

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 341 – 352, 2005.
© Springer-Verlag Berlin Heidelberg 2005

ODEGSG Framework, Knowledge-Based Annotation
and Design of Grid Services

Carole Goble1, Asunción Gómez-Pérez2, Rafael González-Cabero2,
and María S. Pérez-Hernández3

1 Department of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

2 Ontology Engineering Group, Universidad Politécnica de Madrid,
Campus de Montegancedo s/n, 28660 Boadilla del Monte, Madrid, Spain

3 DATSI, Facultad de Informática, Campus de Montegancedo s/n,
Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain

{asun, rgonza, mperez}@fi.upm.es

Abstract. The convergence of the Semantic Web and Grid technologies has
resulted in the Semantic Grid. The great effort devoted in by the Semantic Web
community to achieve the semantic markup of Web services (what we call
Semantic Web Services) has yielded many markup technologies and initiatives,
from which the Semantic Grid technology should benefit as, in recent years, it has
become Web service-oriented. Keeping this fact in mind, our first premise in this
work is to reuse the ODESWS Framework for the Knowledge-based markup of
Grid services. Initially ODESWS was developed to enable users to annotate,
design, discover and compose Semantic Web Services at the Knowledge Level.
But at present, if we want to reuse it for annotating Grid services, we should carry
out a detailed study of the characteristics of Web services and Grid services and
thus, we will learn where they differ and why. Only when this analysis is
performed should we know how to extend our theoretical framework for
describing Grid services. Finally, we present the ODESGS Framework, which is
the result of having applied the extensions identified to the aforementioned
Semantic Web Services description framework.

1 Introduction

The Semantic Grid is the result of the convergence of the Semantic Web and the Grid
technologies. Its definition of is created by modifying the Semantic Web definition
given in [1]. The Semantic Grid is defined thus as an extension of the current Grid, in
which information and services are given well-defined meaning for better enabling
computers and people to work in cooperation. The requirements and research
challenges of the Semantic Grid are identified in an unimpeachable manner in [2] and
updated in [3], of which the most related to the knowledge-based markup are a)
process descriptions that allow the (semi)automatic composition of services; b)
annotation of all the contents in the system (resources, services, provenance data,
etc.), which allows automatic discovery and must be done by means of an agreed
interpretation (i.e. ontologies); c) context-aware decision support, or the context of the

342 C. Goble et al.

Grid environment that must be annotated ; and d) the communities that users should
be able to form, maintain and disband (this community term correspond with the Grid
idea of Virtual Organization (VO) to be analyzed later) .

In addition to these requirements, the Semantic Grid should also be service-
oriented, as the Grid is since the emergence of OGSA (Open Grid Service
Architecture) [4]. Grid resources are wrapped with services and exposed via a WSDL
file (i.e. a set of operations written in a standard XML language). OGSA redefines
the concept of VO, a key element for Grid computing. They were considered a group
of organizations and/or individuals that share resources in a controlled fashion [5].
Now VOs are considered to be the set of services that these organizations and/or
individuals operate on and share [4] (plus some security policies). This idea of
service-oriented VO, mixed with agent-oriented and dynamic view, is also described
in [3]; in that paper, VOs are considered dynamic agents marketplaces. All these ideas
of service orientation have became even more relevant since the appearance of GT41
and WSRF [6] which make Grid environments compliant with the most widely
accepted Web services standards and technologies (WSDL, SOAP, etc.).

The Semantic Grid may reuse all the emerging technologies related to Semantic
Web Services (i.e. IRS [7], OWL-S [8], ODESWS [9], WSMO [10], WSDL-S [11],
etc.). These technologies and initiatives should not be considered as off-the-shelf
technologies for the Semantic Grid because of the different nature of a Web service
and a Grid service, and therefore between a Semantic Web Service (SWS) and a
Semantic Grid Service (SGS).

