Semantic Web Services for Activity-Based
Computing

E. Michael Maximilien, Alex Cozzi, and Thomas P. Moran

IBM Almaden Research Center,
650 Harry Road, San Jose, CA 95120, USA
{maxim, cozzi, tpmoran}@us.ibm.com

Abstract. Semantic Web services promise the addition of semantics
annotations to Web services in a manner that enables automatic dis-
covery, usage, and integration of services as part of every day processes.
IBM’s unified activity management (UAM) implements activity-centric
computing concepts by representing human work in terms of activities
that relate to each other using semantic information from the various
contexts in which the activities are used. In this paper we explore how,
using common domain-specific ontologies, we can make use of the se-
mantic annotations added to Web services and our UAM environment,
to produce dynamic and richer Web applications widgets and services.

1 Introduction

Human-based activities are best represented as informal loosely structured and
semantically rich processes. Even when work activities are well-structured, for
instance, using workflow systems, human realization of such workflows typically
results in many variations of the different steps, while the same objectives are
achieved. This is due to the executing context, which is difficult to predict or
capture in workflows. Additionally, the loose realization is also simply due to
human behaviors and work patterns which, unless humans are forcefully con-
strained, are typically loose and malleable [3].

Previous activity-based systems typically organize activities as shared tasks
that can be easily modified and arranged to meet work patterns [4]. In addi-
tion to distributed task sharing capabilities, IBM’s unified-activity management
(UAM) [7[8] computing environment incorporates the loose and malleable char-
acteristics of human activities by representing activities as first-class OWL [5]
instances that are interconnected using a semantic network of relationships rep-
resenting the context and evolution of the activities.

As the majority of knowledge workers’ activities involve some form of Web-
based application, system, or services, it’s easy to see that a UAM-based applica-
tions will necessarily use Web resources or be themselves completely Web-based.
The addition of semantics to Web resources and Web services [2,[6] enables op-
portunities for creating semantically rich UAM-based applications and the ability
to automate some parts of these applications (and the activities) using software
agents. In this paper we investigate the initial use of semantic Web services
(SWS) [6] with our UAM environment.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 558-563} 2005.
© Springer-Verlag Berlin Heidelberg 2005

Semantic Web Services for Activity-Based Computing 559

2 Scenario: Use Case

To motivate how our UAM environment can benefit from SWSs we describe a
use case scenario based on a simplified activity domain: reading group activities.
Our domain involves a set of individual human actors (e.g., knowledge workers,
researchers, or students) involved in sharing reading items. The reading items
are varied; they are comprise books, book sections, articles, Web pages, and so
on; they are contributed by all members of the group, which are assigned to read
these items, comment on the contents, prioritize them, rate them, relate them,
and make recommendations for new readings that can complement a particular
reading item. An implicit goal of such reading group activities is to create new
insights from the group’s collaboration that otherwise would not be possible had
the readings been done individually and separately.

3 Framework

IBM’s UAM environment comprises a RDF datastore which keeps OWL in-
stances for all activities, artifacts, actors, and their relationships according to
the UAM upper and domain specific ontologies. To expose a services API to
UAM that maintains the domain-specific semantics, we created a UAM operator
ontology which allows the definition and generation of Web services representing
the operations to create, add, modify, and find UAM objects.

The services parameters are typed using the domain-specific activity ontology.
We maintain the semantics of the domain by creating OWL-S [9] Profile and
partial Process descriptions for the generated services that are annotated with
a domain ontology and a domain-specific activity ontology.

As an example, for our Reading Group Activity ontology we expose SWS
with operations to createReadingActity(), addBookReadingItem(), modifyReadin-
gltem() passing attributes such as author, description, and so on, according to
ontologies for the domains Reading Document and Reading Group Activity. The
generated services connect to an operator API exposed by the UAM environ-
ment which allow programmatic access and manipulation of the OWL instances
in the datastore.

3.1 Activity Ontology

Figure [illustrates our UAM upper ontology. It constitutes the key concepts
and relationships of every UAM-based application. This ontology is typically
extended by domain-sepecific concepts and relationships that constitute the
activities in that domain. The upper ontology defines three main concepts:
(1) wam:Activity represents an activity—activities have subactivities, have arti-
facts, and involve actors; (2) uam:Artifact represents all non-agent (non-actor)
resources—they are the passive resources that are part of activities; and (3)
uam:Actor represents all active resources involved in an activity—these include
human and software agents.

