

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 283 – 295, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Template-Based Automated Service Provisioning –
Supporting the Agreement-Driven Service Life-Cycle

Heiko Ludwig2, Henner Gimpel1, Asit Dan2, and Bob Kearney2

1 Universität Fridericiana zu Karlsruhe (TH), Englerstrasse 14,
76131 Karlsruhe, Germany

gimpel@iw.uni-karlsruhe.de
2 IBM T.J. Watson Research Center, 19, Skyline Drive,

Hawthorne, NY, 10025, USA
{hludwig, asit, firefly}@us.ibm.com

Abstract. Service Level Agreements (SLAs) are a vital instrument in service-
oriented architectures to reserve service capacity at a defined service quality
level. Provisioning systems enable service managers to automatically configure
resources such as servers, storage, and routers based on a configuration specifi-
cation. Hence, agreement provisioning is a vital step in managing the life-cycle
of agreement-driven services. Deriving detailed resource quantities from arbi-
trary SLA specifications is a difficult task and requires detailed models of algo-
rithmic behavior of service implementations and capacity of a – potentially het-
erogeneous – resource environment, which are typically not available today.
However, if we look at, e.g., data centers today, system administrators often
know the quality-of-service properties of known system configurations and
modifications thereof and can write the corresponding provisioning specifica-
tions. This paper proposes an approach that leverages the knowledge of existing
data center configurations, defines templates of provisioning specifications, and
rules on how to fill these templates based on a SLA specification. The approach
is agnostic to the specific SLA language and provisioning specification format
used, if based on XML.

1 Introduction

Agreements, particularly Service Level Agreements (SLAs), play an important role
in the binding process of service-oriented architectures. They are used for the reser-
vation of service capacity at defined service levels for a specific customer. Agree-
ments enable a service provider to learn about future demand in advance – as stated
in the agreements – and provision the required resources for the agreed service
capacity.

The use of agreements to reserve and bind to services is relevant for various types
of services. Agreements are used for reserving capacity of software-as-a-service, e.g.,
Customer Relationship Management services, for scheduling Grid jobs, and also for
resource-level services within a complex system such as storage capacity, network
bandwidth, computing nodes, and memory. Furthermore, the mechanism of binding to
services by agreement is applied within an organization and across organizational
boundaries – with changing security requirements, though.

284 H. Ludwig et al.

Traditionally, SLAs have been used primarily between organizations in a, mostly,
paper-based process. SLA creation was then followed by a phase of service provision-
ing that could take once more a significant amount of time, depending on the degree
of automation of the design of the resource infrastructure that provisions the service
and of the provisioning process.

Recently, however, a number of efforts were undertaken to streamline the creation
and monitoring of SLAs for service-oriented architectures by representing SLA con-
tents in a machine-readable format and using electronic (Web services) interactions to
negotiate and sign them. WSOL [15] and WSLA [12] are research approaches propos-
ing agreement representations. SNAP is a proposal for an agreement negotiation pro-
tocol [4]. WS-Agreement [1] is a specification of the Global Grid Forum that stan-
dardizes a top-level agreement structure, a simple negotiation protocol and a
compliance monitoring interface. Standardized representations of agreements and ne-
gotiation processes enable dynamic service acquisition processes for capacity-aware
service clients. However, to be effective in practice, they also demand automation of
the provisioning process of service providers, which is the subject of this paper.

Provisioning is the act of deploying, installing and configuring a service [9]. It is
an important aspect of management of data centers and networks. Provisioning typi-
cally involves the following steps:

1. Identifying the target system state that delivers the service as intended; this in-
volves the derivation of the system’s topology, the configuration of firewalls,
application servers, database servers and the like, as well as the quantification
of those resources, i.e. how many servers of each type.

2. Deriving a process that transitions the system from its current state to the tar-
get state, often referred to as change management [10];

3. Executing the process consistently, usually driven by a workflow or script sys-
tem accessing instrumentation on those resources.

The term provisioning is applied to both, low-level provisioning of servers or other
raw resources, i.e. installing and configuring operating systems, as well as to high-
level application provisioning, installing, updating and configuring applications on re-
sources that underwent low-level provisioning earlier. Given the complexity of the
steps of the provisioning process listed above, particularly steps 1 and 2, a generic so-
lution for automating the end-to-end service provisioning process is a daunting task.
While some approaches address partial aspects such as deriving a service topology [6]
and deriving and optimizing a provisioning workflow [9], no generic, derivative pro-
visioning solution is available as of now.