In this paper we present the ODESGS Framework, an ongoing work carried out in
the Ontogrid Project2 (FP6-511513), which is the adaptation of the ODESWS
Framework developed in the context of the EU project Esperonto3 (IST-2001-34372);
which was developed for annotating and creating complex SWSs, working at the
Knowledge Level [12] thus enabling their discovery and (semi)automatic
composition. As we have mentioned, we will start this paper enumerating the
differences between SWS and SGS. Then, we will present the ODESGS Framework,
which contains all the extensions that we have identified as necessary. This
description of the ODESGS Framework comprises an enumeration of its design
elements and a detailed description of a stack of ontologies used to describe SGSs.
This stack will be called the ODESGS Ontology.

2 From SWSs to SGSs: Minding the Gap

As we have stated, one of the main points for the convergence of the Semantic Web
and the Semantic Grid may lie in their service-oriented view. Before reusing the
SWSs technology in the Grid, we should analyze the different nature of a Grid service
(GS) and a Web service (WS). This analysis will help to clarify the terminology used.

A Web Service is an interface that describes a collection of operations that are
network-accessible through standardized Web protocols whose features are described
using a standard XML-based language [13][14]. Although there are other ways of

1 http://www.globus.org/toolkit/
2 http://www.ontogrid.net
3 http://www.esperonto.net/

 ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services 343

defining a WS, in this paper we adopt the aforementioned definition because it is the
one that best captures the interface nature of what a WS is (and where its benefits
come from). Other definitions consider WSs as modules or components, but these
definitions break the low coupling principle that motivated the creation of WSs. In
short, “It’s not the components, it’s the interfaces” [15].

SWSs, in the context of the Semantic Web, are the markup of WSs that will make
them computer-interpretable, use-apparent and agent-ready [16]. This definition raises
a simple but important question. Should SWSs be constrained with all the
characteristics and limitations that the WS definition imposes (i.e. stateless interfaces,
XML compliant, etc.)? Depending on our answer to this question we will distinguish
between Semantic (Web Services) or (Semantic Web) Services. More precisely:

• A Semantic (Web Service) (S(WS)) retains all the characteristics of a WS, adding
just semantic annotations to its domain, its inputs and outputs, and describing its
functional properties (precondition, postconditions, etc.). However, It says nothing
about the internal structure of the service, its state, etc. (as it remains being an
interface). It is just a WSDL file plus some semantics (a clear example of this is
WSDL-S [11]). S(WS)s have the great advantage of being upgraded easily from
current technology to a semantically enhanced one.

• A (Semantic Web) Service ((SW)S) it is not constrained by the nature of a WS, as it
can be a WS, an agent or anything that provides a service-oriented functionality for
the Semantic Web. The description of a (SW)S goes far beyond the idea of an
interface since we may find internal reasoning process descriptions, explicit lifecycle,
state handling, and many other elements. Therefore, they can be considered a
superset of S(WS)s.

Current SWSs initiatives are closer to the idea of (SW)Ss, because most of them
describe, at least, the internal structure of complex SWSs (thus, they fall outside the
semantic description of a simple net-work accessible interface).

Once we have briefly defined WSs and SWSs, let us see what GSs are. As we
stated in the introduction, the service-oriented view of the Grid appeared in OGSA
[4], where a service is defined as a network-enabled entity that provides some
capability. GSs serve to achieve the virtualization (i.e. encapsulation independent of
the implementation of physical resources such computational resources, storage
resources, networks, programs, data-bases, etc.) of the shared resources.

Thus, by analogy with the aforementioned definition of SWS [16], a SGS is the
markup of a GS that makes it computer-interpretable, user-apparent and agent-ready.
Note that due to the more generic definition of what a GS is, we are less constrained
in the markup of a GS than in the markup of a WS (remember the S(WS) and (SW)S
differentiation that we stated above). A GS is not defined as an interface at all, which
makes a big difference. However, and for the sake of completeness, we will also
introduce a differentiation between Semantic (Grid Services) and (Semantic Grid)
Services. Note that this differentiation is made by considering other terms than the
S(SW)/(SW)S one.

