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Abstract. Most automatic fingerprint identification systems identify a
person using minutiae. However, minutiae depend almost entirely on the
quality of the fingerprint images that are captured. Therefore, it is im-
portant that the matching step uses only reliable minutiae. The quality
estimation algorithm deduces the availability of the extracted minutiae
and allows for a matching step that will use only reliable minutiae. We
propose a model-based quality estimation of fingerprint images. We as-
sume that the ideal structure of a fingerprint image takes the shape of a
sinusoidal wave consisting of ridges and valleys. To determine the qual-
ity of a fingerprint image, the similarity between the sinusoidal wave and
the input fingerprint image is measured. The proposed method uses the
1-dimensional (1D) probability density function (PDF) obtained by pro-
jecting the 2-dimensional (2D) gradient vectors of the ridges and valleys
in the orthogonal direction to the local ridge orientation. Quality mea-
surement is then caculated as the similarity between the 1D probability
density functions of the sinusoidal wave and the input fingerprint im-
age. In our experiments, we compared the proposed method and other
conventional methods using FVC-2002 DB I, III procedures. The perfor-
mance of verification and the separability between good and bad regions
were tested.

1 Introduction

The performance of any fingerprint recognition system is very sensitive to the
quality of the acquired fingerprint images. There are three factors that lead
to poor quality fingerprint images: 1) Physical skin injuries: scratches, broken
ridges, and abrasions, 2) Circumstantial influences: wet or dry levels of humidity
and dirty fingers, 3) Inconsistent contact: excessive or weak pressure. There are
many previous works that deal with estimating the quality of fingerprint images.
Hong et al. [1] modeled the ridge and valley pattern as a sinusoidal wave, and
calculated amplitude, frequency and variance to determine the quality of finger-
print images. Michael [2] computed the mean and the variance of a sub-block of
fingerprint images to measure the quality. Neither method was able to distinctly
classify good regions and bad regions within the images. Bolle et al. [3] proposed
a method that used the ratio of the directional region to the non-directional re-
gion. However, a limitation of this method is that the gray-level ridge and valley
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structure of fingerprint images contains much more information. Shen, et al. [4]
used the variance of the 8-directional Gabor filter response. The performance
of this method depends on the number of Gabor filters, and the computational
complexity is high. Ratha and Bolle [5] proposed a method for image quality
estimation in the wavelet domain, which is suitable for WSQ-compressed finger-
print images. But it is unsuitable when dealing with uncompressed fingerprint
images. Lim [6] observed both global uniformity and local texture patterns in
fingerprint images. However, it is necessary to determine the weights for global
and local quality measurements when using this method. In this paper, we pro-
pose model-based quality estimation of fingerprint images. The structure of an
ideal fingerprint image takes the shape of a sinusoidal wave. To determine the
quality of each sub-block image, we measure the similarity between the ideal fin-
gerprint structure (sinusoidal wave) and the input fingerprint structure. In the
following sections, we will explain model-based quality estimation of fingerprint
images. Section 2 addresses the main steps of our algorithm and the method used
to measure the similarity between the ideal fingerprint structure and the input
fingerprint image. In section 3, the proposed method is compared to previous
methods using the separability between good and bad regions and the perfor-
mance of fingerprint verification. Section 4 shows the conclusions we arrived at
in the course of our experiments.

2 Model-Based Quality Estimation

Fingerprint quality estimation divides a pixel (or a block) in an input fingerprint
image into good regions and bad regions. Good regions are the regions where
minutiae can be detected. Bad regions are the regions where minutiae cannot
be detected or false minutiae are more prominent. The ideal fingerprint region
can be shown by a mono-dimensional sinusoidal wave and the obscure region
is represented by an arbitrary wave. The main idea of our proposed method is
to measure the similarity of the structures between the sinusoidal wave and the
input fingerprint image. This method is inspired by independent component anal-
ysis (ICA) that extracts a 1-dimensional independent signal from n-dimensional
mixture signals [7]. Fig. 1 shows the overall procedure of our proposed method
schematically.