The approach presented here tackles exactly this problem, i.e. the automation of
end-to-end service-provisioning based on agreement terms. More precisely, we pro-
pose a template mechanism that automatically handles service requests: it derives re-
source types and quantities necessary to guarantee quality requirements, it determines
the resource configuration and assembly, and acquires resources from heterogeneous
resource managers.

To make provisioning work in practice, service providers capture the experience of
their system administrators in provisioning process templates and rules of thumb for
capacity planning, an approach that is often pragmatic. The approach proposed in this
paper leverages this pragmatic approach for agreement-driven provisioning. It

 Template-Based Automated Service Provisioning 285

provides a formal representation for templates of an executable provisioning process
and an executable way of defining how to fill in these templates based on content of a
formal agreement, which we call the Agreement Implementation Plan Template (IP
Template). These templates are predefined parametric examples of how to provision
services of a given basic structure. Thus, the presented mechanism does not go against
the administrators’ rules of thumb or best practices on a general basis, but embraces
them in providing an automatically executable process, and thus more appropriate if
time is a crucial factor. The approach enables dynamic acquisition of service capacity
in a service-oriented environment in a pragmatic way.

To this end, the remainder of the paper is structured as follows: Section 2 estab-
lishes relevant terminology by defining a model of provisioning in the service live-
cycle. Section 3 outlines the problem definition in more details, presents a sample
scenario where the proposed mechanism is applicable, and points out the major re-
quirements. Section 4 presents the proposed template structure along with the proc-
essing of agreement offers to derive resource requirements and trigger provisioning.
Finally, Section 5 reviews related work and concludes.

2 Provisioning in the Agreement-Driven Service Life-Cycle

The life-cycle of any electronic service goes through at least four broad stages:

1. a high level service modeling stage for mapping a business problem to a ser-
vice description,

2. a design and implementation stage where the service technology, usually the
application code is developed in support of the above service description,

3. a resource mapping and deployment stage, where a specific set of resources,
its topology and quantity, is defined on which the service is deployed, and

4. a runtime monitoring and management stage for managing resources deliver-
ing the service.

Supporting performance-related quality of service as part of an agreement requires
additional activities throughout these four life-cycle stages. At the modeling stage, in
addition to the service definition, associated qualities of service are defined. The ser-
vice implementation must be implemented in a way that it can be deployed on a vari-
able set of resources. The resource mapping and deployment stage, the service provi-
sioning as defined here, must be able to derive the set of resources required to achieve
a given performance level and at runtime, the instrumentation of the service must al-
low us to assess QoS compliance and adjust resource allocations.

2.1 Provisioning in an Agreement-Driven Service-Oriented Architecture

This life-cycle is managed in the context of an agreement-driven service-oriented ar-
chitecture (ADSOA). In this ADSOA, the agreement-related interaction between ser-
vice provider and customer precedes, and is orthogonal to, the service interaction tak-
ing place between service and service client [1]. In an implementation architecture,
the Service Delivery layer, which exists in any service-oriented architecture, is driven
by the Agreement Management layer through Agreement Delivery Management as
outlined in Figure 1.

286 H. Ludwig et al.

Fig. 1. Provisioning in an Agreement-Driven Service Architecture

The Service Delivery layer addresses the implementation of a service on a set of re-
sources. In Figure 1, a CRM service is implemented by resources from two pools,
storage and servers (dotted lines). It can be accessed by one or more clients. Re-
sources are configured for a particular service using a provisioning engine, which
executes provisioning plans, acquiring resources from resource pools and executing
provisioning workflows. Resources can be shared between services or be exclusive.
The Service Delivery layer per se is independent of agreements and is present in any
non-trivial SOA implementation architecture.

The Agreement Management layer manages the portfolio of agreements and enters
new agreements by exchanging offers. It also exposes the current state of the agree-
ment, according to the WS-Agreement model.

The Agreement Delivery Management layer relates the Service Delivery and Agree-
ment Management. Offers and Agreements are input to a Provisioning Planner, which
creates a Provisioning Plan, comprising the set of resources required and the provision-
ing workflow. This Provisioning Plan can be used by the Agreement Management layer
to assess an agreement offer or it can be passed on to the Provisioning Engine of the
Service Delivery layer. Mapping the state of the Service Delivery layer to the state of
compliance of an agreement is also part of this layer but not the focus of this paper [11].