Thus, we propose the following definitions:

• A Semantic (Grid Service) is just a “conventional” GS annotated to achieve its
design, discovery, invocation and composition in a (semi)automatic way. In other
words, a knowledge-aware GS.

344 C. Goble et al.

• A (Semantic Grid) Service is a grid compliant knowledge service, a GS situated in
the Knowledge Layer [3] that provides any kind of information, which is
understood as knowledge that can be applied to achieve a goal, to solve a problem
or to enact a decision. Possible examples could be a service that provides
ontologies, a SGSs discovery service, a reasoner, etc.

From these definitions and after analyzing the nature of WSs SWSs, GSs and SGSs
we have identified the following key features of a SGS not described by a SWS:

• VO. This is the first and, perhaps, the most important concept to remember.
Despite trendy words like services and virtualization, Grid is about sharing
resources under a certain set of rules. We should provide a formal and explicit
description of a) the institution that is created by the sum of these services; b) the
rules that govern the interaction between the entities involved; and c) the entities
themselves (i.e. providers, consumers, and all the other roles that may coexist in a
VO). The concept of VO does not exist in the SWSs field; SWSs are considered as
isolated elements.

• Non-functional Properties. Non-functional properties are especially important in
Grid environments. This is because a) discovery and composition is usually
performed manually and depend on them; and b) many issues such as trust, quality
of service and workload distribution are dependant on non-functional properties,
and have much more importance in the Grid environment than in the Web
environment. SWSs focus mainly on functional properties currently. Both types of
information (functional and non-functional) should be handled (and therefore
annotated).

• Provenance. Provenance information gives the origin and metadata information of
a concrete enactment of a GS. With this information we are able to interpret the
enactment results. Provenance seems to be very important in Grid environments,
since Grid applications often deal with experiments where knowing which data and
services are used to generate the results is very important.

• Complex Interactions. Interactions for SWSs tend to composed by the pair
invoker/invoked-service (a refurbished XML version of the classic client/server
interaction). In a Grid environment we should permit more complex interactions,
i.e., defining more complex message exchanges and defining the different roles of
the participants. These interactions plus the context of the enactment of the
services can also be seen as service contracts [3].

• Resources. Although GSs hide resources, they should be also annotated and
considered first-class citizens in a SGS description. Additionally, the handling of
resources plus the nature of Grid environments clarify the definition of the real
world, which is defined as the set of Grid resources that a SGS handles. In SWSs
descriptions, the concept of the real world and the concept of the domain model (the
abstract and formal representation of the world) are often confusing and confused.

• Transient GS Instances. This is one of the trickiest differences between SWSs and
SGSs. The discovery, creation, and invocation of transient SGSs instances are a
must. The possibility of specifying a concrete instance of a SWS, or even an
scheduled invocation of one of its operations is not contemplated by current SWSs
orchestrations and descriptions. SWSs work at a “class of services” level while
SGSs should allow working at an “instance of service” level instead.

 ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services 345

3 The ODESGS Framework

ODESGS Framework is a theoretical framework for annotating, discovering and
composing SGSs in a (semi)automatic way. Its main assumptions are: the use of Problem-
Solving Methods (PSMs) and ontologies for describing GSs in a formal and explicit way;
thus the design and implementation phases of a SGS are clearly separated; VOs will be
defined as the sum of SGSs plus some additional information about the hierarchy of roles
of each SGS inside the VO; and some security and provenance related issues.

