
T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 51 – 60, 2005. 
© IFIP International Federation for Information Processing 2005 

A Multi-agent Software Platform Accommodating 
Location-Awareness for Smart Space 

Hongliang Gu, Yuanchun Shi, Guangyou Xu, and Yu Chen 

Computer Science Department, Tsinghua University, Beijing 100084, P.R. China 
ghl02@mails.tsinghua.edu.cn, shiyc@tsinghua.edu.cn,  
xgy-dcs@mail.tsinghua.edu.cn, yuchen@tsinghua.edu.cn 

Abstract. Software Platform is a middleware component of Smart Space to coor-
dinate and manage all modules. Location-awareness is a common feature of many 
modules. Current several typical methods for distributed systems can hardly be 
competent for both the role of Software Platform and accommodating location-
awareness simultaneously. Aiming at this, we present our method: SLAP (Smart 
Location-awareness-Accommodating Platform). The method, on the basis of 
OAA (Open Agent Architecture), adopts such new technologies as Poll-Ack 
mechanism, dual-central coupling model and hybrid architecture. Consequently it 
not only reserves the advantages of OAA to coordinate multi-modal modules effi-
ciently and flexibly, but also accommodates location-aware computing well. 

1   Introduction 

Smart Space [1] (or Intelligent Environment) is a working environment integrated 
with numerous distributed software and hardware, including multi-modal modules 
and positioning sensors, which is also a system intensively applying perva-
sive/ubiquitous computing technologies. The Software Platform (also called Software 
Infrastructure), working as a middleware between OS (Operation System) and appli-
cation modules, is a fundamental component of Smart Space to coordinate and man-
aging all hardware and software modules. 

Nowadays location-awareness is becoming an indispensable characteristic of most 
modules in Smart Space, which brings about a research field: location-aware comput-
ing. In our project, Smart Classroom [2] (a Smart Space on tele-education), location-
awareness means that applications or services can modify their own behaviors unob-
trusively or non-intrusively to adapt to users’ purpose, according to the location (or 
spatial relationship) of located-objects [3] (including applications or service). 

Both accommodating location-aware computing and adapting to Smart Space give 
the Software Platform dual challenges, which are just all the necessity of Smart Class-
room. However, current several representative methods for tradition distributed sys-
tems, e.g. DCOM, CORBA, Metaglue and OAA (Open Agent Architecture) etc, can 
not give both needs a satisfying solution simultaneously. Aiming at this, we present 
our method: SLAP, a system with our improvement on OAA, which it not only effi-
ciently coordinates and manages all modules according to the demands of Smart 
Space, but also accommodates location-aware computing very well. 



52 H. Gu et al. 

The contents below are as follows: Section 2 discusses the demands of Smart 
Space on Software Platform. Section 3 introduces the requirements of location-
awareness and the deficiencies of OAA. Section 4 presents our improvement’s key 
technologies of. Section 5 presents the architecture and primitives of SLAP. Section 6 
elaborates on the experiments. And section 7 concludes this paper. 

2   Criterion and Selection of Software Platform 

2.1   Demands of Smart Space on Software Platform 

As far as the fact that Smart Space consists of various computing and communication 
units is concerned, Smart Space is a distributed system in some sense. However, it has 
some special features different from the normal distributed systems: 

1. autonomy and independency 
The modules in Smart Space are more autonomous and independent than those in 
distributed systems. For example, most modules in Smart Space can run or expire 
independently, which are not in a certain module’s control and do not comply with 
other modules’ assignment at all. 
2. loose-coupling 
A Smart Space system is very dynamic. Modules are restarted or moved to different 
hosts and System configurations change time to time. The loose coupling of modules 
will help to cope with this nature of Smart Space, as well as to resile from failure. 
3. lightweight 
As an underlying component, the Software Platform is to run on the various units in 
Smart Space which have various abilities of computing and communication spanning 
from mainframe computers to embedded systems, and to be used by the various mod-
ule’s developers who have uneven IT backgrounds. Thus, the feature of lightweight 
helps the Software Platform to accommodate various units, and to give various users a 
facile and simple interface. The light-weighted Software Platform only provides some 
key services and commits other complex functions to the applications in manner of 
the end-to-end implementation. 

The items above are almost the common demands for all modules of Smart Space, 
especially for the multi-modal modules. 

2.2   Selection of Software Platform 

The Smart Space’s features mentioned above are the criterion to select proper frame-
work model for Software Platform. Currently, the representative methods for distrib-
uted systems can roughly be divided into two categories: Distributed Component 
Model (DCM), and Multi-Agent System (MAS). 