2.2 Use of Templates

In an ADSOA, service capabilities can be published by an agreement provider as
agreement templates, potentially in addition to and complementing other forms such
as policy-annotated UDDI entries. WS-Agreement defines a template format that con-
tains a partially completed agreement, a definition of named locations where an

Agreement
Initiator

Agreement
Provider

Provisioning
Planner

Service
Client

CRM Service

NAS1

NAS2

NAS3

Storage Pool

CRM Service

Service
Consumer

Service
Provider

Agree
ment

Provisioning Plan

Offer

Server

Server

Server

Server Pool

Agreement
Management

Service
Delivery

Agreement
Delivery

Management

Provisioning
Engine

 Template-Based Automated Service Provisioning 287

agreement initiator can fill in agreement content, i.e. the “fields”, and constraints that
limit what can be filled in [1]. In the context of a CRM Web service, for example, a
field could be the value for the response time of an operation and a constraint could
limit the choice to one, two or five seconds. The use of agreement templates, particu-
larly their constraint mechanism, enables service providers to advertise services only
at performance levels whose resource implications they have experience with and un-
derstand. A service can be advertised using multiple agreement templates.

To capture the provisioning expertise of system administrators, these agreement
templates can be associated with agreement implementation plan templates. An
agreement implementation plan template contains a partially filled provisioning plan,
corresponding to the agreement template approach, and a definition how to fill these
fields depending on content of agreements. The details of this approach are described
in Section 4. Agreement implementation plan templates can be changed independ-
ently of agreement templates but must be adapted if agreement templates change.
Hence, the joint use of agreement templates and agreement implementation plan tem-
plates enables a service designer to anticipate the decision-making of the first three
stages of the service life-cycle and automate the execution of provisioning planning
for particular agreements in the life-cycle.

3 Problem Definition

The use of agreements in managing service interactions, and hence, agreement-based
provisioning is required in all scenarios where service configurations need to be custom-
ized based on client requirements. As mentioned earlier, the use of customer-specific
SLAs is equally applicable for configuring a business service between enterprises or for
managing interactions across resource managers in a complex distributed environment,
e.g., having a storage manager, workload manager, cluster manager, etc. The complex-
ity of an agreement driven provisioning process in different scenarios depends on the
service and the complexity of customization. For example, in an agreement-based job
submission, where the agreement specifies a preference of resources over which the job
is to be run, the Provisioning Planner simply invokes the scheduling system with the in-
formation on resource preferences. In this case, the agreement implementation plan
template specifies the end-point of the scheduling system and how to extract resource
preference information to be passed to the scheduling system. Similarly, incremental
provisioning for setting up a shared application/web service with a client specific ser-
vice level objective on average response time simply requires passing the service level
objective information to the workload manager managing this service. Again, the asso-
ciated agreement implementation plan template consists of the end-point of the work-
load manager and how to extract service level objective information.

3.1 Use Case

A more complex example of agreement-based provisioning may involve multiple
steps of deriving information to be passed to one or more provisioning services and/or
multiple methods to be invoked. Consider, setting up a CRM software-as-a-service
hosted by an application service provider. Also, assume the agreement includes many

288 H. Ludwig et al.

details such as how to upload client data, application isolation, firewall and other se-
curity requirements, performance and availability requirements, requirement on stor-
age size and data back up, network connectivity requirements, details of metering and
billing, etc. Clearly, provisioning such a service requires interaction with many com-
ponents and deriving resource configuration parameters to be used.

3.2 Requirements

The previous discussion leads to a set of requirements to be addressed by an agree-
ment-driven provisioning approach:

• The approach must not be specific for a single service or a class of services,
like, for example, a CRM application service. It should generically enable
SLAs for a wide range of services, from resources to business services.