Ontology
ODESGS
Ontology
ODESGS

Fig. 1. ODESGS Framework design elements

This framework (see Figure 1) should provide a) service and stateful resource
ontologies, rich enough to express the semantics required for service discovery and
composition in a Grid environment; b) a set of rules to check whether the proposed
design (for complex SGSs and VOs) is correct; and c) a way to translate from this
design into a concrete implementation once the SGS has been designed. According to
all these requirements, the following elements have been identified:

• ODESGS Ontology. To describe the features of VOs, SGSs, Grid resources, etc. a
set of ontologies will be used. Ontologies are useful to represent their features in a
formal and explicit way, which we will use in order to reason about them. This set
of ontologies will be described in detail later.

• Instance Model. To design SGSs or VOs means to instantiate each of the ontologies of
the stack and its relations. Each instance constitutes a model that specifies a SGS and VO.

• Checking Model. Once the instance model has been created, it is necessary to
guarantee that such model does not present inconsistencies. Design rules will be
needed to check this, particularly when ontology instances have been created
automatically (as in the case of (semi) automatic composition). A set of design
rules will be used to check both the SGSs annotated and designed by the user, and
the different VOs created by aggregating these SGSs.

• Translation Model. Although SGSs and VOs are modelled in a high level of
abstraction, they must be specified in different representational languages to enable

346 C. Goble et al.

programs and external agents to access their capabilities. Therefore, once the
instance that describes the SGS is created and checked, it should be automatically
translated into any of the existing SGS or Grid service representational language.

4 ODESGS Ontology

Our aim is to come up with a service and data ontology, rich enough to express the
semantics required for VOs formalization and SGSs discovery and composition. This
means that VOs and service features should be explicitly and formally described. For
this task, the use of ontologies seems to be the most appropriate solution. We propose
a stack of ontologies that will complement each other in annotating all the features of
a SGS. The stack is composed of the following ontologies a) one that describes VOs;
b) another that describes the upper-level concepts that define the features of a SGS; c)
a third ontology that describes the PSM to be used for representing both the internal
structure and functional features of a SGS and the domain in which the service will be
used (and, consequently, the domain of the VO); d) an ontology that defines the
knowledge representation entities used to model a SGS and the domain ontology; and,
finally, e) an ontology that describes the data types to be used in the domain ontology.
Each of these ontologies is explained in the following sections.

4.1 SGS Ontology

The SGS ontology presumes that a SGS is decomposed in a set of operations. Each of
these operations will be related to its corresponding Choreography, Model and Profile. Let
us see each of these elements in detail and how they are related to elements of the PSM
Description Ontology (which appears in Figure 2 and is fully explained below):

SGS Ontology

PSM Ontology

DT

KRKR

PSM
SGSSGS Choreography

Semantic Grid
Service Operation

has
*

VOVO

Fig. 2. Stack of ontologies main concepts and relations

 ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services 347

• Profile. The profile stores both functional and non-functional properties of the SGS
operation. We have identified a set of useful non-functional properties such as
authors, description, accuracy, quality of service, performance, robustness, trust,
etc. For describing the functional properties, the profile concept establishes
relationships (hasTask) with the Task concept of the PSM ontology.

• Model. The Model concept defines a relationship (hasMethod) with the concept
Method of the PSM Ontology. This means that a service operation will be
described by a method, which solves or decomposes the task associated with the
profile of the service operation. Moreover, the consistency in the relationships
among the concepts of Task, Method, and SGS Operation are guaranteed; if a SGS
operation is functionally described by a task, and executed by a method, there must
be a relationship between this task and this method, being this method one of the
set of methods that can solve this task.

• Choreography. The choreography of the operation describes the interaction that
should be made to invoke its addressed operation in a formal way. Choreography
describes both the messages inter-changed and the roles of those sending and
receiving those messages. We will use those formalisms to those presented in [17] to
formalize Web services choreographies and their concept of module replaceability,
but we will extend it in some ways: a) we will use п-calculus [18] instead of CSS
[19] (due to the changing and dynamic nature of the Grid); b) we will add semantic
annotation to the messages exchanged, using the domain ontologies; and c) we will
map the different actors appearing in the choreography with the roles that we have
defined in the VO Roles Model (we will define them later).

