
Adaptive Component Management Service in
ScudWare Middleware for Smart Vehicle Space

Qing Wu and Zhaohui Wu

College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, China, 310027

{wwwsin, wzh}@cs.zju.edu.cn

Abstract. Due to the complexities of increasing prevalence of ubiq-
uitous computing, it poses a large number of challenges for middleware
and component technologies. We believe that service-oriented component
adaptation provides a principled means to achieve the flexibility and scal-
ability required. The focus of this paper regards an adaptive component
management service in the ScudWare middleware architecture for smart
vehicle space. The contribution of our work is twofold. First, an adaptive
component management service framework, including a resource abstract
framework, is put forward to implement adaptive mechanism. Second, a
component hook proxy is proposed in detail for adaptation. In addition,
this service is validated by a series of experimental results.

1 Introduction

In recent years, many kinds of smart devices come into our life such as PDAs,
mobile phones, and smart cameras. The physical world and information space
integrate seamlessly and naturally. The computation is becoming embedded and
ubiquitous [1], which provides more facilities for people. This computing envi-
ronment demands plenty of computation resources for functional requests and
performance requirements. However, the computation resources in environments
are limited in terms of CPU computation capabilities, network bandwidth, mem-
ory size, and device power, etc. As a result, sometimes it cannot provide enough
resources to execute applications successfully. In addition, changes of the het-
erogeneous contexts including people, devices, and environments are ubiquitous
and pervasive. Therefore, it results in many problems in software middleware
design and development. We consider ”adaptation” is the key issue for software
systems and applications to meet the different computing environments and
the diverse run-time context. On the other hand, component-based and service-
oriented software (CBSOS) architecture provides a novel infrastructure and a
development platform for ubiquitous computing. Components are abundant, het-
erogeneous, autonomic, and multiple categories. Because ubiquitous computing
aims at building a human-centric ideal world, all entities should communicate
and cooperate with each other transparently and spontaneously. The CBSOS
system provides a flexible and adaptive computing framework. Taking into ac-
count the influence of dynamic changes on computation adequately, we use the
service-oriented, context-aware, and component-based methods for adaptation.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 310–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Adaptive Component Management Service in ScudWare Middleware 311

Vehicles play an important role in our daily life. People require more safety,
comfort, and facilities in vehicles. We select a vehicle space[2] as a representa-
tive scene to study ubiquitous computing. Cho Li Wang[3] has proposed five
types of software adaptation, consisting of data adaptation, network level adap-
tation, energy adaptation, migration adaptation, and functionality adaptation.
Our current work focuses at the design-time and run-time adaptation including
the computation resource, logic behavior semantic, and run-time context adap-
tation. We emphasize on adaptive component management at design-time and
run-time in the ScudWare[4] middleware for smart vehicle space. An experiment
prototype called ”mobile music system” is built to demonstrate the feasibility
and reliability of our methods and techniques. The paper brings forward the
ScudWare middleware platform and an adaptive component management ser-
vice framework. In addition, we have made experiments to test the performance
of this service.

The rest of the paper is organized as follows. Section 2 describes the ScudWare
middleware platform including smart vehicle space, CCM (CORBA Component
Model) [5] specification overview, and the ScudWare middleware architecture.
Then an adaptive component management service framework is proposed in
Section 3. Specially, a resources abstract framework and the functions of this
service are presented particularly. Section 4 gives a run-time component hook
proxy mechanism. In Section 5, we give experiments study and evaluate the
efficiency and performance of the service. Next, some related work is stated in
Section 6. Finally, we draw a conclusion in Section 7.

2 ScudWare Middleware Platform

To implement smart vehicle space naturally and adaptively, we have built the
ScudWare middleware platform conformed to the CCM (CORBA Component
Model) specification. We use the ACE (Adaptive Communication Environment)
[6] and the TAO (The ACE ORB) [7]. TAO is a real-time ORB (Object Re-
quest Broker) developed by Washington University. According to the applica-
tion domain of smart vehicle space, we reduce the TAO selectively and add
some adaptive services such as adaptive resource management service, context
service, and notification service. ScudCCM, a part of ScudWare, is responsible
for adaptive component management comprising component package, assembly,
deployment, and allocation at design-time, and run-time component monitoring.
As following, we introduce smart vehicle space, CCM specification and ScudWare
architecture briefly.