560 E.M. Maximilien, A. Cozzi, and T.P. Moran

d bool uam isCompleted uam hasSubactivities
xs oolean <§ :
hasArtifacts ‘ n uam involves

<<owlClass>> <<owlIClass>> <<owlClass>>
uam Artlfact uam Activity uam Actor

uam hasResquJhasInput ’ @ uam isRelatedTo
xsd nonNegativelnteger

uam descrlptlon/uam statys Y@M priority

Fig. 1. UAM upper ontology

Activities have other predefined upper-level relationships to represent an ac-
tivity’s description, status, priority, results, and input. Further, every activity
can be related to some other activity. Finally, as in real-life activities all activ-
ities have the notion of completeness and start out with this value as false. We
leave it to the domain to specify when an activity transitions to the completed
status state.

3.2 Operator Ontology

The UAM operator ontology specifies the necessary concepts and relationships
for the definitions of the operations on the UAM environment. The operations
enable external actors to operate on the UAM environment. We use the opera-
tor ontology as input to the generation of our semantic services. The operator
ontology defines four primary concepts.

— wuam-op:Operator represents a particular action on the domain’s concepts.
Every operator operatesOn a domain specific concept.

— uam-op:Function represents the active part of the operator. For instance a
Create function represents operators whose actions result in newly created
concept instances in the UAM datastore. Every function also associates with
the necessary parameters that it requires.

— wuam-op:OperatorService combines a series of operator instances into a ser-
vice. This concept maps one-to-one to a SWS.

— wuam-op:OperatorCode represents the procedural attachment of the code that
gets executed in the UAM datastore when the operator is executed.

4 Demonstration

To demonstrate our UAM SWS, we created an application in a simple domain for
which we could discover related SWS on the Web. This showed the feasibility of
the system, resulted in a UAM lower ontology for the domain, and an approach
to integrate SWS related to the domain. The domain in question is a simplified
version of reading group activity. We discussed the primary use case scenario in
Section

To create our UAM lower ontology for the domain and annotate available Web
services with the domain semantics, we created a Reading Document ontology.
The main concepts of this ontology are as follows.

Re edRead g empope es

Semantic Web Services for Activity-Based Computing

O reading Readingltem

<<owlClass>>

On

<<owlClass>>

A

O B reading ListPrice

0

<<owlClass>>

:

I 1

e cy

reading Image

<<owlClass>>
reading Book

<<owlClass>>
reading BookSection

<<owlClass>>
reading Article

owlDatatypeProp
reading publisher

owlDatatypeProp
reading author

owlDatatypeProp
reading title

ead g a e

<<ow Da a ypeP op>>
ead gc

<<ow Da a ypeP op>>

owlDatatypeProp
reading contentUri

owlDatatypeProp
reading description

owl|DatatypeProp
reading images

owlDatatypeProp

reading numberOfPages

owlDatatypeProp
reading availableOnline

owlDatatypeProp
reading isbnNumber

owl|DatatypeProp
reading listPrice

owlDatatypeProp
reading uri

561

Fig. 2. Reading document ontology; showing only the concepts and reified relationships
that are of concerns to Book-type documents

— reading:Readingltem represents any physical or electronic item that can be
read by human agents. This includes Web sites or Web pages as well as some
printed materials, e.g., magazines.

— reading:Book represents a printed book. This does not include electronic
versions (eBook) or audio versions of books. These could be modeled as
subclasses of the generic Book concept.

— reading:BookSection represents a section of a book. This is an important
concept in a reading group activity since members of the activity could
agree to just read sections of a book (e.g., a page or a chapter).

— reading:Article represents a printed article or section of a magazine or a
journal. We differentiate Web articles from articles since their properties are
typically different. In particular, an article is part of a journal with a volume
and issue number, has a publisher, has page numbers, has a title, and has a
list of authors.

— ListPrice represents the price for the reading item. For a book this list price
is the value and the currency that is usually listed on the back of the book.

— Image represents the cover art picture of the reading item (if any).

Figure 2] shows these concepts along with a reified list of the properties and
their OWL types. A complete ontology of reading documents would encompass
a lot more concepts and some further refinements of the current concepts. We
chose to keep the ontology simple to achieve an end-to-end example since we
believe the value of our demonstration is in showing how, with limited number
of concepts, we can achieve value-add to our activity applications.

The next step in demonstrating our approach and following our use case sce-
nario, is to create a simple UAM lower ontology for the domain. The intent is
to define the semantics of reading group activities. Two of the main concepts
and properties are: (1) uam-reading:ReadingArtifact which is a holder for one
reading item. An artifact could be rated, have comments associated with it, re-
late to other artifacts, be recommended by an actor, and have a reading deadline

562 E.M. Maximilien, A. Cozzi, and T.P. Moran

associated with it; and (2) uam-reading:ReadingActivity which represents a read-
ing activity that involves human actors and reading artifacts. A human actor
can participate in many reading activities which have a title and a start date.
All human actors can be assigned to a reading artifact, comment on them, rate
them, recommend them, and relate artifacts to each other.

