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Università di Perugia, Italy
{didimo, giordano, liotta}@diei.unipg.it

Abstract. The upward planarity testing problem is known to be NP-
hard. We describe an O(n4)-time upward planarity testing and embed-
ding algorithm for the class of digraphs that do not contain rigid tricon-
nected components. We also present a new FPT algorithm that solves the
upward planarity testing and embedding problem for general digraphs.

1 Introduction

An upward planar drawing of a planar digraph G is a crossing-free drawing of
G such that the vertices of G are mapped to points of the plane and the edges
of G are drawn as simple curves that are monotone in the upward direction.
A digraph that admits an upward planar drawing is an upward planar digraph.
Unfortunately, not all planar digraphs are upward planar. The digraph of Fig-
ure 1(a) is not upward planar independent of the choice of its planar embedding.
The upward planarity testing problem asks whether a planar digraph G has an
upward planar drawing.
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Fig. 1. (a) A digraph G that is not upward planar. (b) The underlying undirected
graph of G is a series-parallel graph, i.e., it does not have rigid components.

The upward planarity testing problem is a classical subject of investigation in
the graph drawing literature, and many papers have been devoted to this subject
during the last decade. Bertolazzi et al. [1] present an O(n2)-time algorithm that
tests whether a digraph with a given planar embedding is upward planar. Garg
and Tamassia [9] show that the problem in the variable embedding setting is
NP-complete. Papakostas [14] presents an O(n2)-time algorithm for testing the
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upward planarity of outerplanar digraphs. Hutton and Lubiw [13] describe an
O(n2)-time testing algorithm for digraphs that have a single source. Bertolazzi
et al. [3] improve this last result by showing an optimal O(n) testing algorithm
for the same class of digraphs studied by Hutton and Lubiw. Bertolazzi et al. [2]
describe a branch-and-bound testing algorithm for biconnected planar digraphs.
Recently, fixed parameter tractable (FPT) algorithms have also been designed:
Chan [4] presents an O(t! ·8t ·n3 +(2 · t)3·2c

t! ·8t ·n)-time algorithm where c and
t are the number of cut-vertices and the number of triconnected components of
G, respectively. Healy and Lynch [12] improve Chan’s result by giving an O(2t ·
t! · n2)-time algorithm; in the same paper, Healy and Lynch describe a second
upward planarity testing algorithm whose time complexity is O(n2+k4(2k+1)!),
with k = |E| − |V |.

In this paper we describe a polynomial time algorithm and a new FPT al-
gorithm for the upward planarity testing problem in the variable embedding
setting. More precisely:
– We introduce and study the concept of upward spirality (Section 3), which

is a measure of how much a component of a digraph is “rolled-up” in an
upward planar drawing. A similar concept was introduced in the literature
in the context of orthogonal drawings [6].

– We describe an O(n4)-time upward planarity testing and embedding algo-
rithm for the class of series-parallel digraphs, i.e. biconnected digraphs whose
SPQR-tree does not have any R-node (Section 4). Our algorithm still runs
in polynomial time even if the digraph is not biconnected and any block is
a series-parallel digraph.

– Using the above results, we design a new FPT algorithm for upward planarity
testing of general digraphs whose time complexity is O(dt·n3+d·t2·n+d2 ·n2),
where d is the maximum diameter of any split component of G and t is the
number of (non-trivial) triconnected components of G (Section 5).

For reasons of space, all proofs are omitted and some sections are sketched.
Details can be found in [8].

2 Preliminaries

We assume familiarity with basic concepts of graph drawing and graph pla-
narity [5]. Let G be a planar digraph with a given planar embedding. A vertex
of G is bimodal if the circular list of its incident edges can be partitioned into two
(possibly empty) lists, one consisting of incoming edges and the other consisting
of outgoing edges. If all vertices of G are bimodal then G and its embedding
are called bimodal. Acyclicity and bimodality are necessary conditions for the
upward planar drawability of an embedded planar digraph [1]. However, they
are not sufficient conditions.