2.1 Smart Vehicle Space

In recent years, a lot of developers have applied embedded, AI, and biology au-
thentication technologies to vehicles. The drive capability, dependability, com-
fort, and convenience of the vehicle are improved greatly. When people go into
smart vehicle space, they find many intelligent devices and equipments around

312 Q. Wu and Z. Wu

Centralized Processing System

Context Acquisition System

Sensors Cameras
Sound

Receivers

Context Reasoning System

Ontology Context

Auto Controlling System

Steering Security Navigation Entertainment Communication

Fig. 1. Smart Vehicle Space

them. They communicate with these tools naturally and friendly. It forms a har-
monious vehicle space where people, devices, and environments co-operate with
each other adaptively.

Figure 1 describes the structure of smart vehicle space, which has four parts
and is defined as SVS=(CA, CR, AC, CP). CA is a context acquisition sys-
tem. CA = ((∆State(pe, de, en), (sen, cam, sou)) aims at sensing status changes
of people, devices, and environments in the vehicle, including sensors, cameras,
and sound receivers. CR is a context repository reasoning system. CR=(context,
ontology, domain, inference) uses the correlative contexts and application do-
main ontology to make the manipulating strategy for adaptation. AC is an auto
controlling system. AC=(ste, com, ent, nav, sec) consists of steering, communi-
cation, entertainment, navigation, and security subsystem. CP is a centralized
processing system. Particularly, CP is the kernel of smart vehicle space, which
controls above third parts co-operating effectively.

2.2 CCM Specification Overview

CORBA (Common Object Request Broker Architecture) is one of software mid-
dlewares, which provides language and operating system independences. CCM is
an extension to CORBA distributed object model. CCM prescribes component
designing, programming, packaging, deploying and executing stages.

CCM specification defines component attributes and ports. Attributes are
properties employed to configure component behavior. Specially stated, compo-
nent ports are very important, which are connecting points between components.
There are four kinds of ports: facets, receptacles, event sources, and event sinks.

Adaptive Component Management Service in ScudWare Middleware 313

Facets are distinct named interfaces provided by component for client interac-
tion. Receptacles are connection points that describe the component’s ability to
use a reference supplied by others. Event sources are connection points that emit
events of a specified type to one or more interested event consumers, or to an
event channel. Event sinks are connection points into which events of a specified
type may be pushed.

In addition, CCM specification defines component home, which is a meta-type
that acts as a manager for component instances of a specified component type.
Component home interfaces provide operations to manage component lifecy-
cle. CIF (Component Implementation Framework) is defined as a programming
model for constructing component implementations. CIDL (Component Imple-
mentation Definition Language), a declarative language, describes component
implementations of homes. The CIF uses CIDL descriptions to generate pro-
gramming skeletons that automate many of the basic behaviors of components,
including navigation, identity inquiries, activation, state management, and life-
cycle management. The component container defines run-time environments for
a component instance. Component implementations may be packaged and de-
ployed. A CORBA component package maintains one or more implementations
of a component. One component can be installed on a computer or grouped
together with other components to form an assembly.

