�) the edges of G[{b, c, d}, V1] receive all k colours. However, every
edge in G[{b, c, d}; V1] crosses the edge avk+1, implying that there is no colour
available for avk+1. This contradiction completes the proof.
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6 Geometric Thickness: Proof of Theorem 4

The proofs of all of our upper bounds depend upon the following lemma.

Lemma 8. For every k-tree G, either:

(1) there is a (possibly empty) independent set S ⊆ V (G) of k-simplicial vertices
in G such that G \ S = Kk, or

(2) there is a nonempty independent set S ⊆ V (G) of k-simplicial vertices in G
and a vertex v ∈ V (G) \ S, such that:
(a) G \ S is a k-tree,
(b) v is k-simplicial in G \ S,
(c) for every vertex w ∈ S, there is exactly one vertex u ∈ NG\S(v) such

that NG(w) = NG\S [v] \ {u},
(d) every k-simplicial vertex of G that is not in S is not adjacent to v.

Proof. We proceed by induction on |V (G)|. If |V (G)| = k then G = Kk and prop-
erty (1) is satisfied with S = ∅. If |V (G)| = k + 1 then G = Kk+1 and property
(1) is satisfied with S = {v} for any vertex v. Now suppose that |V (G)| ≥ k +2.
Let L be the set of k-simplicial vertices of G. Then L is a nonempty independent
set, and G \ L is a k-tree. Moreover, the neighbourhood of each vertex in L is
a k-clique. If G \ L = Kk, then property (1) is satisfied with S = L. Otherwise,
G \ L has a k-simplicial vertex v. Let S be the set of neighbours of v in L. We
claim that property (2) is satisfied. Now S 
= ∅, as otherwise v ∈ L. Since G is
not a clique and each vertex in S is simplicial, G\S is a k-tree. Consider a vertex
w ∈ S. Now NG(w) is a k-clique and v ∈ NG(w). Thus NG(w) ⊆ NG\S [v]. Since
|NG(w)| = k and |NG\S [v]| = k + 1, there is exactly one vertex u ∈ NG\S(v) for
which NG(w) = NG\S[v] \ {u}. Part (d) is immediate. 	


We now turn to the proof of Theorem 4. The lower bound θ(Tk) ≥ �k/2�
follows from the stronger lower bound θ(Tk) ≥ �k/2� in Theorem 1. The theorem
is true for all 0-, 1- and 2-trees since they are planar. To prove the upper bound
θ(Tk) ≤ �k/2�, it suffices to prove that θ(2k) ≤ k for all k ≥ 2. Let I := {i, −i :
1 ≤ i ≤ k}.

Consider a geometric drawing of a 2k-tree G, in which the edges are coloured
with k colours. Let v be a 2k-simplicial vertex of G, where (u1, u2, . . . , uk,
u−1, u−2, . . . , u−k) are the neighbours of v in clockwise order around v. Let
Fi(v) denote the closed infinite wedge centred at v (but not including v), which
is bounded by the ray −→vui and the ray that is opposite to the ray −−→vu−i. As
illustrated in Figure 2(a), we say that v has the fan property if:

– Fi(v) ∩ Fj(v) = ∅ for all distinct i, j ∈ I,
– there are exactly two edges of each colour incident to v, and
– the edges vui and vu−i receive the same colour for all 1 ≤ i ≤ k.