Let f be a face of an embedded planar bimodal digraph G and suppose that
the boundary of f is visited clockwise if f is internal, and counterclockwise if f
is external. Let a = (e1, v, e2) be a triplet such that v is a vertex of the boundary
of f and e1, e2 are incident edges of v that are consecutive on the boundary of f .
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Triplet a is called an angle of f . Also, a is a switch angle of f if the direction
of e1 is opposite to the direction of e2 (note that e1 and e2 may coincide if G is
not biconnected). If e1 and e2 are both incoming in v, then a is a sink-switch of
f ; if they are both outgoing, a is a source-switch of f . A source or a sink of G
is called a switch vertex of G; a vertex that is not a switch vertex is called an
internal vertex of G.

Let Γ be an upward planar drawing of G and let a be an angle of G. Label a
with a letter L (resp. a letter S) if it is a switch angle and has in Γ a value greater
(resp. less) than π. Label a with a letter F if it is not a switch angle. The labeled
embedded digraph UG so obtained is called an upward planar representation of G,
and can be viewed as the equivalence class of all (embedding preserving) upward
planar drawings of G that induce the same angle labeling on G. Drawing Γ is
also said to be an upward planar drawing that preserves UG.

Now, consider an embedded planar digraph G and a labeling of its angles
with labels L, S, and F . If v is a vertex of G, we denote by L(v), S(v), and F (v)
the number of angles at v that are labeled L, S, and F , respectively. The degree
of v is defined as the number of angles at v, and is denoted as deg(v). Also, if f
is a face of G, L(f), S(f), and F (f) denote the number of angles of f that are
labeled L, S, and F , respectively. The following result is a restatement of the
results in [1].

Lemma 1. Let G be an acyclic planar bimodal embedded digraph with angle
labels L, S, F . G and its labeling define an upward planar representation if and
only if the following properties hold: (UP1) If v is a switch vertex of G then:
L(v) = 1, S(v) = deg(v) − 1, F (v) = 0; (UP2) If v is not a switch vertex of G
then: L(v) = 0, S(v) = deg(v) − 2, F (v) = 2; (UP3) If f is a face of G then:
L(f) = S(f) − 2 if f is internal and L(f) = S(f) + 2 if f is external.

From an upward planar representation UG it is always possible to construct in
linear time an upward planar drawing of G that preserves UG, where each edge is
drawn as a straight-line segment or as a polyline. Figure 2 shows an embedded
planar digraph G, an upward planar representation UG of G, and an upward
planar drawing of G within UG. Given an upward planar representation UG, the
angles labeled L, S, and F are called large, small, and flat angles, respectively. If
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Fig. 2. (a) A planar embedded bimodal digraph G. (b) An upward planar representa-
tion UG of G. (c) An upward planar drawing of G within UG.
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Fig. 3. Transformation of an SPQR-tree into its canonical form

G′ is a subgraph of G, then G′ has an upward planar representation UG′ induced
by UG, which is defined as follows. Let a = (e1, v, e2) be an angle of G′, and let
A be the counterclockwise sequence of angles of UG between e1 and e2. Angle a
in UG′ is labeled: L if A either contains one large angle or two flat angles; F if
A contains only one flat angle; S otherwise.

Let G be a biconnected graph and let e = {s, t} be any edge of G, called
reference edge. The SPQR-tree of G with respect to e describes a decomposition
of G in terms of its triconnected components, and implicitly represents all planar
embeddings of G with e on the external face. We assume familiarity with all
formal definitions about SPQR-trees [7]. Suppose that G is given with an st-
numbering of its vertices, such that the source and the sink of this numbering
are the end-vertices s, t of the reference edge of G. If T is the SPQR-tree of G
with respect to e, given any node µ of T , let u and v be the two poles of µ, so
that u precedes v in the st-numbering. We call u and v the first pole and the
second pole of the pertinent graph Gµ of µ. If G has a fixed planar embedding
with reference edge e on the external face, the right face of Gµ is the face to the
right of Gµ in G, while moving from u to v. The left face of Gµ is the face to
the left of Gµ in G, while moving from u to v. The path on the right face of Gµ,
going from u to v, is called the right path of Gµ. The path on the left face of
Gµ, going from u to v, is called the left path of Gµ.