In essence, DCM model is to encapsulate modules into objects (though someone ar-
gue that component is slightly different from object), which abstractly represents the 
states and behaviors’ implementation (also called properties and methods) of modules. 
The representative DCM models include DCOM, CORBA and EJB etc. In DCM 
model, there must be a centralized thread of application logic which decides which 
objects to be invoked (used) and when to invoke (use). However, this premise is diffi-



 A Multi-agent Software Platform Accommodating Location-Awareness 53 

cult to be met in Smart Space, due to the modules’ autonomy and independency. For 
example, in Smart Classroom, a laser-pen-tracking module continuously tracks the 
position of laser point, which is a projecting point on Smart Board (a large-sized touch 
screen) corresponding to users’ gesture, while a speech-recognition module keeps 
recognizing the user’s voice. In the example, a clear centralized control logic is diffi-
cult to be picked up. Instead, there are two parallel application logics simultaneously. 

In contrast, MAS model encapsulates each module into an agent, which not only 
has the same behaviors’ implementation as an object, but also owns itself activation 
logic, executing process and purpose. That is, according to its environment, an agent 
can itself decide what to do and how to do, which an object can hardly achieve. Thus, 
in MAS model, the control logic of modules is decentralized, which is more flexible 
and fitter for Smart Space than that of DCM model. The typical MAS models include 
Metaglue [4], Hyperglue [5] and OAA [6],[7]. 

Besides those advantages, MAS model is usually more light-weighted than DCM 
model. Those representative DCM models, such as DCOM and CORBA, all own 
many complicated features, e.g. object set, transaction process and currency control 
etc. In view of those synthetic factors, we select MAS system instead of DCM model 
as the abstraction model of Software Platform. According to modules’ coordination 
mode, MAS model is divided into two kinds: direct-coupled and meeting-oriented. 

 

Fig. 1. The inter-module communication mode 

The direct-coupled mode is also called RPC-like (Remote Procedure Call) mode. 
In this mode, each module must know other modules’ definite reference (name or ID). 
As Fig. 1(a) shows, the module on the one side must know who the other side is, and 
furthermore the modules on the two sides must run at the same time. Both Metaglue 
and Hyperglue belong to this mode, in which the inter-agent communication is 
achieved by Java RMI. Undoubtedly, the direct-coupled mode is tight-coupling. 

The meeting-oriented mode means the modules achieve the mutual coordination by 
broadcasting messages in a logic (virtual) meeting room. This mode’s feature is that 
the modules needn’t own others’ references. The Publish-Subscribe mechanism, 
which OAA adopts, is typically meeting-oriented. In OAA, when an agent wants a 
certain kind of message, it will register the messages on a message center: Facilitator. 
This activity is called subscribe message, which is also called asking a question in 
OAA. And if an agent tends to send messages, it needn’t know which agent and how 
many agents need those messages. What it does is only to send Facilitator the mes-
sages tagged with the name or category, and then Facilitator forwards all messages to 



54 H. Gu et al. 

those agents who subscribe them, according to the messages’ category and name. The 
agent’s activity above is called publish message. The whole process is called “dele-
gated computing” in term of OAA, which is skeletally shown in Fig.1 (b).  

In comparison with the tight-coupling coordination mode of Metaglue, that of 
OAA is loose-coupling. Considering this factor, we prefer OAA to Metaglue and 
Hyperglue as a framework of Software Platform. 

3   Deficiencies of OAA on Location-Awareness 

3.1   Requirements of Location-Awareness on Software Platform 

In Smart Space, the location-aware computing system consists of three parts: loca-
tion-aware applications, location server and position system. The position system of 
our project is Cricket V2.0 [8], in which each positioning unit (a PDA with Cricket 
Mote) knows its own geometric coordinate location and then sends its location to the 
location server by a wireless network. The location server, on the one hand, takes 
charge of storing and managing all units’ location; on the other hand, provides the 
location-related services for the applications. In Smart Classroom, the location server 
adopts an implementation method called ASMod [9] to provide two kinds of service: 
query service and spatial event service. The former asks the applications’ spatial 
query, which is like a SQL service; the latter tracks the varying of located-objects’ 
spatial relationship to emit the relevant event notification. 