We proceed by induction on |V (G)| with the hypothesis: “every 2k-tree G has
a geometric drawing with thickness k; moreover, if |V (G)| ≥ 2k + 2, then every
2k-simplicial vertex v of G has the fan property.” Let G be a 2k-tree. Apply
Lemma 8 to G.
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(a)

u1
u−1

u2

u−2

u3

u−3

v
F1(v)

F2(v)
F3(v)

F−1(v)

F−2(v) F−3(v)

(b)

v0

v1v2

v3

v4 v5

Fig. 2. Proof of Theorem 4: (a) the fan property, (b) the base case

First suppose that Lemma 8 gives a (possibly empty) independent set S ⊆
V (G) of 2k-simplicial vertices in G such that G \ S = K2k. Say V (G \ S) =
{v0, v1, . . . , v2k−1}. Position v0, v1, . . . , v2k−1 evenly spaced on a circle in the
plane, and in this order. The edges of G\S can be k-coloured using the standard
book embedding of K2k with thickness k, where each edge vαvβ is coloured
� 1

2 ((α + β) mod 2k)�. Each colour class forms a plane zig-zag pattern. For each
vertex w ∈ S and for all 0 ≤ i ≤ k − 1, colour the edges wvi and wvk+i by i. As
illustrated in Figure 2(b), position the vertices in S in a small enough region near
the centre of the circle so that monochromatic edges do not cross, each w ∈ S
has the fan property, and V (G) is in general position. If |V (G)| ≥ 2k+2, then no
vertex in {v0, v1, . . . , v2k−1} is 2k-simplicial in G. Therefore, each 2k-simplicial
vertex of G is in S, and thus has the fan property.

Now suppose that Lemma 8 gives a nonempty independent set S ⊆ V (G) of
2k-simplicial vertices in G and a vertex v ∈ V (G)\S, such that v is 2k-simplicial
in the k-tree G\S. If |V (G)\S| ≥ 2k+2, then by induction, there is a geometric
drawing of G \ S with thickness k, in which v has the fan property. Otherwise,
G \ S = K2k+1 and thus the set S′ = {v} is an independent set of 2k-simplicial
vertices in G \ S such that (G \ S) \ S′ = K2k. Thus by the construction given
above, there is a geometric drawing of G \ S with thickness k, in which v has
the fan property.

Say NG\S(v) = (u1, u2, . . . , uk, u−1, u−2, . . . , u−k) in clockwise order about
v. Without loss of generality, the edges vui and vu−i are coloured i, for all
1 ≤ i ≤ k. Choose a small enough disc Dε centred at v such that:

(a) the only vertices in Rε are NG\S[v],
(b) every edge of G \ S that intersects Dε is incident to v (as illustrated in

Figure 3), and
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ε

u1

u2

u3 u4

u5

v

Fig. 3. The ‘empty’ disc Dε

(c) should a vertex whose neighbourhood is {u1, u2, . . . , uk, u−1, u−2, . . . , u−k}
be placed in Dε, then it would have the fan property.

By Lemma 8, for every vertex w ∈ S, there is exactly one i ∈ I for which
NG(w) = NG\S [v] \ {ui}. Let Si := {w ∈ S : NG(w) = NG\S[v] \ {ui}} for
all i ∈ I. Two vertices in Si have the same neighbourhood in G. For all i ∈ I,
choose one vertex xi ∈ Si (if any). We will first draw xi for all i ∈ I. Once that
is completed, we will draw the remaining vertices in S.

As illustrated in 4, for all i ∈ I, colour the edge xiv by |i|, and colour the edge
xiuj by |j| for all j ∈ I \ {i}. Now in a drawing of G , for each i ∈ I, Fi(xi) is
the closed infinite wedge bounded by the ray −→xiv and the ray that is opposite to
−−−→xiu−i, and F−i(xi) is the closed infinite wedge bounded by the ray −−−→xiu−i and the
ray that is opposite to −→xiv. Observe that in a drawing of G, if xi ∈ F−i(v) for all
i ∈ I, then v 
∈ F�(xi) for all � 
= i. Therefore, for i ∈ I in some arbitrary order,
each vertex xi can initially be positioned on the line-segment vu−i ∩ (Dε \ {v}),
so that xi 
∈

⋃
{F�(xj) : � ∈ I \ {j}} for every j ∈ I. This is possible by the

previous observation, since there is always a point close enough to v where xi

can be positioned, so that xi 
∈
⋃

{F�(xj) : � ∈ I \ {j}} for all the vertices xj

that are drawn before xi. Observe that each vertex xi has the fan property in
the thus constructed illegal drawing.