4.1 Dynamic Discovery and Integration

Since there are not many SWS are currently publicly available, we decided to
overlay existing Web services that deal with reading documents with our seman-
tics. We chose the Amazon.com E-Commerce Services (Amazon ECS) since it
allows access to the contents from the book department of Amazon’s Web site
along with the various information collectively gathered from the Amazon com-
munity. We created simplified versions of the Amazon ECS specifically exposing
capabilities related to our reading document ontology.

xsd string
Qs textDescription

- owls Profile - owls Output
xsd string owls AtomicProcess owls Input
Qwls contac getCoverArt .
<<service>> uses reading title reading Image

BookService <<bean>> |

lookupBooks(authors String title String) Book[] = = Book reading Book
[getCoverArt(book Book) Image| authors Strin
/ k all d anyURI
getRating(book Book) int title String reading author

Fig. 3. Simplified BookService with partial OWL-S annotation. Heavy dashed gray
lines show which part of the service the semantic annotation refers to. The ovals rep-
resent the OWL-S concepts and domain-specific annotations.

Figure B] shows parts of our simplified SWS overlayed with a partial OWL-
S descriptions. We only show a subset of the OWL-S Profile and portions of
the Process description for one of the service’s methods. The remaining meth-
ods would also be described likewise. In addition a Grounding instance is also
attached to the Service instance to point to the WSDL for the service.

Similar to the simplified BookService SWS, the generated UAM SWS are
overlaid with the appropriate OWL-S descriptions. For instance, we deploy a
service to query and retrieve the ReadingActivity and ReadingArtifact instances,
and these have OWL-S descriptions annotated with the Reading Group Activity
lower ontology and the Reading Document ontology. The discovery process is
realized by matchmaking the annotations of UAM SWSs with that of the Book-
Service. We created a matchmaking agent that runs an algorithm that is similar
to [I0]. The algorithm looks for Process descriptions from SWS for which the
Input semantically matched the Output from the UAM SWS.

Semantic matching either means that the Input class is the same as the Output
class or that the Output class is subsumed by the Input class, e.g., the Output

Semantic Web Services for Activity-Based Computing 563

class is a subclass of the Input class. A concrete example is to discover that
the BookService getCoverArt can be passed a reading:Book instance from the
UAM SWS to generate an Image instance which contains the image URI for the
cover art. In addition, the matchmaking also looks for cases where the discov-
ery can take multiple Process method invocations. For instance, using a read-
ing:Book instance reading:authors and reading:title properties the agent can de-
termine the book’s reading:isbn Number which can in turn be used to retrieve the
book’s rating.

5 Future Work

We are constantly expanding the capabilities of our UAM environment. Cur-
rently our SWS generation requires the wiring of the operation definition to an
existing Java class on the UAM server that operates on the datastore. We would
like to eventually bypass this step by having generic Java operators that would
operate on different domains and therefore not require specializations when new
domains are supported. This could be achieved if the generic operators use the
domain ontology as an abstract definition of the operands and the types that are
passed as arguments to the operator definitions. We are also looking into using
other, simpler, more lightweight SWS approaches, such as WSDL-S [I] as well
as expanding our use cases to richer activity domains.

References

1. R. Akkiraju et al. Web Services Semantics: WSDL-S. http://lsdis.cs.uga.edu
/library /download/WSDL-S-V1.html, Apr. 2005.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 501(5):28-37, May 2001.

3. P. Dourish. Process Descriptions as Organisational Accounting Devices: The Dual
Use of Workflow Technologies. In Proc. of the ACM Conf. on Supporting Group
Work, Boulder, CO, Sept. 2001.

4. T. Kreifelts, E. Hinrichs, and G. Woetzel. Sharing To-Do Lists with a Distributed
Task Manager. In Proc. of 8rd European Conf. on Computer-Supported Cooperative
Work, Milan, Sept. 1993.

5. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/, Feb. 2004.

6. S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEFE Intelligent
Systems, 16(2):46-53, Mar. 2001.

7. T. P. Moran. Activity: Analysis, Design, and Management. In Proc. from the
Symp. on the Foundations of Interaction Design, pages 12—13, Italy, Nov. 2003.

8. T. P. Moran and A. Cozzi. Unified Activity Management: Supporting People in
eBusiness. Communications of the ACM, Dec. 2005. To appear.

9. OWL-S. OWL-Service Ontology 1.1. http://www.daml.org/services/owl-s/1.1/,
Nov. 2004.

10. K. Sycara et al. Automated Discovery, Interaction, and Composition of Semantic
Web Services. Journal on Web Semantics, 1(1):27-46, Sept. 2003.

	Introduction
	Scenario: Use Case
	Framework
	Activity Ontology
	Operator Ontology

	Demonstration
	Dynamic Discovery and Integration

	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

