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Abstract. Existing Grid schedulers focus on allocating resources to jobs as per 
the resource requirements expressed by end-users. This demands detailed 
knowledge of application behavior for different resource configurations on the 
part of end-users. Additionally, this model incurs significant delay in terms of 
the provisioning overhead for each request.  In contrast, for interactive work-
loads, services are commonly pre-configured by an application server according 
to long-term steady-state requirements. In this paper, we propose a framework 
for bridging the gap between these two extremes. We target application services 
beyond simple interactive workloads, such as a parallel numeric application.  In 
our approach, end users are shielded from lower-level resource configuration 
details and deal only with service metrics like average response time, expressed 
as SLAs.  These SLAs are then translated into concrete resource allocation de-
cisions. Since demand for a service fluctuates over time, static pre-
configurations may not maximize utility of the common pool of resources. Our 
approach involves dynamic re-provisioning to achieve maximum utility, while 
accounting for overheads incurred during re-provisioning. We find that it is not 
always beneficial to re-provision resources according to perceived benefits and 
propose a model for calculating the optimal amount of re-provisioning for a 
particular scenario. 

1   Introduction 

Existing Grid [1,3,4] scheduling technologies – as described in commercial products 
[5,12], prototypes [ 15,7,8], requirement specifications [13,14] and papers [11, 16,17, 
9] – have primarily focused on allocation of resources to incoming jobs as per the re-
source requirements expressed directly by end users. An experienced end-user of an 
application, say a scientist submitting a numerically intensive application, is quite 
knowledgeable of the application execution behavior over different resource configu-
rations. Thus the scientist is able to manually translate the requirements on timeliness 
and data size into a set of requested resources over which the application is to be run. 
Current resource provider capabilities do not permit a client to use high level objectives 
such as a deadline or desired throughput. Note that a service could be an invocation of 
an interactive workload or a longer running numeric intensive application. As pointed 
out in [2], to bridge the gap between a high level client request and the resource pro-
vider capabilities to make available any requested resources, an intermediate layer 
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must translate high level objectives to detailed resource requirements based on appli-
cation execution profiles.  

To illustrate a long running parallel application service, consider a financial appli-
cation for portfolio risk evaluation consisting of two phases as described in [2].  The 
first phase invokes a service that solves a large system of linear equations, and is im-
plemented as a parallel, tightly-coupled, compute and network intensive computation.  
The result of this phase along with new input is used to compute the risk profiles of a 
set of trades in the second phase. The computation of this phase is organized as a mas-
ter-worker interaction: each worker node independently computes the risk profile for 
a set of trades, and the master assembles the information received from workers into 
the final result. The overall computation must be completed by a fixed deadline (say 
7:00 AM of each trading day). The client application breaks down the overall objec-
tive, by setting service level goals (such as completion time or number of trade risk 
computation per second) for each phase of the portfolio computation. 

Setting up a service instance with the required resource configuration involves ac-
quiring the required set of resources, starting up a (parallel) application on these 
nodes, and finally after execution, shutting down the application and releasing allo-
cated nodes. To avoid delay and overheads associated with provisioning resources on 
a per-request basis, an application service instance can be reused for serving another 
user request with similar requirements; as is done when managing interactive work-
loads.  Note that an available pre-configured application instance may not always 
match the resource requirements of a new user request.  Hence, the new user request 
may have to wait until a matching application instance is available.  If no such in-
stance has been pre-configured or existing instances are insufficient, a new instance 
could be created on-demand. The resources for the new instance may be obtained by 
destroying one or more less frequently used pre-configured instances.  Once an appli-
cation instance is acquired by an end-user, it is either used to run a single (long run-
ning) request, or is used to invoke a series of short operations by the end-user.  The 
end-user therefore, expresses an SLA that not only translates to resource configura-
tion requirements of an instance, but also defines service level objectives like the wait 
time to acquire a matching service instance.   