2.3 ScudWare Middleware Architecture

As Figure 2 shows, ScudWare architecture consists of five parts defined as
SCUDW = (SOSEK, ACE, ETAO, SCUDCCM, SVA). SOSEK denots SMART
OSEK [8], an operating system of vehicle conformed to OSEK [9] specification de-
veloped by us. ACE denotes the adaptive communication environment, providing
high-performance and real-time communications. ACE uses inter-process com-
munication, event demultiplexing, explicit dynamic linking, and concurrency. In
addition, ACE automates system configuration and reconfiguration by dynami-
cally linking services into applications at run-time and executing these services
in one or more processes or threads. ETAO extends ACE ORB and is designed
using the best software practices and patterns on ACE in order to automate
the delivery of high-performance and real-time QoS to distributed applications.
ETAO includes a set of services such as the persistence service and transaction
service. In addition, we have developed an adaptive resource management ser-
vice, a context service and a notification service. Specially, the context service is
based on semantic information [10]. SCUDCCM is conformed to CCM specifi-
cation and consists of adaptive component package, assembly, deployment, and
allocation at design-time. Besides, it comprises component migration, replace-
ment, updating, and variation at run-time. In addition, the top layer is SVA
that denotes semantic virtual agent [11]. SVA aims at dealing with application
tasks. Each sva presents one service composition comprising a number of meta
objects. During the co-operations of SVA, the SIP(Semantic Interface Protocol)
[11] set is used including sva discovery, join, lease, and self-updating protocols.
Due to the limited space, we don’t detail SVA in this paper.

314 Q. Wu and Z. Wu

Adaptive Communication Environment

ETAO

SMART OSEK

J1939 CAN-Open TCP/IP Wireless

TransactionPersistence Context Notification

Adaptive Resource Management

ScudCCM

Semantic Virtual Agent

Adaptive Component Management Service

AssemblyPackage Deploy Allocation

ReplacementMigration Updating Variation

Fig. 2. ScudWare Architecture

3 Adaptive Component Management Service Framework

In this section, we describe the architecture of the adaptive component man-
agement service in a structural method. Because the component management is
resource-constrained, we firstly give a resource abstract framework, and then we
details this service.

3.1 Resource Abstract Framework

As Geoff Coulson [12] said, the goal of the resource abstract model is to support
component adaptation. In refining this goal, two additional requirements have
been identified. First, the framework must be extensible to capture diverse types
of resources at different levels of abstraction, including CPU processing resources
(e.g., threads, virtual processors), memory resources (e.g., ram, disk storage),
communication resources (e.g., network bandwidth, transport connections), OS
resources (e.g., Windows, Linux, Unix) and component container resource (e.g.,
CCM, EJB, .Net). Second, the framework must provide maximum control to
applications according to resource adaptation.

A resource is a run-time entity that offers a service for which one needs to
express a measure of quality of service. In ubiquitous computing environments,
various smart devices provide amount of resources on deferent level. On the other
hand, a large number of components are distributed on these devices, consuming
computation resources when executing tasks. Due to the joinment and departure

Adaptive Component Management Service in ScudWare Middleware 315

Adaptive Component Management Service

Task Management

Resource Management

Lifecycle

Lifecycle

DecomposingSemanticScheduling

QoS ContextAllocation

Lifecycle Quantity AllocationType

Device Management

Lifecycle UPNP EnergyType

Resources Layer

Component Container

Operating System

Hardware Infrastructure

Fig. 3. Resource Abstract Framework

of the smart devices and components are dynamic, it forms a relationship be-
tween the producer and consumer based on computation resources. For instance,
when a new smart device d goes into a system s, the components in s can use the
resources provided by d. In addition, when a new component c enters a system s,
it will be decided that how to allocate c automatically and adaptively. Specially,
component c can migrate from the one device to another device.

The resource abstract framework RAF = (DM, RM, CM, TM, PS) shows in
Figure 3. DM is a smart device manager that monitors the device lifetime, type,
and energy. In addition, it provides a mechanism for devices to UPNP (Univer-
sal Plug and Play). RM is a resource manager, administering resource lifecycle,
type, quantity, and allocation. CM is an adaptive component management ser-
vice, which is responsible for component lifecycle, allocation, QoS, and context
management. To emphasize CM, we will give a detailed description in Section 3.2.
TM is a task manager. When an application comes, TM will decompose it into
several tasks based on semantic information. TM monitors tasks lifetime and
schedules them in an adaptive way. Besides, PS is a set of management policy
sets for these four parts, which can be well defined and reconfigured dynamically.

3.2 Adaptive Component Management Service

In terms of the resource abstract framework, we have developed an adaptive
component management service. According to the different run-time contexts,

316 Q. Wu and Z. Wu

this service is responsible for allocating and re-allocating the components in an
appropriate way. In addition, it monitors component lifetime and is responsible
for the QoS of component execution. Importantly, this service uses a run-time
component hook proxy, described in Section 4.