• The approach must deal with a variety of provisioning engines, including schedulers.
• Agnosticism to the specific SLA language is desirable as there is no unique way

to specify SLAs and this reduces re-implementation and adaptation.
• The approach must provide means for capturing externalized know-how of sys-

tem administrators.
• The overall provisioning process should be automatically executable, the main

motivation for automatic provisioning.
• The approach has to provide functionality for deriving resource types and

quantities for a given SLA.
• Furthermore, there has to be a detailed plan of the necessary resource configu-

ration and assembly for provisioning these resources.
• Allowing for the acquisition of resources from a resource pool is an integral

step in provisioning.
• Finally, the mechanism has to be adaptive to the resource load and availability,

as the system state is non-constant.
• Finally, it might be favorable if the system is able to simultaneously cope with

heterogeneous resource pools like, for example, different data centers; at its
best, this works across organizational boundaries.

Manually provisioning an infrastructure that delivers a service as defined in a SLA
fulfills all functional requirements outlined above but the automation. However,
automation opens up the potential of speeding up the provisioning process. To fore-
stall its properties one can say that it satisfies all above requirements. One more point
about the agnosticism to the SLA language is noteworthy: the examples presented in
this paper assume SLAs specified according to the WS-Agreement specification and
the template itself is exemplified via XML. However, the general components and
processes are as well applicable to other languages by adapting the location pointers
used in the implementation plan template.

4 Template-Based Agreement Provisioning Framework

Addressing the detailed requirements defined in the previous section, this section intro-
duces the template-based agreement provisioning framework, specifically addressing

 Template-Based Automated Service Provisioning 289

provisioning planning of the agreement delivery layer of the ADSOA. This framework
comprises two elements, a representation for Agreement Implementation Plan Tem-
plates and a Definition of the Provisioning Planning process based on these templates.

4.1 Agreement Implementation Plan Templates

The framework aims at determining the resources required to provision a given SLA
which might, for example, be specified as a WS-Agreement for the above-mentioned
CRM application service. To this end, the framework’s core element is the agreement
implementation plan template (IP template for short). The IP template contains a de-
scription how to create a complete provisioning plan from a given agreement offer.
To this end, an IP template comprises four sections:

1. Agreement parameter identifiers,
2. Partial provisioning plan,
3. Instance completion description,
4. Provisioning engine invocation section.

The components of an IP template are sketched in Figure 2 and discussed in more de-
tail in the following.

Agreement Parameter Identifiers. The purpose of the agreement parameter identifi-
ers section is to relate the IP template to agreements to which it can be applied. When
designing the IP template one has to relate it to a class of potential agreements that
follow a similar structure, potentially being created according to an agreement tem-
plate, as, for example, the WS-Agreement specification draft suggests. However, this
is an example and the IP template itself and the process that uses it are agnostic to the
semantics of agreements, if based on XML. The section contains an arbitrary number
of agreement parameter identifiers – each of which having a unique name and a loca-
tion pointer. The location pointer points to exactly one location in an agreement, re-
ferred to as agreement part. Agreement parts can be any clearly identified substructure
of an agreement. The pointer concept is sketched in Figure 2.

In the CRM application service example agreement parts might be performance re-
quirements like response time and throughput, the pricing scheme, and the firewall
configuration. If the agreement is specified in an XML data structure, the XPath for-
mat can be employed to represent location pointers; the author of such an XPath ex-
pression has to make sure that it resolves to one and only one single location in an
agreement document. A corresponding agreement parameter identifier using XPath is
exemplified below:

…
<AgreementParameterIdentifiers>
 <ParameterIdentifier name=”AverageResponseTime”>
 <LocationPointer>
 //wsag:GuaranteeTerm[@wsag:Name=’resTime’]/*Value
 </LocationPointer>
 </ParameterIdentifier>
 …
</AgreementParameterIdentifieres>
…

290 H. Ludwig et al.

Agreement Implementation
Plan Template

Partial Provisioning Plan

Agreement Parameter Identifiers

Provisioning Engine
Invocation Details

Resource Type
Definition

Resource
Assembly

Instance Completion Description

Agreement Offer

Agreement Part

Agreement Part

Agreement Part

Parameter Identifiers

Name

Location Pointer

Field Description

Location Pointer

Field Value
Algorithm

Fig. 2. Pointer structure in agreement implementation plan templates

Partial Provisioning Plan. The partial provisioning plan has a format that is inter-
preted by a provisioning engine. The plan has open or modifiable fields that will be
filled in with values as described in the instance completion description. Most provi-
sioning systems today have their proprietary format but some standards are under de-
velopment such as CDDLM [2] or IUDD [16]. The presented approach only relies on
an XML representation.