In this paper, we propose a layered framework for managing application level SLA 
objectives for all types of services (not just interactive workloads), including invoca-
tion of parallel applications. The framework addresses the translation of end-user 
SLA requirements into concrete resource requirements to be used for configuring a 
service instance based on a prior application execution profile. It also addresses (1) 
scheduling user requests to matching available pre-configured service instances, (2) 
pro-active management of a pool of pre-configured service instances for meeting SLA 
objectives on waiting time, (3) allocation and de-allocation of physical resources to 
service instances, and (4) provisioning and de-provisioning of service instances.  

We then explore key issues and strategies in pro-active management of service in-
stance pools, taking into account SLA objectives. We incorporate the provisioning 
overhead - often ignored in steady state analysis – as well as gauge the effect of dif-
ferent user request arrival patterns.  We find that it is not always beneficial to re-
provision resources according to perceived benefits. In fact, in certain cases the re-
provisioning overheads make it detrimental to adapt service pools according to user 
request arrival patterns. We hence propose a model for calculating the optimal amount 
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of re-provisioning for a particular scenario. Preliminary simulation results also show 
that we are able to effectively manage service instance pools, based on user defined 
SLAs. Additional experimental results are described in [18]. 

The rest of this paper is organized as follows. Section 2 proposes a layered frame-
work for managing application level end-user SLA and scheduling user service re-
quests. Section 3 provides details on dynamic management of service pools, including 
SLAs and workloads used, algorithm tested, and a model for calculating the optimal 
level of re-provisioning. Section 4 contains the experimental setup, parameters and 
simulation results. We conclude in Section 5. 

2   Overview of the Architecture for Service Instance Scheduling 
and Management 

We now detail the proposed layered architecture for managing application level SLAs 
using pre-configured service instances (See Figure 1). Before invoking a service, a 
client application establishes a SLA with the service provider, that expresses not only 
the capabilities of the service instance to be assigned, but also timeliness in receiving 
a service instance. The SLA for service capabilities can be expressed either as a dead-
line or as the number of transactions per unit time supported by such an instance.   

The primary components of this architecture and their interactions are detailed below. 

Application Service Level Manager (ASLM): A service client interacts with the 
ASLM for establishing a new SLA, and subsequently monitors the status of the SLA. 
Our prototype supports the WS-Agreement protocol [10] for the above interactions, 
which additionally includes customizing predefined agreement templates to create a 
new SLA.   

In addition to establishing the SLA, the ASLM translates higher level SLA objec-
tives into detailed resource requirements to be used for configuring a service instance 
in support of this SLA. To estimate required resource configurations, the ASLM 
maintains an application execution profile consisting of multiple observed perform-
ance points for various resource configurations.  The focus of this paper is not on this 
translation method, and hence, details of how to obtain the execution profile, bound-
ing the number of observations to be obtained for defining execution profile, etc. are 
not discussed here.  We mention in passing that the execution profile captures only 
the effects of changes in key resource attributes, such as the number of nodes, proces-
sor MIPS, and memory size per node.         

Service Instance Request Scheduler (SIRC): Once an SLA is established, a service 
client requests a service instance that is configured according to the SLA.  Depending 
on the type of a service, this request may be explicit or implicit. If the service instance 
is to be used for a single invocation (e.g., a long running application), the request for a 
service instance can be combined with the service invocation request, i.e., assignment 
of service instance is implicit.  Alternatively, a client may request a binding to an ex-
plicit service instance, and perform multiple service invocation on this instance (as in 
the second phase of the financial application example, discussed in Section 1).    
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Fig. 1. Layered architecture for service Instance scheduling and management 

The SIRC assigns a matching service instance to an incoming service instance re-
quest, if such an instance is available. Otherwise, it queues the incoming request, and 
prioritizes requests in the queue to meet SLA waiting time objectives. The service in-
stance pool manager monitors the queuing delay, and possible SLA violations, and 
pro-actively signals provisioning of new service instances.  

Service Instance Pool Manager (SIPM): The SIPM makes dynamic decisions on the 
number of services instances to be maintained for each service type. Multiple SLAs 
may specify the same set of service objectives, referred to as a service type.  The de-
cision is based on the business values associated with SLA objectives, required re-
source configuration for each service instance derived by ASLM and the current state 
of objectives. Following this decision, the SIPM creates and/or destroys service in-
stances of different service types by invoking the two components discussed next, the 
Physical Resource Manager and the Service Instance Provisioner.  The focus of the 
current paper is on the strategy of managing service instance pool, and we will pro-
vide more details in Sections 3 and 4. 