In one component lifecycle, there are two kinds of key behaviors: compo-
nent migration and component replication. These two behaviors are essential for
adaptive component management. Because the components are distributed in
such dynamic and discrete system, this service should adaptively take measures
about when and how to migrate or replicate components.

Components are installed in different smart devices. On on hand, component
migration means moving one component from one device to another device. The
former device will not hold that component, and the latter device becomes the
new resource carrier for that component. Emphatically stated, the latter device
should have suitable resources for that component, including necessary hardware
resources, OS resources, and component container resources. On the other hand,
component replication means copying one component from one device to another
device. In component replication, different from component migration, the for-
mer still has that component. As a result, there are two same components in
two different devices. In the same way, two different devices should have same
suitable resources for that component. To illustrate two behaviors, we give the
cases shown in Figure 4. At first, component c1 is distributed in smart device
d1, and d1 also has other components such as c2 and c3. Assume that c2 is exe-

Adaptive Component Management Service

Lifecycle QoS ContextAllocation

C
n

C
k

leave

d
2

C1 Migration

d1

d3

d4

C4 Replication

C
6

join

Ci

C
j

C
9

C
8

C
7C

1

C
3

C2

C
1

X

C4

C5

C4'

Run-time Component Hook Proxy

Fig. 4. Adaptive Component Management Service

Adaptive Component Management Service in ScudWare Middleware 317

cuting and occupies more hardware resources of d1, it induces that c1 cannot be
executed for hardware resources limited when one invocation comes. Under this
condition, component management service will decide to migrate c1 to another
device d2. Next, in one appropriate time, the component migration of c1 will take
place. Following that, c1 will execute on d2 successfully. Here is another case of
component replication. At beginning, c4 is distributed in smart device d3. Differ-
ent form the former case, the number of invocations of c4 is very large. For load
balance, the component manger will decide to copy c4 to another device. Assume
that d4 is satisfied with resource demands of c4 and is not busy at that time, c′4,
the backup of c4, will be distributed in d4 to decrease the invocations of c4 in d3.

4 Run-Time Component Hook Proxy Mechanism

In the framework of adaptive component management service, we introduce a
proxy mechanism called run-time component hook proxy that plays an impor-
tant role in component management. This section firstly presents a component
interdependence graph, and then proposes an architecture of this hook proxy.

4.1 Component Interdependence Graph

During component management, the relationships among components are very
important. In order to describe the interdependent relationships among compo-
nents, we introduce a component interdependence graph composed of component
nodes and link paths.

For each component, we associate a node. In addition, the link paths are
labelled with a weight. We define the component interdependence graph Aig =
(CN, LP, W). (1) CN = {cni}i=1..n denotes a set of component nodes. (2) LP =
{li,j}i=1..n,j=1..m denotes a set of component links, describing the dependent tar-
gets. li,j is the link between the nodes cni and cnj. (3) W = {wi,j}i=1..n,j=1..m

denotes a set of interdependent weight. wi,j is a non-negative real number, which
labels li,j . In addition, wi,j reflects the importance of the interdependence be-
tween the associated components. These weights used, for instance, to detect
which links becomes too heavy or if the systems rely too much on some com-
ponents. In terms of this weight, we can decide which component should be
allocated preferentially. Extremely, this graph changes according to the different
contexts. Therefore, this interdependence is not static. It can be modified when
a new component is added, or one component disappears. Moreover, based on
the different application domain contexts and the run-time environments, the
interdependent relationships will change.