4.2 PSM Ontology

Our approach for describing SGSs is based on the Problem-Solving Method paradigm.
To decouple the functional features of a service from its internal specification, we
propose to apply PSMs [20][21] when modelling SGSs (following the same approach
that we did for describing SWSs in ODESWS [9]. A PSM is defined as a domain-
independent and knowledge-level specification of the problem solving behaviour that
can be used to solve a class of problems [21]. Our ontology for the description of PSM
is based on the Unified Problem-solving Method Language (UPML) [23]. The UPML
language was developed in the context of the IBROW project [23] with the aim of
enabling the (semi) automatic reuse and composition of PSMs distributed throughout
the Web. This objective seems to be similar to that of composing services; thus, it can
be considered that the IBROW project highlights the close relation between PSMs and
SWSs [24] (and SGSs by analogy since OGSA apparition).

• Task. It describes an abstract operation of independent domain to be solved,
specifying the input/output parameters and the task competence; This task
competence is composed of 1) preconditions and postconditions, which are
logical expressions about the abstract representation of the domain (how this
domain should be before and after the execution of the operation, respectively);
and 2) assumptions and effects, which are logical expressions about the state of the
real world (how the world should be for this operation to be applicable and how
will be after the execution of the operation, respectively), being the real world the
set of available Grid resources. Note that this task description is independent of the

348 C. Goble et al.

method used for solving the task and that the PSM paradigm distinguishes between
what we want to solve and how we are going to solve it.

• Method. It details the abstract reasoning process which is domain independent to
achieve a task, describing both the decomposition of the general tasks into sub-
tasks and the coordination of those sub-tasks to reach the required result. Note that
we based our PSMs descriptions on UPML, and it does not define nor impose a
language for describing the reasoning processes carried out by the methods. We
propose to add a minimal set of programming primitives to describe the operational
description of a composite method, a combination of which allows us to derive
several basic workflow-like patterns [25]. The formalism that we will use beneath
this workflow representation will be Kripke Structures and their translation to
temporal logic (see [26] for a complete reference).

• Adapter. It specifies mappings among the knowledge components of a PSM,
adapting a task to a method and refining tasks and methods to generate more
specific components [27]. Therefore, adapters are used to achieve the reusability,
since they bridge the gap between all the elements of a PSM.

• Domain Model. Domain Model introduces domain knowledge, and by means of
adapters it is attached to the methods and tasks in order to represent a concrete
description of an operation in a concrete domain (task and methods are domain
independent, as defined before).

4.3 VO Ontology

VOs were originally defined in [5] as a set individuals/institutions defined by a set of
resource sharing rules (these sharing rules specify what is shared, who is allowed to
share, and the conditions under which sharing occurs). When OGSA appeared, VOs
became defined by the services that they operate on and share and this was due to the
wrapping of resources by means of Grid services. So, our VOs descriptions will
initially be a set of SGSs descriptions. But there are still open issues that an additional
formalism should solve. One of these challenges appearing in [28] is to make
automatic decisions about which services could be in a VO and what should be their
roles these services should have in the VO. We will try to solve this challenge by
formalizing what VOs are. One advantage of formalizing VOs is the possibility of
discovering VOs; we may think of several VOs and a user wanting to know which
VO fits his/her expectations better. We will decompose a VO in:

• Metadata Properties. Additional non-functional information about the VO
(security and trust information, geographical issues, date of creation, involved
“real world” institutions, etc.).

• Roles Model. We will define the roles of SGSs in the VO by means of role
taxonomies and a set of restrictions for each role.

− Each VO will have a set of role taxonomies linked by subsumption
relationships. This tree-shaped structure (or structures) contains the possible
roles of the services (or external agents) that may interact or belong to the VO.