Physical Resource Manager (PRM): The PRM manages allocation of nodes to ser-
vice instances, and is invoked by the SIPM to allocate nodes for a new service in-
stance to be created or to release nodes when a service instance is destroyed. Upon 
destruction of a service instance, the nodes are made available for reallocation.   
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Service Instance Provisioner (SIP): Actions involved in provisioning a service in-
stance depends on the type of the service, as well as differences across services shar-
ing the same resource pool.  For a relatively simple scenario, this involves merely 
starting up an application on one or more nodes. For a parallel application this may 
involve synchronization with the master node. In a more complex scenario, where dif-
ferent applications require different execution environments (e.g., J2EE version), a 
completely new software stack needs to be loaded for reassigning a node to another 
application.  In all scenarios, once a service instance is created, the SIRC is notified of 
this new instance.  

3   Service Instance Pool Management 

We now discuss issues involved with the dynamic management of service pools. The 
characteristics of the service request streams (henceforth referred to as the workload) 
and SLAs used play a key role in the implementation and effectiveness of dynamic 
service instance pool management. We then propose an algorithm that is used by the 
SIPM to manage these service instance pools. Other key issues explored are the over-
heads involved in re-provisioning service instances i.e. moving nodes across service 
pools – and the extent of adaptability for the SIPM.  

3.1   Request Workloads, SLAs and Key Issues 

Workload Characteristics: If requests for each particular service-type arrive at a 
steady rate (say according to a uniform or Poisson distribution) then it is relatively 
easier to decide the number of service instances to be instantiated per service, to meet 
the SLA goals. Many systems today assume steady-state parameters to calculate re-
source allocation. However, in many cases, the workload may change over time, ei-
ther gradually or suddenly (for example, there might be a sudden spike in demand for 
one particular service) warranting the increase in the number of instances of certain 
service types. A successful adaptation technique should be able to detect the changes 
in the workload and re-provision instances accordingly.  

We look at both cases in our experiments: (1) a steady-state scenario where re-
quests for different services may arrive at different rates but follow Poisson distribu-
tions and (2) when the workload varies over time. 

Higher Level SLA Objectives: The Service Level Agreements between the provider 
and client could take a number of forms [10]. In this paper we assume business values 
associated with objectives are defined as explicit utility functions, where a client 
specifies how much utility is gained (or in other words, how much she is willing to 
pay) for a certain response time for acquiring the service instance. The same utility 
function also applies to the scenario of how much penalty should be assessed for de-
viations from the specified goal.  

Key Issues in Dynamic Adaptation: Often, there might be inherent costs associated 
with re-provisioning a node. At one extreme, the overheads might be negligible if 
switching from one service to another just involves linking different libraries. On the 
other extreme, it may involve, draining the node of current jobs and software, I/O op-
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erations to load the software for the new service and extensive re-configuration. Thus 
the “dead time” defined as the time when the node is unavailable for any service, 
could be substantial in many cases of re-provisioning. Moreover, re-provisioning 
might require I/O or other operations which access bottleneck resources like the net-
work or shared disk access. Thus, the time to re-provision ‘k’ nodes may not be the 
same as the time to re-provision one node. Depending on how costly the re-
provisioning step is, and the relative increase in utility it may actually be disadvanta-
geous to re-provision more than a certain number of nodes at a time. Our proposed 
model for estimating these costs is described later. 

3.2   Algorithm for Incremental Adaptation 

We now describe the algorithm employed by the SIPM to make decisions regarding 
the number of service instances to maintain for each service pool. Since the SIPM has 
access to the different utility functions for each service type, it can make re-
provisioning decisions with the aim of maximizing utility (henceforth called revenue) 
across all resources it controls. We assume that we know how long a particular ser-
vice instance will be used by a client (This can be derived either by employing predic-
tive techniques or by requiring that the user submit an estimate of the usage time).  