For example, Figure 5 shows a case of the component interdependence graph.
The dependence weight of component c2 on component c5 is 0.8, and compo-
nent c5 on component c2 is 0.6. We call component c2 and c5 are mutual and
direct component interdependent. Besides, we can also calculate indirect com-
ponent dependent weight by decomposing each direct dependent relationship. In
this case, we can conclude the indirect dependence weight of component c1 on

318 Q. Wu and Z. Wu

C1 C2 C3

C4 C5 C6

C7 C8 C9

0.2 0.5

0.5
0.7

0.8 0.6

0.2

0.1(0.3)

0.9 0.5 0.3

Fig. 5. A case of Component Interdependence Graph

component c7 is a sum of weight of component c1 on component c4, and weight
of component c4 on component c7. As a result, the weight is 0.7. In addition,
we can also see dependence weight of component c3 on component c6 is 0.1 in
one context, while this weight changes to 0.3 in another context. Therefore we
should consider the effect of context variety on component interdependence in
component allocation design.

4.2 Run-Time Component Hook Proxy Architecture

In the large and complex ubiquitous computing environments, the multiple re-
sources are restricted. Software components are distributed, and connected with
each other. They compute and communicate frequently under different condi-
tions. As a result, they are interdependent. However, some relationships are
casually and others are perpetual, which means the components do not always
depend on special components for co-operations. Therefore, we use the compo-
nent interdependence graph to describe run-time component self-adaptation. In
executing time, the dynamic interdependence graph is generated automatically
by the components hook proxy that is responsible for acquiring information to
analyze and update interdependence graph to manage the components lifetime.
Under the changes of the contexts, the components hook proxy uses the different
strategies. Here gives a simple example. For a mobile music program, there are
four components: c1, c2, c3, c4. c1 is responsible for acquiring music information.
c2 is responsible for playing music with stereo tune. c3 is responsible for play-
ing music with mono tune. c4 is responsible for outputting the music. At first,
the network bandwidth is enough, the component hook proxy selects c1, c2, c4
to deal with this task, and forms a component interdependence graph. How-
ever, when the component hook proxy finds the network bandwidth is scarcity,
and cannot to transmit stereo track successfully, it will stop the actions of c2,

Adaptive Component Management Service in ScudWare Middleware 319

Component Hook

Proxy

Resource Context

CPU
Computation

Network
bandwidth

Memory Size

 Control
Message
Interdependence

Context
1

C2

C
4

C1

Context 2

C
3

C4

C
1

Fig. 6. A case of Component Hook Proxy

and then choose c3 to work. As a result, the component interdependence graph
changes. Figure 6 shows this case.

5 Experiment Study and Evaluation

We have made some preliminary experiments using the adaptive component
management service to build the mobile music system of smart vehicle space. A
large number of components are distributed on the various platforms to acquire,
play, transmit, and output the music information. These components interact
with the request and reply process. If one component sends the request for some
music information, the component management service will select one appro-
priate component to work and reply to the demander. Since the context of the
application is very dynamic, the strategy of component allocation should be done
automatically and dynamically. Our experiments are tested on the following plat-
forms, as shown in Table 1. The iPAQ is connected to the PC via the wireless
LAN using 802.11b protocol. The middleware platform uses the ScudWare.

Mobile music system runs on some PDAs and PCs. Many components are
distributed on the PDAs and PCs randomly. The functions of these components
consist of acquiring the music source information, transmitting the music, and
playing the music. To illustrate this, we give a case. First, the playing component
c1 on the PDA1 is playing the music with stereo tune. When the component hook
proxy finds the network bandwidth is not enough, it will stop the component c1.

320 Q. Wu and Z. Wu

Table 1. Experiment Test Bed

HP iPAQ Pocket PC H5500 Personal Computer

CPU 400 MHz Intel, XScal-PXA255 Intel Pentium IV 2.4G
Memory 128 MB RAM + 48 MB Flash ROM 256 MB RAM
Network Wireless LAN 802.11b LAN 100MB/s
OS Familiar Linux v0.8.0-rc1 RedHat Linux 9.0 (2.4.20)
Middleware ScudWare ScudWare
Dev-Language g++, QT g++

Then the proxy finds another music playing component c2 on the PDA2, which
plays music with mono tune and adapts to low network bandwidth. Because the
current playing frame is No. 168, it will start the component c2, and play music
from the No. 168 frame with the mono tune. In this way, the system can continue
successfully without more delays and provide comparative satisfaction for users.