− A set of different restrictions for belonging to a role will be defined for each of
them. These restrictions will cover different aspects of what SGSs are in our
definition. We will distinguish between: non-functional restrictions, which

 ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services 349

constraint SGSs non-functional properties; competence restrictions, i.e., functional
properties that a role membership imposes; choreography restrictions, (a role may
impose certain message interchange compliance to the SGS just by defining an
abstract choreography and a type of relationship (bisimulation, strong
bisimulation, weak simulation, etc.) that the choreography of the service should
have (see [18] for a definition of them); and method restrictions (we may impose
certain restrictions to the orchestration/dataflow of a complex SGS).

With all these roles and restrictions, we may be able to a) know if a SGS can be
added to a certain VO; b) know, in case that a service may belong to a certain VO,
which of the different roles the SGS may play inside the VO; and c) use these
roles to annotate the actors that appear in each SGS choreography, relating thus
the interaction of a concrete service with the other SGSs that compose the VO.

• Provenance Model. We will initially follow the ideas formulated in myGrid
Project4 (for a detailed explanation we remit the reader to [29]). Provenance
information provides the origin as well as and metadata information of a concrete
enactment of a Grid service so as to be able to interpret the results.

4.4 KR Ontology and DT Ontology

The Knowledge Representation (KR) Ontology describes the primitives of the KR
model, which contains descriptions about the knowledge and data used by the SGS.
We have selected the WebODE knowledge model [30] as KR ontology. The KR
Ontology is constructed on top of an ontology that describes the types of the concepts
and attributes. This ontology will be based on the XML Schema Datatypes (XSD).

5 A Simple Example

Due to the lack of space we have chosen a very simple example to illustrate how a
SGS description is defined, and how it is seamlessly included in the context of a
semantically enhanced VO.

Let us suppose that we have a Grid portal that offers some functionality in some
given domain. Before accessing any of the services that belong to the portal, the client
(user, service, agent, whatever) should provide its identification and some kind of key
that guarantees its identity. Note that we suppose that this must be done always before
the invocation of any operation of the offered services in the portal.

Needless to say, the first step is the creation of all the ontologies that will be used
for the definition of all the elements and models of the VO and all the SGSs that may
fit in it. We suppose that in these ontologies, at least, concepts such us Key,
Credential, Identification are defined, as top level concepts. We also assume that they
are also refined, in order to achieve finer grained descriptions of these concepts.

Our very simple VO will comprise the set of GSs that are invoked from outside
the portal to obtain some functionality, and some services that are used for
authenticating and finding the privileges of the invokers. Therefore, we will define a
very simple Roles Model, in which we define two roles, Authentication Services and

4 http://www.mygrid.org.uk/

350 C. Goble et al.

Offered Services. How are we going to characterize each of them? We may define
them by setting restrictions on their operations and in their choreographies. An
Authentication Service will be defined as a service that should have at least an
authenticate operation, and this operation should receive, in its invocation process,
first an instance of the Identification concept and then an instance of the Key concept,
giving as a result a Credential instance. An Offered Service in our VO could be any
service that works in its domain. We just impose that the first action performed by
each of its operations Choreography is to invoke the authenticate operation of an
Authentication Service belonging to the VO.

Once we have defined this simple VO (we left out the Provenance Model and all
the Metadata information for the sake of simplicity), we are going to show how to
describe two SGSs that belong to the VO. We already know, thanks to the
aforementioned Role Model constraints, that an Authentication Service should have at
least one authenticate operation. In this example we will show how to describe this
authenticate operation of two services. One of them is a simple service called
SimpleSignIn, which authenticate operation receives a user name and its password
(both as a string of characters). The other is SequreSignIn (a complex SGS that
invokes other SGSs), whose authenticate operation receives more complete
identification information, and an X.509 digital certificate as its key.

In both services operations, the inputs are instances of concepts subsumed by the
concepts Identification and Key and the output in both cases is a credential, so both
operations can be described using the same abstract high level task, that we will call
Authenticate, even thought their methods may be completely different.