In the remainder of the paper, we consider SPQR-trees of directed graphs
(digraphs) G. In this case, the computation of the decomposition tree is done
exactly as for undirected graphs, by ignoring the orientation of the edges of
G. Notice that, there is no connection between the orientation of the edges
of G and the definition of first and second poles of the pertinent digraphs. In
order to simplify the description of our upward planarity testing algorithm, we
use canonical SPQR-trees, i.e., SPQR-trees where each S-node has always two
children. A canonical SPQR-tree T of G can be constructed from an SPQR-
tree of G by applying on every S-node the transformation illustrated in Figure 3.
A canonical SPQR-tree of G has a number of nodes that is still linear in the
number of vertices of G.

We say that a biconnected digraph G is a series-parallel digraph if its SPQR-
tree only consists of Q-, S-, and P -nodes.

3 Upward Spirality

In the following, we assume that G is a biconnected digraph, T an SPQR-tree
of G, UG an upward representation of G, and Gµ the pertinent digraph of a node
µ of T , with first pole u and second pole v.
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Let P =< v1, e1, v2, . . . , vi, ei, . . . , ek−1, vk > be any simple (undirected) path
(possibly a simple cycle) in G, and let UP be the upward planar representation
of P induced by UG. Consider a vertex vi (i ∈ {2, . . . , k − 1}) that is a switch
of P , and denote by a = (ei−1, vi, ei), a′ = (ei, vi, ei−1) the two angles at vi in
UP . Walking on P from v1 to vk, we say that vi is a left turn (resp. right turn)
of UP if a (resp. a′) is large. We denote by n(UP ) the number of right turns
minus the number of left turns of UP , and we call n(UP ) the turn number of P
in UG, or simpler, the turn number of UP . Similarly, if P is a simple cycle, i.e.
v1 = vk, and we walk clockwise on P , we say that we encounter a left turn (resp.
right turn) of UP on any switches of P that has a large angle (resp. small angle)
inside the cycle. Because of Lemma 1, if P is a simple cycle of UG, then its turn
number is n(UP ) = 2.

Denoted by w ∈ {u, v} any of the two poles of Gµ, we want to classify w on
the basis of the labeling of the angles at w in UG. The label of the angle at w in
the right face (resp. in the left face) of Gµ is called the right inter-label (resp. the
left inter-label) of w. An intra-label of w is any label of an angle at w internal at
Gµ. We assign to each angle label an integer weight, in such a way that labels
S, F , and L have weight 0, 1, and 2, respectively. The intra-labeling weight of w
is the sum of the weights of all intra-labels of w. From properties UP1 and UP2
of Lemma 1, the intra-labeling weight of w ranges from 0 to 2.

In UG, we describe the angles labeling of the pole w of Gµ, by using a string
tw = XY λ, such that X is the left inter-label of w, Y is the right inter-label of w,
and λ is the intra-labeling weight of w. We say that tw is the pole category of w.
We remark that, since UG is an upward planar representation, not all categories
XY λ (X, Y ∈ {S, F, L}, λ ∈ {0, 1, 2}) are possible for a pole w of a pertinent
digraph of G. Indeed, as also observed above, the sum of all angle labels at w
must verify UP1 and UP2, and w must be bimodal. Hence, the following lemma
immediately follows (see also Figure 4):

Lemma 2. The possible pole categories of any pole of Gµ in UG are: SS0, SS1,
SS2, SF0, SF1, FS0, FS1, FF0, SL0, LS0.
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Fig. 4. Illustration of the pole categories for the first pole of a pertinent digraph within
an upward planar representation. Grey portions are the internal parts of the pertinent
digraph. The two labels around the pole are the inter-labels of the pole. The illustration
for the second pole is symmetric.
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In order to introduce the notion of upward spirality we need to identify two
suitable vertices that we call the left external vertex of w, denoted as wl, and
the right external vertex of w, denoted as wr, where w is still any of the two
poles of Gµ. The right and the left external vertices of w are defined based on
the pole category tw of w, with respect to Gµ in UG. More precisely, let el be
the edge incident on w, that is on the left path of Gµ and that does not belong
to Gµ; let er be the edge incident on w, that is on the right path of Gµ and that
does not belong to Gµ. Also, let x be the end-vertex of el other than w and let y
be the end-vertex of er other than w. The external vertices wl and wr of w are
defined as follows: (Case 1) One of the following three subcases is verified: (i)
tw ∈ {SS0, SF0, FS0, FF0}; (ii) tw = SL0 and w is the first pole of Gµ; (iii)
tw = LS0 and w is the second pole of Gµ. In this case wl = wr = w. (Case
2) One of the following two subcases is verified: (i) tw ∈ {FS1, SF1, SS1, SS2};
(ii) tw = SL0 and w is the second pole of Gµ; (iii) tw = LS0 and w is the first
pole of Gµ. In this case wl = x and wr = y.