In order to test the performance of the adaptive component management
service, we have made many simulations and evaluations. The results show that
our method is flexible and has little negative influence to the systems.

Due to adaptive component migration and replication, it must induce the
execution performance cost through component manager monitoring. As a result,
we focus on the performance test for measuring the cost. Because components in
ubiquitous computing environments form a large, complex and rich world, the
number of components in the tests is a key issue. In our tests, we choose the
component number n in this way: the first value is 50, the last is 500, and the

Fig. 7. Performance Cost

Adaptive Component Management Service in ScudWare Middleware 321

step is 50. We have done the experiments 10 times, and each time we use n/25
PCs and n/50 iPAQs. As shown in Figure 7, the average execution time for each
n is given about two kinds: one is a mobile music system without the component
hook proxy monitoring, and the other is with it. As a whole, the difference is
small and the execution time is acceptable.

6 Related Work

Service-oriented adaptive middleware plays an important role in software en-
gineering. It has the large potential for enhancing the system’s flexibility and
reliability to a very wide range of factors. Many efforts are put in this research
area. For instance, Philip K. Mckinley has made a lot of research on adaptive
software. He considers the compositional adaptation enables software to modify
its structure and behavior dynamically in response to changes in its execution
environment. He also gives a review of current technology comparing how, when,
and where re-composition occurs [13]. In addition, he describes Petrimorph [14],
a system that supports compositional adaptation of both functional and non-
functional concerns by explicitly addressing collateral change. Kurt Wallnau and
Judith Stafford [15] discuss and illustrate the fundamental affinity between soft-
ware architecture and component technology. They mainly outline criteria for the
component integration. Jiri Adamek and Frantisek Plasil [16] discuss the problem
of defining a composition operator in behavior protocols in a way, which would
reflect false communication of the software components being composed. Besides,
we have proposed a semantic and adaptive middleware for data management in
smart vehicle space [2]. In component adaptation, we should consider both the
task decomposing completely at design-time and the executing effectively and re-
liably at run-time [17]. However, many researches consider incompletely, ignoring
some aspects. Additionally, it needs an integrated computation model to describe
adaptive component management. The goal of our research is to overcome this
deficiency. Smita Bakshi and Daniel D. Gajski [18] present a cost-optimized algo-
rithm for selecting components and pipelining a data flow graph, given a multiple
implementation library. This method focuses on performance analysis, which is
short of the run-time adaptive mechanism. Belaramani and Cho Li Wang [3]
propose a dynamic component composition approach for achieving functionality
adaptation and demonstrate its feasibility via the facet model. However, they
do not integrate the design-time adaptation to form a synthetical computation
model. Shige Wang and Kang G. Shin [19] give a new method for component al-
location using an informed branch-and-bound and forward checking mechanism
subject to a combination of resource constraints. Nevertheless, their method is
static, and focuses on design-time instead of runtime adaptation.

7 Conclusions and Future Work

Now, adaptive component management is playing a more important role in ubiq-
uitous computing environments, which is a significant research issue. In this

322 Q. Wu and Z. Wu

paper, we firstly analyze the problem area caused by dynamic characters of
ubiquitous computing, and give a short introduction of the software adaptation.
Next, we mainly present an adaptive component management service, which is
integrated into the ScudWare middleware. In addition, we have made a large
number of experiments to test the performance cost of this service.

Our future work is to improve the adaptive component management service
including some algorithm analysis. In addition, we will take other methods to
realize more component management flexibility and reliability both at design-
time and run-time.

Acknowledgments

This research was supported by 863 National High Technology Program under
Grant No. 2003AA1Z2080, 2003AA1Z2140 and 2002AA1Z2308.