To support the location-aware computing system, Software Platform encounters 
two new issues: one is how to efficiently organize the communication of position 
system, namely the communication between the location server (also an agent) and 
positioning agents (which correspond to positioning units); another is how to organize 
the communication between location-aware applications according to their locations 
(or spatial relationship) which is also called location-based communication. Unfortu-
nately, neither of the issues is OAA competent for. 

3.2   Deficiencies of OAA on Supporting Location-Aware Computing 

First, OAA does not excel at organizing the communication between the location 
server and positioning agents efficiently, due to its Publish-Subscribe mechanism. In 
the mechanism, when to publish messages and how many messages to publish only 
depend on the agent itself, which we call free-publishing characteristic. This charac-
teristic adapts to such Smart Space’s demands as modules’ autonomy and independ-
ency and the system’s loose coupling, meanwhile it also brings about two problems: 

One problem is the difficulty in controlling the communication between the  
location server and positioning agents. In Smart Space, the location server usually 
needs to obtain the location from various positioning agents at various frequencies in 
different time according to its data’s state, which is essentially the location server’s 
data update policy. For example, in a time, if the location server infers that a  
positioning agent is moving quickly (maybe attached to a mobile person), it will get 
data from the agent twice per second. Likewise, in another time, if the location 
server infers the positioning agent seldom moves, it will get data from the agent only 
once per minute. 



 A Multi-agent Software Platform Accommodating Location-Awareness 55 

Another problem is that the disorderly contentions on the wireless network’s chan-
nel increase, which results in the degradation of performance and throughput. Because 
each positioning agent publishes its data (namely location) only according to its own 
willing, despite the others and the location server’s need, the disorderly contentions 
are inevitable, which will become more intensive with the increasing of the position-
ing agents’ number and the frequency of publishing in each agent. 

Secondly, OAA is also incompetent for organizing the location-based communica-
tion between applications. In Smart Space, much communication between agents is 
not constantly sustaining from beginning (subscribing) to end (unsubscribing), but 
varies according to their spatial relationship. The kind of communication, namely the 
location-based communication, is different from that of multi-modal modules, which 
OAA excels at. For example, when a PDA enters the service scope of Smart Board, 
the communication between the PDA agent and the Smart Board agent will emerge; 
and when the PDA leaves the service scope, the communication will also be broken 
off. Unfortunately, OAA is incompetent for the location-based communication. The 
cause is that neither Facilitator nor the source agents (which publish messages) cares 
the agents’ location and changes their behaviors according to the varying of location. 

4   Key Technologies of Our Improvement 

Aiming at the deficiencies of OAA on supporting location-aware computing, we present 
our solution to Software Platform: SLAP (Smart Location-awareness-Accommodating 
Platform). Here we first introduce the Key technologies of SLAP, which are to solve the 
two issues brought by location-aware computing. 

4.1   Poll-Ack Mechanism 

Aiming at the incompetence of Publish-Subscribe mechanism for organizing position 
system communication, we present an appropriative inter-agent communication 
mechanism: Poll-Ack mechanism. This mechanism is described as follows: 

As Fig. 2 illustrates, the communication consists of Poll-Ack cycles. And each cy-
cle is initiated by a broadcast message from the location server, which is called Poll. 
A poll indicates which agent to publish its location. On receiving the Poll, the posi-
tioning agent indicated in the Poll, replies an acknowledgement message called Ack 
(including ID and location) in a fixed time. The location server stores all agents’ loca-
tion, and assigns poll number to each agent in the unit time according to the agent’s 
velocity. An agent’s velocity is its adjacent location difference divided by the interval 

 

Fig. 2. The Poll-Ack mechanism 



56 H. Gu et al. 

of its adjacent Ack. The higher velocity an agent is at, the more polls the location 
server assigns to it. Hence, not only this mechanism doesn’t produce channel conten-
tion, but also it is a velocity-directed bandwidth assignment in some sense.  

4.2   Dual-Central Coupling Model 

Aiming at the incompetence of OAA for organizing location-based communication, 
we present the dual-central coupling structure and the Spatial-event-directed Publish-
Subscribe mechanism.  

In OAA there is a unique coupling center, Facilitator, to organize message com-
munication. In contrast, in SLAP there are two coupling centers: LAMD (Location-
Aware Message Dispatcher) and LocServ. The former provides the analogous func-
tion of Facilitator, and the latter plays the role of location server. LocServ has a com-
ponent, Spatial Event Generator, which tracks the agent’s moving and translates loca-
tion into spatial events. LAMD owns a dispatching engine, Forward-Valve, which 
decides messages whether to forward indeed according to the event notification from 
LocServ. The structure of two coupling centers is shown in Fig. 3. 