Let ul, ur be the left and the right external vertices of the first pole u of
Gµ and let vl, vr be the left and the right external vertices of the second pole
v of Gµ. Let Puv be an (undirected) path from u to v in Gµ. The undirected
path Pl = (ul, u) ∪ Puv ∪ (v, vl) is called a left spine of Gµ. The path Pr =
(ur, u) ∪ Puv ∪ (v, vr) is called a right spine of Gµ. For example, the left spine
and the right spine of a pertinent digraph are highlighted in Figure 5.

The following lemma shows that the turn number of a spine of a pertinent
digraph of an upward representation is an invariant property of the upward
representation itself.

Lemma 3. Let P ′
r, P

′′
r be two distinct right spines of Gµ and let P ′

l , P
′′
l be two

distinct left spines of Gµ. Then n(UP ′
r
) = n(UP ′′

r
) and n(UP ′

l
) = n(UP ′′

l
).

For example, in Figure 5, Gµ′ has only two left spines, that also concide with
the right spines. The turn number of these spines is −1. Based on Lemma 3, we
can denote by nl(UGµ) the turn number of any left spine of Gµ in UG, without
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Fig. 5. An upward planar representation of a series-parallel digraph G, and an SPQR-
tree T of G rooted at edge e. Gµ and Gµ′ are the pertinent digraphs of nodes µ and
µ′ of T , with poles u, v, u′, v′, respectively. The pole categories of u and v are SS2 and
SS1, respectively. The ones of u′ and v′ are FS1 and SL0, respectively. The left and
the right spines of Gµ constructed on the right path of Gµ are highlighted.
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ambiguity; similarly, nr(UGµ) denotes the turn number of any right spine of Gµ.
The upward spirality of Gµ within UG (or simpler, the upward spirality of UGµ),

is denoted as σ(UGµ) and is defined as follows: σ(UGµ) = nl(UGµ )+nr(UGµ )
2 .

For example, in Figure 5, σ(UGµ) = −1/2, and σ(UGµ′ ) = −1. Suppose now
that Pl and Pr are a left spine and a right spine of Gµ, constructed using the same
path Puv =< u, w1, w2, . . . , wk, v > between the poles u, v of Gµ. We can rewrite
the turn number of the spines as follows: n(UPl

) = n(UPuv )+aul
+avl

, n(UPr ) =
n(UPuv ) + aur + avr , where aul

= n(UPul
), aur = n(UPur

), avl
= n(UPvl

),
avr = n(UPvr

), and Pul
=< ul, u, w1 >, Pur =< ur, u, w1 >, Pvl

=< wk, v, vl >,
Pvr =< wk, v, vr >. Of course, aul

, aur , avl
, avr ∈ {−1, 0, 1}. From the invariant

property of Lemma 3, the upward spirality of UGµ , can be rewritten as follows:

σ(UGµ) = n(UPuv ) +
(aul

+ aur )
2

+
(avl

+ avr )
2

(1)

In order to uniquely refer to the values aul
, aur , avl

, avr for the upward spi-
rality of UGµ , we aim at rewriting σ(UGµ) in a kind of canonical form, choosing
always a “special” path Puv. We define the following equivalence relationship
between any two paths P ′

uv, P ′′
uv of Gµ, within a given upward representation

UG of G. We say that P ′
uv, P

′′
uv are turn equivalent if n(UP ′

uv
) = n(UP ′′

uv
), i.e, if

they have the same turn number. Since σ(UGµ) assumes the same value if we
use P ′

uv or P ′′
uv in Formula (1), and since aul

, aur , avl
, avr ∈ {−1, 0, 1}, then the

turn-equivalence relationship partitions the set of the undirected paths of UGµ ,
from the first to the second pole, into a finite set of equivalence classes. The
following lemma gives a useful property of the paths of Gµ.

Lemma 4. Let P r
uv be a path of Gµ that is turn-equivalent to the right path of

Gµ, and let P l
uv be a path of Gµ that is turn-equivalent to the left path of Gµ. If

Puv is any path of Gµ between u and v, then n(UP l
uv

) ≥ n(UPuv ) ≥ n(UP r
uv

).