References

1. Weiser M: The Computer for the 21st Century. Scientific American, pp.94-100
(1991)

2. Qing Wu, Zhaohui Wu, Bin Wu, and Zhou Jiang: Semantic and Adaptive Mid-
dleware for Data management in Smart Vehicle Space. In proceedings of the 5th
Advances in Web-Age Information Management, LNCS 3129, pp. 107-116 (2004)

3. Nalini Moti Belaramani, Cho-Li Wang, and Francis C.M. Lau: Dynamic Com-
ponent Composition for Functionality Adaptation in Pervasive Environments. In
proceedings of the Ninth IEEE Workshop on Future Trends of Distributed Com-
puting Systems, (2003)

4. Zhaohui Wu, Qing Wu, Jie Sun, Zhigang Gao, Bin Wu, and Mingde Zhao: Scud-
Ware: A Context-aware and Lightweight Middleware for Smart Vehicle Space. In
proceedings of the 1st International Conference on Embedded Software and Sys-
tem, LNCS 3605, pp. 266-273 (2004)

5. http://www.omg.org/technology/documents/formal/components.htm (2005)
6. http://www.cs.wustl.edu/ schmidt/ACE.html (2005)
7. http://www.cs.wustl.edu/ schmidt/TAO.html (2005)
8. Mingde Zhao, Zhaohui Wu, Guoqing Yang, Lei Wang, and Wei Chen: SmartOSEK:

A Dependable Platform for Automobile Electronics. In proceedings of the first
International Conference on Embedded Software and System, LNCS 3605, pp.
437-442 (2004)

9. OSEK/VDX: OSEK/VDX Operating System Specification Version 2.2.2.
http://www.osek-vdx.org (2005)

10. Qing Wu and Zhaohui Wu: Integrating Semantic Context Service into Adaptive
Middleware for Ubiquitous Computing. In ”Advances in Computer Science and
Engineering Series”, Imperial College Press, London, UK, to appeare (2005)

11. Qing Wu and Zhaohui Wu: Semantic and Virtual Agents in Adaptive Middleware
Architecture for Smart Vehicle Space. In proceedings of the 4th International Cen-
tral and Eastern European Conference on Multi-Agent Systems, LNAI 3690, pp.
543-546 (2005)

12. Hector A. Duran-Limon, Gordon S. Blair, Geoff Coulson: Adaptive Resource Man-
agement in Middleware : A Survey. IEEE Distributed System 5(7), (2004)

Adaptive Component Management Service in ScudWare Middleware 323

13. Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, Betty H.C. Cheng:
Comosing Adaptive Software. IEEE Computer Society, pp. 56-64 (2004)

14. E.P. Kasten, P.K.McKinley: Perimorph: Run-time Composition and State Man-
agement for Adaptive Systems. In proceedings of the 4th International Workshop
on Distributed Auto-adaptive and Reconfigurable Systems, pp. 332-337 (2004)

15. Kurt Wallnau, Judith Stafford, Scott Hissam, Mark Klein: On the Relationship of
Software Architecture to Software Component Technology. In proceedings of the
6th International Workshop on Component-Oriented Programming (2001)

16. Jiri Adamek, Frantisek Plasil: Component Composition Errors and Update Atom-
icity : Static Analysis. Journal of Software Maintenance and Evolution: Research
and Practice (2005)

17. Qing Wu and Zhaohui Wu: Adaptive Component Allocation in ScudWare Mid-
dleware for Ubiquitous Computing. In proceedings of the 2005 IFIP International
Conference on Embedded And Ubiquitous Computing, LNCS, to appeare (2005)

18. Smita Bakshi, Daniel D.Gajski:A component Selection Algorithm for High-
Performance Pipelines. In proceedings of the conference on European design au-
tomation, ACM, pp. 400-405 (1994)

19. Shige Wang, Jeffrey R. Merrick, Kang G. Shin: Component Allocation with Multi-
ple Resource Constraints for Large Embedded Real-time Software Design. In pro-
ceedings of the 10th IEEE Real-Time and Embedded Technology and Applications
Symposium (2004)

	Introduction
	ScudWare Middleware Platform
	Smart Vehicle Space
	CCM Specification Overview
	ScudWare Middleware Architecture

	Adaptive Component Management Service Framework
	Resource Abstract Framework
	Adaptive Component Management Service

	Run-Time Component Hook Proxy Mechanism
	Component Interdependence Graph
	Run-Time Component Hook Proxy Architecture

	Experiment Study and Evaluation
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