2.1 Preprocessing

The preprocessing stage that is composed of normalization and Gaussian mask-
ing. We used normalization and Gaussian smoothing to remove the effects of
sensor noise and finger pressure difference.

2.2 2D-Gradient Vectors

2D-gradient vectors of fingerprint images are obtained by gradient operators. De-
pending on computational requirements, either the Prewitt operator, the Sobel
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Fig. 1. Quality measurement block diagram: (a) Sub-block fingerprint image; (b) Pre-
processing; (c) 2D-Gradient vectors; (d) Whitening; (e) 1D-Gradient PDF

operator, or the Marr-Hildreth operator [8] is chosen. In this paper, we used the
Sobel operator. Fig. 1(c) shows the 2-channel gradient of a sub-block fingerprint
image.

2.3 Whitening

Fig. 1(c) shows the 2D-gradient vectors of a sub-block fingerprint image. The
2D-gradient vector mixes up the orthogonal and parallel differential information
to the ridge orientation. Because only the orthogonal differential information to
the ridge is required to acquire the 1D-gradient PDF in order to estimate the
quality of a sub-block of the fingerprint image, the mixed 2D-gradient vector
must be separated. Fig. 1(d) indicates the whitened gradient vector that is ro-
tated to align the horizontal axis (emax) in the orthogonal direction of the ridge
orientation. The whitening process separates the mixed 2D-gradient vector into
two 1D-gradient vectors: the gradient vector Gv with only orthogonal differen-
tial information to the ridge orientation, and the gradient vector Gh with only
parallel differential information to the ridge orientation. Since we have separated
the mixed 2D-gradient vector, we can obtain the 1D-gradient PDF(Fig. 1(d)) by
projecting the whitened gradient vector Gv to the emax axis.

2.4 Quality Measurement

In order to estimate the quality of the fingerprint image, we assume that the
ideal structure of ridges and valleys shows a sinusoidal wave. At each sub-block
of images, the 1D probability density function (PDF) is obtained by project-
ing the whitened 2D-gradient vectors in the orthogonal direction to the local
ridge orientation. With finite samples, polynomial density expansion like Taylor
expansion is used to estimate a PDF. However, two other expansions are usu-
ally used for PDF estimation: the Gram-Charlier expansion and the Edgeworth
expansion. In this paper, we use the Gram-Charlier expansion with Chebyshev-
Hermit polynomials to estimate the 1D-gradient PDF pv as follows:

pv(ξ) ≈ p̂v(ξ) = ϕ(ξ){1 + κ3(v)
H3(ξ)

3!
+ κ4(v)

H4(ξ)
4!

}, (1)

where κ3 and κ4 are skewness and kurtosis, Hi represents the Chebyshev-Hermit
polynomials of order i, and ϕ(ξ) is the standardized Gaussian density. κ3 is zero
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in the case of the variable v with symmetric distributions. The entropy of the
approximated density function is estimated as follows:

H(v) ≈ −
∫

p̂v(ξ) log p̂v(ξ)dξ = H(vgauss) − κ2
4(v)
48

, (2)

where vgauss is the Gaussian variable of the zero mean and unit variance. The
following equation is explicitly derived:

J(v) = H(vgauss) − H(v) ∝ κ2
4(v), (3)

where J(v) is negentropy [7]. The 1D-gradient PDF of the ideal fingerprint region
is sub-Gaussian and negentropy has a large value when the distribution of v is
sub-Gaussian. Therefore we may define the quality measurement as follows:

Quality = κ2
4(v) ≈ J(v) (4)

However, J(v) also has a large value when the distribution of v is super-Gaussian.
Because the 1D-gradient PDF of a dry or wet fingerprint region is super-
Gaussian, the quality measurement must discriminate between images that are
sub-Gaussian and super-Gaussian. Therefore, the quality measurement defined
in equation (6) must be adjusted as follows:

Quality = sign(κ4(v))κ2
4(v) (5)

Because expectations of polynomials like the fourth power ( κ4(v) = E{v4}− 3)
are much more strongly affected by data far from zero than by data close to
zero, approximation kurtosis by a non-polynomial function G is used[7]:

κ4(v) = E{G(v)} − E{G(vgauss)}
G(v) = 1

a log(cosh(av)), 1 ≤ a ≤ 2 (6)

3 Experimental Results

The quality value procedure assigned validity to each 8x8 block and quantized
256 levels (with 255 the highest quality and 0 the lowest). Fig. 2(a) is a sample
fingerprint image that includes a region of interest (ridges and valleys) and a
background region. The block-wise quality value for the fingerprint image in
Fig. 2(a) is shown in Fig. 2(b).