Now we move each vertex xi just off the edge vu−i to obtain a legal drawing.
In particular, move each xi by a small enough distance ε′ into F−i(v), so that
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Fig. 4. Placing each xi on the edge vu−i; the circle Dε is chosen small enough so that
the edges incident with ui are almost parallel
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Fi(xi) does not contain the vertex xj , for all j ∈ I \ {i, −i}. This implies that
for all distinct i, j ∈ I with i 
= −j, we have that xj 
∈ F�(xi) for all � ∈ I.

To prove that monochromatic edges do not cross, we distinguish four types
of edges coloured i, where 1 ≤ i ≤ k:

1. edges of G \ S coloured i,
2. the edges xiv and x−iv,
3. edges xjui for some j ∈ I \ {i}, and
4. edges x�u−i for some � ∈ I \ {−i}.

First we prove that no type-(1) edge is involved in a monochromatic crossing.
No two type-(1) edges cross by induction. Since a type-(2) edge is contained in
Dε, by (b) in the choice of ε, type-(1) and type-(2) edges do not cross. Suppose
that a type-(1) edges e crosses a type-(3) or type-(4) edge. By (a) in the choice
of ε, e would also cross vui. Since vui is coloured i, by induction applied to G\S,
e is not coloured i.

The two type-(2) edges do not cross since they are both incident to v. Type-
(3) edges do not cross since they are all incident to ui. Type-(4) edges do not
cross since they are all incident to u−i.

Suppose that a type-(2) edge xiv crosses a type-(3) edge xjui for some j ∈
I \ {i}. By construction, xi ∈ F−i(v) and xj 
∈ F−i(v). Therefore, if xjui crosses
xiv, then xjui also crosses the edge vu−i, which is a type-(1) edge of colour |i|.
Thus this type of crossing was ruled out when type-(1) edges were considered.
Now suppose that a type-(2) edge x−iv crosses a type-(3) edge xjui for some
j ∈ I \ {i}. Then xj ∈ F−i(x−i), which contradicts the placement of xj . Thus
no type-(2) edge crosses a type-(3) edge. By symmetry, no type-(2) edge crosses
a type-(4) edge.

If a type-(3) edge x−iui crosses a type-(4) edge x�u−i (for some � ∈ I \ {−i}),
then x�u−i also crosses the edge vui, which is a type-(1) edge coloured |i|. Thus
this type of crossing was ruled out when type-(1) edges were considered. By
symmetry, a type-(4) edge xiu−i does not cross a type-(3) edge x�ui (for all
� ∈ I \ {i}). Finally, if a type-(3) edge xjui (for some j ∈ I \ {i, −i}) crosses a
type-(4) edge x�u−i (for some � ∈ I\{−i, i}), then x� ∈ Fi(xj) and xj ∈ F−i(x�),
contradicting our placement of x� or xj . Thus type-(3) edges do not cross type-
(4) edges.

Each vertex z ∈ Si \ {xi} can be drawn in a small enough region around xi,
and every edge zuj coloured with the same colour as xiuj , so that z has fan
property and monochromatic edges do not cross.

It remains to prove that each 2k-simplicial vertex of G has the fan property
whenever |V (G)| ≥ 2k + 2. By construction that is true for all 2k-simplicial
vertices of G that are in S. The remaining 2k-simplicial vertices of G are also
2k-simplicial in the 2k-tree G \ S. If |V (G) \ S| ≥ 2k + 2, then by induction, the
invariant is also maintained for all 2k-simplicial vertices of G that are not in S.
If G \ S is K2k+1, then by Lemma 8(d), there is no 2k-simplicial vertex of G in
G \ S. Thus the invariant is maintained.
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