We present a simple proprietary example language that we use for provisioning
prototypes; in a productive environment, CDDLM or IUDD can easily be used, as the
overall mechanism is agnostic to the specific XML language employed. The descrip-
tion comprises the definition of resource types and one or more definitions of resource
assembly which are alternatives and among which can be chosen depending on re-
source availability and cost considerations. Different alternatives might for example
be whether to employ a mainframe or a cluster for the CRM application service ex-
ample. The definition of resource types contains the information to uniquely identify
the type of resources to a resource pool, e.g., the cluster management system of a data
center, to query the resources availability. The following XML listing exemplifies the
definition:

 Template-Based Automated Service Provisioning 291

…
<PartialProvisioningPlan>
 <ResourceTypeDefinitions>
 <ResourceType name=”P-Series”>
 <HostType description=”pSeries550”>
 <HostArchitecture>
 <CPUCount>4</CPUCount>
 </HostArchitecture>
 …
 </HostType>
 </ResourceType>
 …
 </ResourceTypeDefinition>
 …
</PartialProvisioningPlan>
…

The definition of resource assembly comprises resource quantity definitions, indicat-
ing how many resources for which type are needed for this assembly. Furthermore,
the assembly contains a definition how and in which order the resources will be con-
figured and provisioned. This definition might be written in a script language such as
Unix shell script or Perl, or in a workflow language such as BPEL4WS.

Instance Completion Description. The instance completion description section of
the IP template defines what parts will be filled in and substituted in the partial
provisioning plan. For this, the instance completion description comprises a set of
field descriptions, each of which explains how to create a value for a specific part of
the partial provisioning plan. Such a field description is made up of a location
pointer and an algorithm for deducing the field value. The location pointer is
analogous to the above-mentioned location pointer. The algorithm is represented in
a format that can be automatically interpreted – any such format is possible; the
PMAC Expression Language [8], for example, is a suitable representation, as the
following code illustrates:

…
<InstanceCompletitionDescription>
 <FieldDescription>
 <LocationPointer>
 //ProvisioningProcessDescription/*NumberOfServers
 </LocationPointer>
 <FieldValueAlgorithmDescription>
 <exp:Plus>
 <exp:FloatConstant>
 <Value>02.000</Value>
 </exp:FloatConstant>
 <exp:Divide>
 <exp:FloatConstant>
 <Value>01.000</Value>
 </exp:FloatConstant>
 <exp:Variable name=”AverageResponseTime”/>

292 H. Ludwig et al.

 </exp:Divide>
 </exp:Plus>
 </FieldValueAlgorithmDescription>
 </FieldDescription>
 …
</InstanceCompletitionDescription>
…

 In this example the number of servers to be provisioned increases the shorter the
average response time is chosen. The desired response time is extracted from the
agreement, i.e. the SLA, via the parameter identifier, as shown in the example above.
The deduced number of servers is filled in the partial provisioning plan. Besides the
sketched expression language, a field value algorithm can contain a call to an external
algorithms, functions, and programs performing more complex estimations for the re-
source requirements.

Provisioning Engine Invocation. The fourth section of the IP template gives details
on the provisioning engine to use. This enables environments with multiple provision-
ing engines by defining the endpoint reference to which a complete provisioning plan
instance is sent. An example in the simplest case is:

…
<ProvisioningEngineInvocationDetails>
 <wsa:EndpointReference>
 http://manamgement.ibm.com:8080/provisioning
 </wsa:EndpointReference>
</ProvisioningEngineInvocationDetails>
…

4.2 Provisioning Process

The outlined template mechanism (1) identifies the parts of a SLA which are relevant
for supplying resources, (2) derives quantities for different resource types, determines
and outlines alternative resource assemblies that might be used, and (3) compiles a
provisioning plan detailing the required resources, their configuration, and their pro-
visioning. The processing of such an IP template is implemented by the Provisioning
Planner; the provisioning itself is carried out be the Provisioning Engine.

Provisioning Planner: Upon receiving an agreement, the Provisioning Planner ana-
lyzes it and checks its syntactic correctness. Subsequently, a set of implementation
plan templates associated with the agreement offer is retrieved from a template re-
pository and is subsequently used to devise a provisioning plan.