We first establish some terms that will be used in the algorithm. As explained ear-
lier, the revenue acquired by a service is a function of the response time (as defined in 
the SLA). Hence the revenue gained for time interval t0-t1 is captured in the follow-
ing expression: 

Revenue(t0-t1) = Number of requests fulfilled in t0-t1 * utility_function(average re-
sponse time for fulfilling requests in t0-t1) 

Thus, given a request queue for a particular service type, the number of service in-
stances (i.e. the size of the service instance pool) and the estimated run-time for each 
request in the queue; the predicted average response-time to obtain a service instance, 
can easily be calculated. This can then be used to derive the predicted revenue.  

Predicted Revenue = function of (Size of Service Instance Pool, Run time estimates of 
Requests in Queue). 

Thus, if a Service Instance was added to a pool that already had s Service Instances, 
the advantage of adding that new Instance (the ‘Incremental Revenue’ gained) could 
be calculated as follows : 

Incremental Revenue = (Predicted Revenue with s+1 instances) – (Predicted Revenue 
with s instances).  

The algorithm for incremental adaptation is then a simple calculation to maximize 
revenue, as the following pseudo code describes : 

At each time period (the periodicity factor is discussed in the next section): 

1) Each service instance pool donates at-least ‘k’ nodes to a common virtual pool. 
If a certain service instance pool does not contain enough resources to contribute ‘k’ 
nodes to the common pool, it does not contribute nodes in that iteration, but is how-
ever considered a candidate to receive nodes. Note that nodes are not de-provisioned 
at this stage (The size of ‘k’ is discussed shortly).  
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2) Now the SIPM calculates how best the nodes in the common pool could be re-
distributed across service instance pools. Assume here that each service instance re-
quires one node. Variations are discussed below. 

  For each node (n) in the common pool : 
      For each Service Instance Pool (p): 
           Calculate ‘Incremental Revenue’ gained if node n is added to Service In-

stance Pool p 
      Assign node n to Service Instance Pool with maximum ‘Incremental Revenue’ 
     Update size of that Service Instance Pool 
Record new assignments 

Note that if each service type requires more nodes than one, then instead of one node, 
groups of nodes of the required size, are considered at each iteration. 

3) Re-provision nodes according to the new assignment that was calculated. (Note 
that actual re-provisioning only happens in Step 3). 

The incremental adaptation algorithm, reassigns nodes to where they might be most 
useful, but at the same time, ensures that this re-assignment is gradual. Temporary 
variations in the request workload may cause a small number of service instances to 
be re-provisioned. Massive re-structuring can only occur if there is a sustained change 
in external parameters like SLAs or service demand.  

3.3    Model for Estimating Optimal Amount of Simultaneous Re-provisioning  

A key factor for dynamic adaptation is that while a node is being re-provisioned, it is 
unavailable for providing any service. These so called “dead times” could be signifi-
cant. Moreover, as discussed earlier, concurrently re-provisioning multiple nodes 
could lead to larger dead-times than when only one node is re-provisioned. Hence this 
cost has to be factored in when deciding the adaptation algorithm parameter of how 
many nodes to consider for re-provisioning in each iteration of the algorithm. The fol-
lowing model aims to estimate this parameter, by calculating the loss in revenue 
caused by the dead times and the gain in revenue, resulting from running a different 
service on the nodes. 

Assume there are two service types, s1 and s2, which currently generate revenue 
r1_old and r2_old per time interval t. There are n service nodes in the system and they 
are initially partitioned into the two service types (x1 nodes provide service s1, and x2 
provide service s2).  Suppose we now want to re-provision k nodes from serving s1 to 
serving s2 and the new revenues that will be generated by each are r1_new and 
r2_new per time interval. (To recall, the revenue generated is a function of the aver-
age response time, which will change when the number of instances per service type 
changes). 