Once we have defined the Authenticate task, we have described what the
authenticate operation does. But how does the Authenticate task achieve its results?
We define that by means of methods. We build two methods, an atomic method called
SimpleAuthenticationProcess, and a complex method called ComplexAuthentication
Process. Atomic method means that it does not decompose the task into subtasks, as
the complex method does. Because of that, the complex method should define a) what
are the subtasks in which ComplexAuthenticationProcess decompose the Authenticate
task; b) how they interchange data between them, i.e. the dataflow; and c) how they are
orchestrated, i.e. the controlflow. Figure 3 shows how the ComplexAuthenticationProcess
is defined, by means of a dataflow diagram and a workflow.

Check
Key

id

key

check_result

Check
Key

checking_result=fault?
Search

Credential
trueCreate

Credential
false

Search
Credential

credential

Dataflow

Controlflow

Create
Credential

Fig. 3. Dataflow and Controlflow of the ComplexAuthenticationProcess method

 ODEGSG Framework, Knowledge-Based Annotation and Design of Grid Services 351

Authenticate

SimpleAuthentication
Process

Authenticate

Identification Key

Credential

Adapter1

Adapter2

Create
Credential

ComplexAuthentication
Process

Choreography

Profile

Models

Identification

Key

Credential

au
th

en
ti

ca
te

Search
Credential

Check
Key

SecureSignIn

SimpleSignIn

authenticate

Fig. 4. The different elements that describe the authenticate operation

These methods will be glued to the Authenticate task by means of adapters.
Adapters will also be used to glue the tasks and methods to the domain knowledge.

To sum up, the semantic description of the model of the authenticate operation of
the SimpleSignIn GS will be the Authenticate task, the SimpleAuthenticationProcess
method and all the assumptions and mappings that Adapter1 may contain. The
semantic description of the model of the SequreSignIn authenticate operation will be
also the Authenticate task, the ComplexAuthenticationProcess method and all the
assumptions and mappings that Adapter2 may state.

Figure 4 shows a simplified summary of how both autenthicate operations are
described, defining their Choreography, Profile (that we have supposed to be equal)
and respective Models.

Acknowledgements

This work has been partially financed by the Ontogrid Project (FP6-511513) and by a
grant provided by the Comunidad Autónoma de Madrid (Autonomous Community of
Madrid).

References

1. Hendler, J. 2001. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30–37.
2. De Roure D., Jennings N. R., and Shadbolt N. R.,(2001) Research Agenda for the

Semantic Grid: A Future e-Science Infrastructure, NeSC, Edinburgh, UK UKeS-2002-02.
3. De Roure, D., Jennings, N. R. and Shadbolt, N. R. (2005) The Semantic Grid: Past,

Present and Future. Procedings of the IEEE.
4. Foster I., C. Kesselman, J. N., and Tuecke S., (2002) Grid Services for Distributed System

Integration Computer, vol. 35.

352 C. Goble et al.

5. Foster I., Kesselman C., and Tuecke S. (2001) The anatomy of the Grid: Enabling scalable
virtual organi-zations. Lecture Notes in Computer Science 2150

6. Czajkowski K., Ferguson D.F., Foster I., Frey J., Graham S., Sedukhin I., Snelling D.,
Tuecke S., Vam-benepe W., (2003) The WS-Resource Framework

7. Motta, E., Domingue, J., Cabral, L., Gaspari, M.:(2003) IRS-II: A Framework and
Infrastructure for Semantic Web Services. ISWC 2003. LNCS Vol. 2870. Springer-Verlag

8. OWL Services Coalition (2004), OWL-S 1.1 Release: Semantic Markup for Web
Services”, Available: http://www.daml.org/services/owl-s/1.0/owl-s.pdf

9. Gómez-Pérez, A., González-Cabero, R., and Lama, M. (2004), A Framework for Design
and Composing Semantic Web Services”, IEEE Intelligent Systems, vol. 16, pp. 24–32