In Formula (1) we now choose as path Puv any path P r
uv that is turn-equivalent

to the right path of Gµ, and we consider the corresponding values (aul
+ aur)/2

and (aul
+ aur )/2. Denote n(UP r

uv
) by α(UGµ), and denote (aul

+ aur )/2, (aul
+

aur )/2 by αu(UGµ) and αv(UGµ), respectively.
The upward spirality of UGµ can be rewritten in the following canonical form:

σ(UGµ) = α(UGµ)+αu(UGµ)+αv(UGµ). We call α(UGµ) the internal spirality of
UGµ , and αu(UGµ), αv(UGµ) the first-pole spirality and the second-pole spirality,
respectively. From Lemma 4, each of the terms aul

, aur , avl
, avr in Formula (1)

takes the maximum possible value when Puv = P r
uv. This also implies that,

for any choice of Puv, (aul
+ aur )/2 ≤ αu(UGµ) and (avl

+ avr )/2 ≤ αv(UGµ).
Therefore, for each pole category, it is possible to determine the exact value of
the two pole spiralities, since we know that they take the maximum possible
value and since we know what are the two external vertices. The next results
prove that the upward spirality can only take a linear number of values.

Lemma 5. Let n be the minimum number of switches on any path between the
poles u and v of Gµ. Then, −n−2 ≤ σ(UGµ) ≤ n+2. Also, αu(UGµ)+αv(UGµ) ∈
{−1, −1/2, 0, 1/2, 1, 3/2, 2}.
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Theorem 1. Let G be a digraph with n vertices, T an SPQR-tree of G, and
Gµ the pertinent digraph of a node µ of T . There are at most O(n) values for
the upward spirality of Gµ within any upward planar representation of G.

The following lemmas describe the relationships between the upward spirali-
ties of series and parallel compositions, and the ones of their components.

Lemma 6. Let µ be an S-node of T with children µ1 and µ2. Let Gµ be the
pertinent digraph of µ, with poles u and v, and let Gµ1 , Gµ2 be the pertinent
digraphs of µ1, µ2, with poles u1 = u, v1, and u2 = v1, v2 = v, respectively. The
following relationship holds: σ(UGµ) = σ(UGµ1

) + σ(UGµ2
).

Lemma 7. Let µ be a P node of T with children µ1, . . . , µk, ordered from left
to right. Let Gµ be the pertinent digraph of µ and let Gµ1 , . . . , Gµk

be the per-
tinent digraphs of µ1, . . . , µk, respectively. For each i = 1, . . . , k, the following
relationships hold: (1) α(UGµ) = α(UGµi

)+δ(i)(UGµ), δ(i)(UGµ) ∈ {0, 1, 2, 3, 4};
(2) α(UGµ1

) ≥ α(UGµ2
) ≥ · · · ≥ α(UGµk

) = α(UGµ).

Consider now the subgraph G′ of G consisting of Gµ plus the edges incident on
u and v that are external to Gµ, and let U ′

G′ be any upward planar representation
of G′ such that the planar embedding of the external edges of Gµ and the
angle labels between these edges in U ′

G′ are the same as in UG. Notice that,
the planar embedding of Gµ in U ′

G′ can be different from the one in UG. Denote
by t′u = X ′

uY ′
uλu and t′v = X ′

vY ′
vλv the pole categories of u and v for U ′

Gµ
. The

operation of substitution of UGµ with U ′
Gµ

in UG defines a new planar embedded
digraph S(U ′

Gµ
, UG) with angle labels S, F , and L such that: (i) The planar

embedding and the labels of the angles of subgraph G − Gµ are the same as in
UG; (ii) The planar embedding and the labels of the angles of subgraph Gµ are
the same as in U ′

Gµ
; (iii) The inter-labels of Gµ at u and at v are X ′

u, Y ′
u, X ′

v, Y
′
v ,

respectively. We say that UGµ is substitutable with U ′
Gµ

in UG if S(U ′
Gµ

, UG) is
still an upward planar representation of G. The following theorem is the main
result of this section.

Theorem 2. If U ′
Gµ

and UGµ have the same upward spirality and the same pole
categories (i.e. t′u = tu, t′v = tv), then UGµ is substitutable with U ′

Gµ
in UG.