Now the cost of moving k nodes from service type s1 to service type s2, is at the 
very least the revenue lost by not serving s1, for the duration of the dead time of those 
k nodes. Assume that if it takes T seconds to re-provision one node, it will take T + 
delta * (k-1) to re-provision k nodes, where delta is the simultaneous re-provisioning 
cost factor. Hence the dead time for one node = T where as the dead time for k nodes 
is kT + k(k-1)*delta . Thus the revenue lost if k nodes are re-provisioned = (kT + k(k-
1) * delta) * r1_old. 
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The benefit gained by the re-provisioning can be quantified as the increase in reve-
nue, that is Revenue( old) – Revenue(new). We assume here, that there is enough de-
mand to use up all nodes. Suppose, the time-interval for periodically adapting is Ta. 
The revenue made by the nodes for the non-adaptive case: Revenue(old) =  (r1_old * 
s1 + r2_old * s2) * Ta. The Revenue made in the adaptive case: Revenue(new) can be 
split into 2 stages T1 and T2 where Ta = T1 + T2. T1 is the time for the re-
provisioning to occur [which was earlier calculated as = T + delta * (k-1)] and T2 is 
the time when the re-provisioning has already succeeded. 

During T1, there are x1-k nodes serving s1, x2 nodes serving s2 and k nodes un-
available.  

Therefore, Revenue(T1) = ((x1-k) * r1_new + x2 * r2_old) * T1 
Similarly, Revenue (T2) = ((x1-k) * r1_new  + (x2 + k) * r2_new)  * T2 

Hence, the increase in revenue for a particular k can be calculated as Revenue(T1) + 
Revenue(T2) – Revenue(old) . The optimal value for k can be derived by calculating 
the maxima of this resulting function. Figure 3 plots the revenue gain for some sample 
values of x1, x2, utility curves and delta. It is clear from the figure that for a given 
delta, there is a certain range for k, when it is most beneficial to re-provision those 
many nodes simultaneously. Re-provisioning more nodes than this value leads to a 
steady decline in revenue and even to losses.  

Frequency of Adaptation: Closely related to the overheads of re-provisioning is the 
frequency with which adaptation occurs. In our architecture the SIPM periodically re-
calculates if nodes need to be re-provisioned. If this frequency is too high, then minor 
fluctuations from the steady state may cause unnecessary re-provisioning; if too low, 
then the adaptive machinery may be too slow to react to genuine surges.  

We tackle this issue by using an incremental adaptation process. At each time-
period (which is relatively short) only a certain number of nodes are considered for 
re-provisioning. If the surge that triggered the re-provisioning was small or short-
lived, this adaptation is corrected in the next time interval. If however the surge is a 
genuine one, and has lasted beyond a couple of time-periods, subsequent adaptations 
further create the necessary services.  
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Fig. 2. Revenue gained for different values of Delta. Total nodes = 100, r1 old and r1 new = 2, 
r2 old and r2 new = 4, T =1 and Ta = 10. 
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This incremental adaptation has a twofold advantage: (1) temporary aberrations to 
the steady-state workload don’t falsely trigger a huge amount of costly re-
provisioning (2) by re-provisioning smaller batches of nodes at a time (around the op-
timal value of k as explained earlier), we decrease the dead times of nodes and hence 
maintain higher revenues.  

4   Experiments and Results 

To test the effectiveness of our dynamic adaptation algorithm, we simulate a cluster 
of nodes providing different services. Our in-house simulation program generates 
various service requests, and allocates and executes them on the services running on 
the cluster. We then use the prototype we have built for incremental-adaptation; the 
SIPM, to manage the service instances provided on this simulated cluster. We meas-
ure both the net revenue gained by adaptation and improvement in performance in 
terms of response time.   

4.1   Experimental Setup 

In the start of each experiment, all the nodes in the cluster are equally pre-divided into 
two logical service instance pools. There is a fixed utility function associated with 
each service type, and we assume here that both service types run on the same number 
of nodes. Client requests for a service are generated according to a Poisson distribu-
tion. Each service instance pool has an associated queue of requests waiting to acquire 
a service instance from that pool, and incoming requests are added to this queue as the 
simulation progresses. Requests are allocated to service instances by the Service In-
stance Request Scheduler, using a FIFO (First In First Out) algorithm.  

The Service Instance Pool Manager (SIPM) kicks in periodically to re-provision ser-
vice instances if needed. The input to the SIPM consists of the size of each service in-
stance pool, the size of request queues for each service instance pool and the respective 
utility functions. The SIPM then calculates the desired size of each service instance pool, 
so as to maximize revenue. The Service Instance Provisioner then re-provisions nodes, so 
as to meet the new assignment. Note that nodes do not physically belong to certain pools, 
but form logical pools on the basis of the type of service instance they belong to.  