The dual-central coupling structure adopts a new communication mechanism 
called Spatial-event-directed Publish-Subscribe. The mechanism is based on Publish-
Subscribe with some modification. The modification is as follows: 

1. When an agent subscribes a kind of messages, it is demanded to submit a spatial 
condition of the messages to LocServ at the same time. The spatial condition indi-
cates the premise the communication needs, and the premise is express as a spatial 
relationship, such as, the publisher’ location must be contained in the subscriber’s 
scope. The step is called spatial condition’s customization. 

2. LocServ keeps on obtaining the latest location of all agents from the position sys-
tem (namely tracking agents’ moving), and judges whether the spatial conditions 
are met by its Spatial Event Generator. When the spatial conditions become met or 
unmet, LocServ sends LAMD the event notifications: message-forward-enable or 
message-forward-disable. 

3. According to the notifications, LAMD will decide whether to forward the sub-
scribed messages to the subscriber (agents). 

If an agent wants the received messages to be irrelevant to the location, it submits a 
command to LocServ to abolish the spatial condition of messages. The whole process 
of this mechanism is shown in Fig. 4. 

 

Fig. 3. The structure of two coupling centers 



 A Multi-agent Software Platform Accommodating Location-Awareness 57 

 

Fig. 4. The spatial-event-directed publish-subscribe mechanism 

5   The Architecture of SLAP 

As a Software Platform, SLAP is a middleware between OS (Operation System) and 
applications (agents). An overview of SLAP is shown in Fig. 5.  

 

Fig. 5. The architecture of SLAP 

SLAP is a hybrid architecture composed of two parts, which respectively corre-
spond to two kinds of communication environment. The right part, positioning plat-
form, is used for the position system to coordinate LocServ and the positioning 
agents, which adopts the Poll-Ack communication mechanism. And the left part, 
location-based platform, is to organize the location-based communication between 
agents, which adopts the dual-central coupling model. The host containing LAMD 
and LocServ spans two network environments: one connects to the position system’ 
network (wireless network), another connects to the network all normal agents share. 
To enhance some functions of SLAP, we add in some components that OAA doesn’t 
own. For example, the containers, acting as mediators under the agent layer, are to 
shield heterogeneous OS and accommodating different developing languages, such as 
C++ and Java. The Directory Service is used for the service’s discovery.  

6   Performance Analysis 

To evaluate the performance of SLAP, we compare the Poll-Ack mechanism (which 
SLAP adopts) with the Publish-Subscribe mechanism (which OAA adopts) on the 
communication efficiency of position system. Define: 



58 H. Gu et al. 

=LT Average time for a positioning agent to calculate its location 

=LD Transmission duration of a location message (which is in the form of Ack  

 message in the Poll-Ack mechanism) 
=pD  Transmission duration of a poll message 

Now we first investigate the performance of Publish-Subscribe mechanism. Pro-
viding a positioning agent publishes its location message at once after calculating its 
location, the probability that the positioning agent publishes the location: 

L

L
T

Dp =  (1) 

For a successful publishing exactly one of n  positioning agents should be publish-
ing at a given time. Hence the probability that only one given positioning agent is 
publishing at a particular time: 

1
1 )1( −−= nppP  (2) 

When there are n positioning agents, the probability that exactly one positioning 
agent is publishing at a given time is the channel utilization of wireless networkU . 

1)1( −−= npnpU  (3) 

For maximum utilization of publish-subscribe mechanism, there exists: 

LL
nn nDT

n
ppnnppn

dp

dU =⇒=⇒=−−−−= −− 1
0)1)(1()1( 21  (4) 

Hence, in the case above, the optimum utilization of Publish-Subscribe mechanism:  

1)
1

1( −
− −= n

sp n
Uo  (5) 

As for the Poll-Ack mechanism, the channel is occupied by Polls and Acks in turn. 
Hence, the channel utilization 'U  is: 

PL

L

DD

D
U

+
='  (6) 

Because the equation (4) exists in the case of channel’s maximum utilization, the 
optimum utilization of Poll-Ack mechanism 

apUo −  is:  

pL

L
ap nDT

T
Uo

+
=−

 (7) 

As for a given position system, the average time of calculating location LT  is 

fixed, which only depends on the hardware’s intrinsic functionality. In contrast, the 

poll’s transmission duration pD  is determined by the concrete Poll-Ack mechanism. 