4 Upward Planarity Testing of Series-Parallel Digraphs

The outline of our upward planarity testing and embedding algorithm for series-
parallel digraphs is as follows. For each possible choice of an edge e of G, the
algorithm computes the SPQR-tree T of G with reference edge e. Then, the
algorithm visits T from bottom to top, in post-order. Each time a node µ of
T is visited, µ is equipped with a set of upward planar representations of Gµ

(which we call feasible set of µ), such that each upward planar representation
is constrained to have assigned pole categories and an assigned value of upward
spirality. Using the result of Theorem 2, for each possible combination of pole
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categories and upward spirality value, the algorithm stores only one constrained
upward planar representation, if there exists one. The feasible set of each S-node
and P -node of T is computed by considering the feasible sets of its children. In
this way, the algorithm incrementally tries to construct an upward planar rep-
resentation of G with edge e on the external face, from the leaves to the root,
while exploring a subset of upward planar representations that is “representa-
tive” of the whole set of upward planar representations of G. The algorithm ends
if the feasible set of a node is empty or if the feasible sets of all nodes have been
successfully computed. In the following we formalize the definition of feasible set
and then describe how the feasible sets of the different types of nodes can be
computed.

A feasible tuple of µ is defined as follows: τµ =< UGµ , σ(UGµ), tu, tv >,
where UGµ is an upward planar representation of Gµ with pole categories tu, tv
and upward spirality σ(UGµ). Let τ ′

µ =< U ′
Gµ

, σ(U ′
Gµ

), t′u, t′v > and τ ′′
µ =<

U ′′
Gµ

, σ(U ′′
Gµ

), t′′u, t′′v > be two feasible tuples of µ. We say that U ′
Gµ

and U ′′
Gµ

are spirality equivalent if σ(U ′
Gµ

) = σ(U ′′
Gµ

), t′u = t′′u, and t′v = t′′v . In this case,
we also say that τ ′

µ and τ ′′
µ are spirality equivalent. A feasible set Fµ of µ is a

set of feasible tuples of µ such that there is exactly one representative tuple for
each class of spirality equivalent feasible tuples of µ. The next lemma guarantees
that our algorithm is able to find an upward planar representation of G with e
on the external face, if there exists one.

Lemma 8. Let G be an upward planar digraph with edge e on the external face,
and let T be the SPQR-tree of G with respect to e. There exists an upward planar
representation UG of G such that: (i) e is on the external face of UG; (ii) for
each node µ of T , there exists a feasible tuple τµ =< UGµ , σ(UGµ), tu, tv > in the
feasible set of µ, where UGµ is the upward representation of Gµ induced by UG.

All the Q-nodes have the same feasible set, which can be computed with a pre-
processing step in O(1) time. Namely, if µ is a Q-node, both the internal spirality
and the internal-labeling weight of any upward planar representation UGµ of Gµ

are equal to 0. We can only have three upward spirality values for UGµ : 0, 1,
and −1. More precisely, if (u, v) is the (undirected) edge represented by µ, the
algorithm inserts in Fµ a tuple for each of the following combinations of upward
spirality and pole categories: (1) σ(UGµ) = 0, tu ∈ {SS0, SF0, FS0, FF0, SL0},
tv ∈ {SS0, SF0, FS0, FF0, LS0}. (2) σ(UGµ) = 0, tu = LS0 and tv = SL0. (3)
σ(UGµ) = 1, tu = LS0, tv ∈ {SS0, SF0, FS0, FF0, LS0}. (4) σ(UGµ) = −1,
tu ∈ {SS0, SF0, FS0, FF0, SL0}, tv = SL0. In all these tuples, UGµ is the edge
(u, v) oriented upward.