The experimental parameters used are provided in Table 1.  

Table 1. Parameters used in simulations 

Experimental Parameter Value 
Total number of nodes in cluster 100 - 200 
Number of requests per service type varies by experiment ; 250-1000 
Job run time 60 seconds 
Nodes per service instance 5 
Periodical adaptation Varies; typically 200 seconds 
Time to re-provision one node Varies; 5 – 100 seconds 
Delta : factor that determines over-
head of re-provisioning n nodes 
simultaneously 

Varies; 0.5 - 20 
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4.2   Simulation Results 

We first want to compare our incremental-adaptation approach against the case were 
no adaptation takes place, to ascertain whether dynamic adaptation does result in 
higher revenues for the provider. We then go on to study parameters like workload 
variations and cost of re-provisioning, that might impact the algorithm. The results are 
an average of three runs, where the varying factor in each run was the generated 
workload. We did not find significant variations between runs.  

Effectiveness of Incremental Adaptation 
We first consider the case of two services types, S1 and S2, each offering 10 service 
instances each. We test two cases (1) where both services have the same utility func-
tion but different request arrival rates and (2) where they have the same request arri-
val rate but different utilities.  

(A) Heterogeneous Request Arrival Rates: We specify the same utility function for 
both services but different request arrival rates.  Maximum revenue is gained if re-
quests for a service instance do not incur any delay. If the response time goes beyond 
40 seconds, then there is a penalty associated with that request. The request arrival 
rates for the two services differ by a factor of two. Requests for S1 arrive twice as of-
ten as requests for S1 (Poisson inter-arrival time for S1 = 5, S2= 10). 

Table 2. Performance comparison of static provisioning and SIPM’s dynamic re-provisioning 
for heterogeneous request arrival rates 

 Avg. Response Time (secs) Revenue ($) 

 Static SIPM Static SIMP 
S1 578 31 -2662 44 
S2 02 14 95 63 
Total na na -2567 107 

Table 2 contains the average response time (the time it takes to allot a particular 
service instance to a request) and net revenue gained when the above utility function 
is used, for both the static case when no adaptation takes place, and the dynamic case 
where the SIPM re-provisions service instances to increase revenue gained. As seen, 
in the static case, the average response time for S1 in very high, leading to a large 
penalty imposed on the provider. When the SIPM is used, the response times for S1 
are effectively brought down to 91 seconds whereas the response time for S2 goes up 
slightly, resulting in positive revenues. Note that the revenue numbers are entirely de-
pendant on the utility function used to interpret the gains, but the average response 
times are independent of whatever utility function is used. 

These results can be explained as follows: since there are many more outstanding 
requests for S1 than S2, the SIPM successfully detects this, re-provisions nodes serv-
ing S2 to serve S1 and decreases wait-times for S1 requests.  

(B) Heterogeneous Utility Functions: For this experiment, requests for both services 
arrive at the same rate, but the services have different utility functions as shown 
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in Figure 3(left). S2 is a relatively more critical application than S1 and hence the 
client offers higher revenues if the ideal response time is met for S2. Thereafter, the 
utility curve for S2 decreases more rapidly than for S1. If the response time for S2 is 
greater than 100 seconds, the provider incurs a penalty. We model the same request 
arrival rate for both services: a Poisson arrival rate with inter-arrival time of 6 
seconds.  

Table 3 provides the results of this experiment for both the static and SIPM cases. 
As the results show, the SIPM is able to effectively increase net revenue earned, as 
compared to the static node distribution case. Figure 3(right) shows the number of 
service instances as the simulation progresses, for one particular run. Initially, the 
SIMP re-provisions some nodes to serve S2, since the revenue gained from S2 is 
higher. As the simulation progresses, the request queue for S1 grower longer (as 
lesser nodes now serve S1), effectively making it more lucrative to switch some nodes 
back to S1.  The SIPM also detects small bursts in traffic and adapts slightly, bringing 
down the average response time considerably.  