3.1 Separability of Quality Measurement: Separability Between
High and Poor Quality Regions

We evaluated the proposed quality measurementusing separability between values
from good and bad regions. We first defined the quality of the sub-block by includ-
ing minutiae as good and bad regions. The good regions are the sub-blocks around
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Fig. 2. Quantized quality value: (a) Original image; (b) Block-wise quality value

(a) (b) (c)

Fig. 3. Minutiae points of manually-defined quality (false minutiae: red rectangles, true
minutiae: blue circles): (a) Original image; (b) Enhanced binary image; (c) Marked
Region
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Fig. 4. Probability density function of each type of quality measurement (good region:
solid line, bad region: dotted line): (a)Standard deviation; (b)Coherence; (c)Gabor;
(d)The proposed method

the true minutiae and the bad regions are the sub-regions around the false minu-
tiae. True minutiae are determined if the minutiae extracted by the feature extrac-
tion algorithm are equal to the manually extracted minutiae, and if the minutiae
are not equal, we determined the minutiae as false minutiae. The proposed qual-
ity definition method is more objective than the visual (subjective) assessments
method. Fig. 3 shows the true and false minutiae. With 100 randomly selected fin-
gerprint images that were separated into good and bad regions, we calculated the
probability distribution of each corresponding quality measurement. Fig. 4 shows
the distribution of four quality measurements and Table 1 shows the separability
of each distribution using FVC2002 DB I, III. These clearly show that the distribu-
tion when using the proposed method is more separable than when using existing
methods. The separability is calculated as follows:

Separability =|µGood−µBad|
/√

(σ2
Good+σ2

Bad) (7)
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Table 1. The separability of each type of quality measurement

Quality Measurement
Separability

DB I DB III
Standard deviation 0.19 0.05

Coherence 0.64 0.88
Gabor filter 0.61 0.44

Proposed method 1.48 1.55
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Fig. 5. Receiver Operating Curves (s.d. : rectangle, coherence : diamond, gabor : tri-
angle, proposed method : circle) : (a) FVC 2002 DB I; (b) FVC 2002 DB III

3.2 Verification Performance

We examined verification performance according to the quality methods. The
verification system used the same algorithms (preprocessing, frequency estima-
tion [10], enhancement [1] and matching [11]) with the exception of the quality
estimation algorithm. The thresholds for each quality estimation algorithm were
chosen at the point of minimum quality decision error using a Bayesian decision.
In the experiment, we compared the proposed method and other conventional
methods using FVC-2002 DB I, III. Fig. 5 shows the matching results with the
ROC in order to compare the proposed algorithm with existing algorithms. From
this experiment, we can observe that performance of the fingerprint verification
system was significantly improved when our quality estimation algorithm was
applied to the input fingerprint images.

4 Conclusions

In this paper, we proposed a method to determine the quality of a fingerprint
image with similarity between the ideal fingerprint model and an estimated 1D-
PDF. The ideal fingerprint image model has a monodimensional sinusoidal wave
and uses a sub-Gaussian PDF when the project whitened 2D-gradient moves in
the orthogonal direction of orientation of the sub-block. Quality estimation uses
separability between high and poor quality regions and takes into account the
performance of fingerprint verification. We compared the separability of each
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quality estimation method and the proposed method observed the highest sepa-
rability using FVC-2002 DB I, III procedures. We also observed the lowest equal
error rate (EER). The 1D-PDF is influenced not only by the quality of the fin-
gerprint image but also by the projection axis. The projection axis corresponds
to the orientation of the sub-block in the fingerprint image. In further research,
we will continue to examine the robust orientation estimation method.
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