10. WSMO Working Group, (2004) http://www.wsmo.org/2004/d2/v1.0/
11. Akkiraju, R., Farrell, J. Miller J. Nagarajan M.(2005) WSDL-S Technical NoteVersion 1.0

Web Service Semantics
12. Newell, A.(1982) The knowledge level Artificial Intelligence., vol. 18, pp. 87--127.
13. Kreger, H. (2001) Web Services Conceptual Architec-ture. http://www.ibm.com/software/

solutions/webservices/pdf/WSCA.pdf
14. Curbera, F.; Nagy, W.A.; and Weerawana, S. (2001). Web Service: Why and How?. In

Proceedings of the OOPSLA-2001 Workshop on Object-Oriented Ser-vices. Tampa, Florida.
15. Kayne D. (2003) Loosely Coupled, The Missing Pieces of Web Services Rds Associates Inc
16. McIlraith, S.; Son, T.C. and Zeng, H. (2001) Semantic Web Services. IEEE Intelligent

Systems, 16(2):46–53.
17. Brogi A.,Canal C.,Pimentel E.,and Vallecillo A..(2004) Formalizing WS choreographies.

In Proc. of First International Workshop on Web Services and Formal Methods
18. Milner R., (1999) Communicating and Mobile Systems: the Pi-Calculus Cambridge

University Press ISBN: 0521658691
19. Milner, R., Communication and Concurrency (1989) Prentice Hall. ISBN: 0131149849
20. Benjamins, V.R., and Fensel, D. eds. (1998). Special Issue on Problem-Solving Methods.

International Journal of Human-Computer Studies, 49(4): 305–313.
21. Motta, E. (1999), Reusable Components for Knowledge Modelling, IOS Press
22. Fensel D., Motta E., van Harmelen F., Benjamins V.R., Crubezy M., Decker S., Gaspari

M., Groenboom R., Grosso W., Musen M., Plaza E., Schreiber G., Studer R., and Wielinga
B. (2003), The Unified Problem-Solving Method Development Language UPML.
Knowledge and Information Systems (KAIS): An International Journal

23. Benjamins, V.R.; Wielinga, B.; Wielemaker, J.; and Fensel, D. (1999). Brokering
Problem-Solving Knowledge at the Internet. In Proc. (EKAW-99): Springer-Verlag.

24. Benjamins, V.R. (2003), Web Services Solve Problems, and Problem-Solving Methods
Provide Services. IEEE Intelligent Systems, 18(1):76–77.

25. van der Aalst, W.P.; ter Hofstede, A.H.; Kiepuszewski, B.; and Barros, A.P.. Workflow
patterns. Distrib-uted and Parallel Databases, 14(2):5–51.

26. Clarke E. M., Grumberg O., Peled D.A., (2000), Model Checking The MIT Press ISBN:
0262032708

27. Fensel, D. (1997), The Tower-of-Adapter Method for Developing and Reusing Problem-
Solving Methods. In Proc. of the 7thKnowledge, Modeling and Management Workshop,
97–112: Springer-Verlag.

28. Foster I., Jennings N. R., and Kesselman C (2004) Brain meets brawn: Why grid and
agents need each other. In Proc. 3rd Int. Conf. on Autonomous Agents and Multi-Agent
Systems, New York, USA

29. Zhao J., Stevens R., Wroe C., Green-wood M. and Goble C. (2004) The Origin and
History of in silico Experiments In Proc. of the UK e-Science All Hands Meeting.

30. Arpírez J.C., Corcho O., Fernández-López M., and Gómez-Pérez A (2003).: WebODE in a
nutshell. AI Magazine.

	Introduction
	From SWSs to SGSs: Minding the Gap
	The ODESGS Framework
	ODESGS Ontology
	SGS Ontology
	PSM Ontology
	VO Ontology
	KR Ontology and DT Ontology

	A Simple Example
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