Effect of Workload Variations 
To test how the SIPM reacts to a sudden increase in requests for one service type, we 
generated a workload where after a short while, requests for S2 start arriving more 
frequently. Requests for S1 have a constant inter-arrival time of 6 throughout the 
workload, where as after 500 seconds, S2 requests start arriving much faster (with an 
inter-arrival time of 2 seconds). S2 jobs cease arriving at time 1150. 
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Fig. 3. (left) Utility functions used for re-provisioning and (right) number of service instances 
as simulation progresses 

Table 3. Performance comparison of static provisioning and SIPM’s dynamic re-provisioning 
for heterogeneous utility functions 

 Avg. Response Time (secs) Revenue ($) 

 Static SIPM Static SIMP 
S1 178 66 -98 41 
S2 165 39 -56 18 
Total na na -154 59 
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Fig. 4. (left) Number of service instances as simulation progresses for an unstable workload 
(right) Revenue generated as the amount of simultaneous re-provisioning increases 

Figure 4(left) shows the number of service instances for S2 as the simulation pro-
gresses (the remainder of a total of 20 instances are S1 instances). As can be seen, the 
SIPM is quickly able to detect the surge in S2 requests (at time 600) and increases 
service instances of S2. However, once most S2 requests are met, nodes are switched 
to S1 instances (starting at time 1600), to better respond to S1 requests.  

Effect of Cost of Re-provisioning 
While we have ascertained that the SIPM is able to re-provision nodes according to 
workload fluctuations and utility definitions, we want to study the effect of the over-
heads of re-provisioning.  

The next experiment quantifies the effect of simultaneously re-provisioning in-
stances, the k factor, as explained in Section 3.3. Each service type in this experiment 
starts off with 20 instances each, and k instances (that is k/2 from each service in-
stance pool) are periodically considered by the SIPM for re-provisioning. One service 
type is defined as having consistently higher returns than another, prompting the 
SIMP to re-provision as many nodes as permitted by the value of k. Figure 4(right) 
plots the revenue gained as the number of instances being simultaneously re-
provisioned (k) is increased. 

As can be seen from the figure, there is a distinct advantage in increasing k to a 
certain point. The adaptation process succeeds in generating higher revenues. But be-
yond the threshold value (k = 6 in this case) it is less advantageous to re-provision 
more nodes simultaneously. This is because, as explained in our model in Section 3.3, 
the loss in revenue caused by the dead-times over-weigh whatever increase in revenue 
the new service type generates. It should be noted here that the value of delta deter-
mines the cost of simultaneous re-provisioning. In future work, we plan to run ex-
periments on a real test-bed to obtain realistic ranges for delta.  

5   Conclusions and Future Work 

Existing scheduling solutions require end-users to express exact resource require-
ments for each request in the form of a job submission. We have proposed a frame-
work where end-users need not be aware of specific resource configurations needed to 
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realize their service level objectives. Our framework translates high-level end-user 
service level objectives like desired response-time to specific resource scheduling and 
provisioning actions based on application execution profiles. Since configuring a new 
service instance, especially for parallel applications, can incur both delay and over-
head, the proposed framework furthermore, reuses existing pre-configured service in-
stances in serving a new user.  An end-user first establishes a SLA, and receives a 
service instance configured to meet SLA objectives, which is then used for subse-
quent invocations.  To avoid a long delay in acquiring a service instance, SLAs also 
specify response time objectives in acquiring a new instance.  

Additionally, our framework also enables dynamically re-provisioning nodes to 
meet SLAs provided by users. To this end, we put forth an incremental adaptation al-
gorithm for dynamically re-provisioning services and an analytical model for estimat-
ing the optimal amount of re-provisioning. Initial simulation results to evaluate our 
prototype show that not only is it successful in adapting service instance pools, for 
maximizing utility, but also that the optimal amount of adaptation depends on the cost 
of provisioning. 

In future work, we plan to run more experiments on test-beds using real workloads 
to better quantify the overheads of simultaneously re-provisioning nodes.  

Acknowledgements. The authors would like to acknowledge the contributions of and 
thank Cait Crawford, Liana Fong, Kevin Gildea, Alan King, H. Shaikh, and Annette 
Rossi on the broader formulation of reusable parallel application service instances. 
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