Let µ be an S-node of T , and let u and v be the first pole and the second pole of
Gµ, respectively. Let µ1, µ2 be the two children of µ; denote by u1 = u, v1 the first
pole and the second pole of Gµ1 ; also denote by u2 = v1, v2 = v the first pole and
the second pole of Gµ2 . The feasible set of µ is computed using the relationship
of Lemma 6. For each pair of tuples τ1 =< UGµ1

, σ(UGµ1
), tu1 , tv1 >∈ Fµ1 ,

τ2 =< UGµ2
, σ(UGµ2

), tu2 , tv2 >∈ Fµ2 , the algorithm checks if the inter-labels
of tv1 and tu2 are the same, and if the orientations of the edges incident on
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u2 = v1 in UGµ1
and UGµ2

are compatible. In the affirmative case, it constructs
a new tuple τ =< UGµ , σ(UGµ), tu, tv >, which will be inserted in Fµ, only if
Fµ does not already contain a spirality equivalent tuple; τ is defined as follows:
σ(UGµ) = σ(UGµ1

) + σ(UGµ2
); tu = tu1 , tv = tv2 ; UGµ is the series composition

of UGµ1
and UGµ2

on the common vertex u2 = v1. Since each feasible set has
O(n) tuples, the feasible set of an S-node can be computed in O(n2) time.

The computation of the feasible set of a P -node is a more complicated task,
since the skeleton of a P -node with k children has O(k!) possible planar em-
beddings, and we want to keep the computation polynomial in the number of
vertices of the graph. Let µ be a P -node of T , with first pole u and second pole
v. Let µ1, . . . , µk be the children of µ. We remark that each Gµi (i = 1, . . . , k)
has ui = u and vi = v as the first pole and the second pole, respectively. In order
to construct the feasible set of µ, we evaluate the possibility of constructing an
upward planar representation UGµ for each possible way of fixing σ(UGµ), tu,
and tv. Namely, for each choice of σ(UGµ), tu, tv, the algorithm must verify if it
is possible to select from the feasible sets of µ1, . . . , µk, a subset of upward pla-
nar representations UGµ1

, . . . , UGµk
that can assume a “parallel configuration”

compatible with σ(UGµ), tu, tv. The conditions of Lemma 7 allow us to limit the
number of these configurations, so that it is not needed to consider all permuta-
tions of the children of µ in the skel(µ). Actually, it can be proved that the total
number of configurations is constant with respect to the number of vertices of
G. The set of possible configurations is defined on the basis of tu and tv; each
configuration consists of a sequence of groups, such that each group can host
a certain number of upward planar representations, all having the same pole
categories and the same internal spirality (which also implies the same upward
spirality). The groups in the sequence are ordered according to their values of
internal spirality. In this way, on the basis of σ(UGµ) and for each configura-
tion above defined, the algorithm tries to select a set of upward representations
UGµ1

, . . . , UGµk
from the feasible sets of µ1, . . . , µk and to assign each of them

to a group in the configuration. This assignment problem is solved by searching
a feasible flow in a suitable network constructed from the configuration. The
formal description of the configurations and the construction of the feasible set
using a sequence of flow-based algorithms can be found in [8]. The construction
of the feasible sets of all P -nodes can be done in O(n3) time.

Once all feasible sets have been computed for the nodes of T , the algorithm
performs a final step to verify if it is possible to construct an upward planar
representation from the feasible set of the root of T (which is a Q-node) and the
one of its child. Namely, let µ be the root and let ν be its child. The following
lemma holds.

Lemma 9. G has an upward planar representation UG if and only if there exist
two tuples τµ =< UGµ , σ(UGµ), tuµ , tvµ >∈ Fµ, τν =< UGν , σ(UGν ), tuν , tvν >∈
Fν such that: (1) σ(UGµ) − σ(UGν ) = 2; (2) Yuµ = Xuν , Yvµ = Xvν , where
tw = XwYwλw and w ∈ {uµ, uν, vµ, vν}.

According to Lemma 9, the algorithm looks for two tuples that verify the
conditions (1) and (2) in the statement. If these tuples are found, the final upward
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planar representation is returned, otherwise the upward planarity testing fails.
The next theorem summarizes the main result of this section. The final time
complexity of the testing algorithm follows from the above discussion, iterating
over all SPQR-trees of G (one for each choice of the reference edge).

Theorem 3. Let G be a biconnected series-parallel digraph with n vertices.
There exists an O(n4)-time algorithm that tests if G is upward planar and, if so,
that constructs an upward planar drawing of G.