The first applicable template is chosen and processed up to a provisioning plan.
The provisioning engine then executes this provisioning plan – it acquires and config-
ures the respective resources and reports the result of this provisioning process back
to the agreement provisioning planner. In case of failure, the agreement provisioning
planner can devise an alternative provisioning plan from the next IP template re-
trieved from the repository.

 Template-Based Automated Service Provisioning 293

Processing a single IP template involves the following:

1. Verify for each location pointer of each parameter identifier if it points to
one and only one location in the received agreement.

2. Retrieve values from the agreement as specified by the parameter identifi-
ers and store them indexed by their respective names.

3. Write a copy of the provisioning process description.
4. For all field descriptions in the instance completion description:

a. Execute the field value algorithm.
b. Insert the value returned in the provisioning plan instance at the loca-

tion given by the field description’s location pointer.

With completion of these steps – possibly for several IP templates if there might be
failures – the algorithm yields a complete and executable instance of the provisioning
plan. Hence, there is no need for the Provisioning Planner to understand the semantics
of the provisioning plan as the semantics, e.g., a system administrator’s knowledge on
how many servers are to utilize to meet a given response time goal, is captured in the
IP template itself.

Provisioning Engine. The Provisioning Engine interprets the output of the Provision-
ing Planner. Although our approach can work with different engines, we illustrate the
workings of the provisioning engine along a simple prototypical implementation.

When one of the IP templates results in a complete provisioning plan, the provi-
sioning planner retrieves endpoint reference of the provisioning engine to be used
from the provisioning engine invocation details in the IP template. It sends the com-
pleted provisioning plan to this provisioning engine which proceeds with the follow-
ing steps:

1. Select the first resource assembly within the provisioning plan.
2. Check whether the resources can be acquired from the resource pool in

the quantity indicated by the resource quantity definition of the respective
resource assembly.
If not, this step is repeated with the next resource assembly, if any. If there
is no resource assembly left, a failure notice is returned the provisioning
planner and the process is terminated here.

3. Acquire resources in the desired quantity, as step 2 assured that they are
available.

4. Execute the assembly provisioning plan to configure the assembly.

If step four completes, the provisioning is complete and the service can be used.
The provisioning engine reports the successful resource acquisition back to the provi-
sioning planner which in turn informs the service client that presented the service of-
fer in the first place. The service management then starts the service by making it
available to the service client.

Heterogeneous Resource Pools. Up to now, the nature of resource pools and the spe-
cific acquisition mechanism was not addressed. The template-based approach is ap-
plicable to different resource pools: it can equally be applied for provisioning of re-
sources within a single host, within one data center, across different data centers run

294 H. Ludwig et al.

by the same organization, and to inter-organizational resource acquisition. The crucial
factor is that the provisioning engine has to be able to communicate with the re-
sources or resource providers respectively. The easiest way is direct access to the
scheduler; a more sophisticated acquisition – which might be applied across organiza-
tional boundaries and maybe even within a single data center – might be market-
based. The provisioning engine could, for example, negotiate with several resource
providers as outlined by Czajkowski et al. [4] and Gimpel et al. [7] or it could acquire
the resources on a structured marketplace as presented by Buyya et al. [3] and
Schnizler et al. [14]. With this, a service provider might become a service broker and
distributor, potentially operating without putting forth own resources.

5 Summary and Conclusion

In this paper, we proposed a template-based agreement-driven service provisioning
process to facilitate automated service provisioning and by that enable an agreement-
driven service-oriented architecture providing dynamic service capacity acquisition.
In the template-based agreement provisioning framework introduced in this paper, an
agreement implementation plan template is associated with an agreement template. It
defines a partially filled provisioning plan with a description how to fill the variable,
incomplete elements with input from an agreement. A processor for agreement im-
plementation plans is also defined, implementing a template-based provisioning plan-
ner. The provisioning planner has been implemented using Java and tested with a set
of agreement templates defined using the WS-Agreement standard.

Provisioning planning is very complex and hard to solve with derivative ap-
proaches in the general case. However, the proposed approach based on an agreement
implementation plan templates associated with agreement templates can capture the
experience of system administrators and, hence, solve the provisioning planning prob-
lem pragmatically for service delivery environments in which the relationship of typi-
cal customer performance requirements and resource capacity is well understood. The
proposed approach is also agnostic to the specific agreement language and the lan-
guage of the provisioning plan, as both can vary depending on the application domain.