 A Multi-agent Software Platform Accommodating Location-Awareness 59 

Both Publish-Subscribe mechanism and Poll-Ack mechanism are simulated using the 
ns-2 network simulator with suitable extensions [10], which is guided by the CMU 

wireless extensions. In the simulation experiment, LT  is set to 100ms, pD  is set to 

1ms, 2ms and 4ms, which are corresponding to the curve Poll-Ack (1), (2) and (4) in 
Fig. 6 respectively. And the performance of Publish-Subscribe mechanism is labeled 
by the curve Pub-Sub in Fig. 6. 

 

Fig. 6. The communication performance of SLAP versus OAA in position system 

As Fig. 6 shows, in most cases, the optimum channel utilization of the Poll-Ack 
mechanism is superior to that of the Publish-Subscribe mechanism. The few excep-
tional cases occur on Poll-Ack (4) with the agent number of about 45, where the total 
transmission duration of polls (180ms) is greater than the average positioning time 
(100ms) by far. These cases are very extreme, which rarely appears in practice. An-
other trend seen from Fig. 6 is that, the smaller the poll’s transmission duration is, the 
larger improvement of channel utilization the Poll-Ack mechanism achieves on the 
Publish-Subscribe mechanism. 

7   Conclusion 

On the one hand, as a Software Platform for Smart Space, being based on OAA, 
SLAP reserves the main characteristics of OAA, a loose-coupling multi-agent system. 
Those characteristics conform to Smart Space’s demands on Software Platform better 
than other distributed system methods, which highly ensure modules’ autonomy and 
independency, inter-module loose-coupling and system’s lightweight. Hence, as far as 
accommodating Smart Space is concerned, SLAP, as well as OAA, is an excellent 
Software Platform, especially for coordinating most multi-modal modules. 

On the other hand, SLAP overcomes the shortcomings of OAA on accommodating 
location-awareness. By introducing in the dual-central coupling model, SLAP realizes 
inter-agent location-based communication that OAA used to not be able to provide. 
And by introducing the Poll-Ack communication mechanism into position system, 



60 H. Gu et al. 

SLAP achieves higher channel utilization and more efficient communication perform-
ance than OAA. Thus SLAP not only is competent for Software Platform of Smart 
Space, but also accommodates location-aware computing well. 

References 

1. http://www.nist.gov/smartspace/ 
2. Y. C., Shi, et al.: The smart classroom: merging technologies for seamless tele-education. 

Pervasive Computing, IEEE press, Vol 2, No 2, 2003, pp. 47-55 
3. B. Schilit, N. Adams, and R. Want: Context-aware computing applications. IEEE Work-

shop on Mobile Computing Systems and Applications, IEEE CS Press, 1995, pp. 85-90 
4. M.H. Coen, B. Phillips, N. Warshawsky, et al.: Meeting the computational needs of intel-

ligent environments: The Metaglue system. Proc 1st International Workshop Managing In-
teractions in Smart Environments (MANSE'99), 1999, pp.210-213 

5. Peters S, Look G, Quigley K.: Hyperglue: Designing High-Level Agent Communication 
for Distributed Applications. Technical Report, Laboratory of CS and AI (CSAIL), Mas-
sachusetts Institute of Technology, 2002. 

6. SRI., OAA web site: http://www.ai.sri.com/~oaa 
7. Adam Cheyer, David Martin: The Open Agent Architecture. Autonomous Agents and 

Multi-Agent Systems, Kluwer Academic Publisher, Vol 4, No 1-2, 2001, pp.143-148 
8. Adam Smith, Hari Balakrishnan, Michel Goraczko, Nissanka Priyantha: Tracking Moving 

Devices with the Cricket Location System. Proc 2nd International conference on Mobile 
systems, applications, and services(MobiSys’04), 2004, pp.190-202 

9. Hongliang Gu, et al.: A core model supporting location-aware computing in Smart Class-
room, Proc 4th International Conference on Web-based Learning, 2005, pp.1-13 

10. NS-2 network simulator. http://www.isi.edu/nsnam/ns/ 


	Introduction
	Criterion and Selection of Software Platform
	Demands of Smart Space on Software Platform
	Selection of Software Platform

	Deficiencies of OAA on Location-Awareness
	Requirements of Location-Awareness on Software Platform
	Deficiencies of OAA on Supporting Location-Aware Computing

	Key Technologies of Our Improvement
	Poll-Ack Mechanism
	Dual-Central Coupling Model

	The Architecture of SLAP
	Performance Analysis
	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