5 An FPT Algorithm for General Digraphs

To extend the upward planarity testing algorithm above described to general
biconnected digraphs, we need to describe how to compute the feasible sets of
R-nodes. Unfortunately, to compute the feasible set of an R-node µ, we cannot
rely on any relationship between the upward spirality of UGµ and the upward
spirality of its children. Therefore, we simply consider all possible combinations
of tuples for each virtual edge of skel(µ) in constructing UGµ . Namely, let ei

be a virtual edge of skel(µ) and let µi be the child of µ corresponding to ei.
We substitute to ei the upward planar representation UGµi

of a tuple in the
feasible set of µi. We repeat this process for each virtual edge, until a “partial
candidate” upward planar representation U ′

Gµ
of Gµ is constructed. We then

apply on this partial representation the flow-based upward planarity testing
algorithm proposed by Bertolazzi et al. [1], where the assignment of the switches
to the faces is constrained for the part of the representation that is already fixed.
In order to construct the feasible set of µ, we need to run the testing algorithm
over all possible combinations of upward spirality and pole categories of UGµ .
For each given value of upward spirality σ and for each choice of pole categories
tu, tv, we enrich the partial upward representation U ′

Gµ
with a suitable external

gadget, that forces UGµ to have upward spirality σ and pole categories tu, tv. This
gadget will have a fixed upward planar representation, which is still translated
into a set of constraints on the flow network. See [8] for a detailed construction
of the external gadgets.

The feasible set of an R-node µ, computed with the above procedure, requires
to consider all possible combinations of tuples in the feasible set of the children
of µ, and, for each of these combinations, we need to consider all possible values
of upward spirality and pole categories. The procedure must be also applied to
the two possible planar embeddings of skel(µ). Denote by t the number of non-
trivial triconnected components of G and denote by d the maximum diameter of
a split component of G. The feasible set of an R-node of µ can be then computed
in O(dtµ · n2) time, where n is the number of vertices of G, and tµ ≤ t is the
number of virtual edges (distinct from the reference edge) of µ. Indeed, the
minimum number of switches in any path between the poles of Gµ is at most d,
and therefore, from Lemma 5, the upward spirality of UGµ can take O(d) possible
values and the feasible set of any node of T has O(d) tuples. Also, O(n2) is the
complexity of the upward planarity testing of Bertolazzi et al. Hence, the feasible
set of all R-nodes can be computed in O(dt · n2) time.
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Our FPT algorithm can be eventually extended to general planar digraphs,
using a recent result of Healy and Lynch [10, 11] about the upward planarity
testing of simply connected graphs (refer to [8]). The following theorem holds,
by observing that the feasible sets of P - and S-nodes of each SPQR-tree T can
be computed in O(d · t2)-time and O(d2n)-time, respectively, and by iterating
over all decomposition trees of G.

Theorem 4. Let G be a connected planar digraph with n vertices. Suppose that
each block of G has at most t (non-trivial) triconnected components, and that
each split component of a block has a diameter at most d. There exists an O(dt ·
n3 + d · t2 · n + d2 · n2)-time algorithm that tests if G is upward planar and, if
so, that constructs an upward planar drawing of G.

Theorem 5. Let G be a connected planar digraph with n vertices and such that
each block is a series-parallel digraph. There exists an O(n4)-time algorithm that
tests if G is upward planar and, if so, that constructs an upward planar drawing
of G.
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9. A. Garg and R. Tamassia. On the computational complexity of upward and recti-
linear planarity testing. SIAM J. Comput., 31(2):601–625, 2001.

10. P. Healy and K. Lynch. Building blocks of upward planar digraphs. In Proc. GD
’04, volume 3383 of LNCS, pages 296–306, 2004.

11. P. Healy and K. Lynch. Building blocks of upward planar digraphs. Technical
report, 2005. TR UL-CSIS-05-2.

12. P. Healy and K. Lynch. Fixed-parameter tractable algorithms for testing upward
planarity. In Proc. SOFSEM ’05, volume 3381 of LNCS, pages 199–208, 2005.

13. M. D. Hutton and A. Lubiw. Upward planarity testing of single-source acyclic
digraphs. SIAM J. Comput., 25(2):291–311, 1996.

14. A. Papakostas. Upward planarity testing of outerplanar dags. In Proc. GD ’95,
volume 894 of LNCS, pages 7298–306, 1995.


	Introduction
	Preliminaries
	Upward Spirality
	Upward Planarity Testing of Series-Parallel Digraphs
	An FPT Algorithm for General Digraphs


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