In future work, we will investigate how this template-based approach can be com-
bined with derivative approaches for specific application, leveraging the strength of
different approaches.

References

1. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J., Rofrano, J.,
Tuecke, S., Xu, M.: Web Services Agreement Specification. Version 1.1, GGF GRAAP
working Group Draft 18, May 14, 2004.

2. Bell, D., Kojo, T., Goldsack, P., Loughran, S., Milojicic, D., Schaefer, S., Tatemura, J.,
Toft, P.: Configuration Description, Deployment, and Lifecycle Management (CDDLM)
Foundation Document. January 2003, http://forge.gridforum.org/projects/cddlm-wg.

3. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource man-
agement and scheduling in grid computing. The Journal of Concurrency and Computa-
tion: Practice and Experience, 14(13-15), pp. 1507–1542, 2002.

 Template-Based Automated Service Provisioning 295

4. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A Protocol for
Negotiation of Service Level Agreements and Coordinated Resource Management in Dis-
tributed Systems. Job Scheduling Strategies for Parallel Processing: 8th International
Workshop (JSSPP 2002). Edinburgh, 2002.

5. Dan, A., Dumitrescu, C., Ripeanu, M.: Connecting client objectives with resource capa-
bilities: an essential component for grid service management infrastructures. Service-
Oriented Computing - ICSOC 2004, Second International Conference, New York, NY,
USA, Proceedings, pp. 57-64, ACM 2004.

6. Eilam, T., Kalantar, M., Konstantinou, A., Pacifici, G.: Reducing the Complexity of Ap-
plication Deployment in Large Data Centers. Proceedings of the 9th International
IFIP/IEEE Symposium on Integrated Management (IM 2005), IEEE Press, 2005.

7. Gimpel, H., Ludwig, H., Dan, A., Kearney, B.: PANDA: Specifying Policies for Auto-
mated Negotiations of Service Contracts. Service Oriented Computing – Proceedings of
ICSOC 03, Springer LNCS 2910, pp. 287-302, 2003

8. IBM Corporation: PMAC Expression Language Users Guide. Alphaworks PMAC distri-
bution, www.alphaworks.ibm.com, 2005.

9. Keller, A., Badonnel, R.: Automating the Provisioning of Application Services with the
BPEL4WS Workflow Language. Proceedings of DSOM 2004, Davis, CA, USA, 2004.

10. Keller, A.: Automating the Change Management Process with Electronic Contracts. Pro-
ceedings of the First IEEE International Workshop on Service oriented Solutions for Co-
operative Organizations (SoS4CO '05), IEEE Computer Society Press, 2005.

11. Ludwig, H., Dan, A., Kearney, R.: Cremona: an architecture and library for creation and
monitoring of WS-Agreements. Service-Oriented Computing - ICSOC 2004, Second In-
ternational Conference, New York, NY, USA, Proceedings, pp. 65-74, ACM 2004.

12. Ludwig, H., Keller, A., Dan, A., King, R.: A Service Level Agreement Language for Dy-
namic Electronic Services. Proceedings of WECWIS 2002, Newport Beach, 2002.

13. Ludwig, H.: A Conceptual Framework for Electronic Contract Automation. IBM Research
Report, RC 22608. New York, 2002.

14. Schnizler, B., Neumann, D., Weinhardt, C.: Resource Allocation in Computational Grids –
A Market Engineering Approach, Proceeding of the WeB 2004, Washington, 2004

15. Tosic, V., Pagurek, B., Patel, K.: WSOL - A Language for the Formal Specification of
Classes of Service for Web Services. Proceedings of ICWS 2003, pp. 375-381, CSREA
Press 2003.

16. Vitaletti, M., Draper, C., George, R., McCarthy, J., Poolman, D., Miller, T., Middlekauff,
A., Montero-Luque, C.: Installable Unit Deployment Descriptor Specification Version 1.0.
W3C Member Submission, 12 July 2004. http://www.w3.org/Submission/2004/SUBM-
InstallableUnit-DD-20040712/

	Introduction
	Provisioning in the Agreement-Driven Service Life-Cycle
	Provisioning in an Agreement-Driven Service-Oriented Architecture
	Use of Templates

	Problem Definition
	Use Case
	Requirements

	Template-Based Agreement Provisioning Framework
	Agreement Implementation Plan Templates
	Provisioning Process

	Summary and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

