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Abstract. Intelligent rooms are responsive environments in which human activi-
ties are monitored and responses are generated to facilitate these activities. Re-
search and development on intelligent rooms currently focuses on the integration 
of multiple sensor devices with pre-programmed responses to specific triggers. 
Developments in intelligent agents towards intrinsically motivated learning 
agents can be integrated with the concept of an intelligent room. The resulting 
model focuses developments in intelligent rooms on a characteristic reasoning 
process that uses motivation to guide action and learning. Using a motivated 
learning agent model as the basis for an intelligent room opens up the possibility 
of intelligent environments being able to adapt both to people’s changing usage 
patterns and to the addition of new capabilities, via the addition of new sensors 
and effectors, with relatively little need for reconfiguration by humans. 

1   Introduction 

Developing intelligent rooms, such as The Sentient in the Key Centre for Design 
Computing and Cognition at Sydney University pictured in Fig 1, has been dominated 
by the development of configurations of sensors, effectors, and software architectures 
that specify protocols for interpreting and responding to sensor data.  

 

Fig. 1. The KCDCC’s intelligent environment, The Sentient 

In their seminal papers on IE design, Brookes [1] and Coen [2] argued that a key 
design goal for developing IEs is to enable them to adapt to, and be useful for, every-
day activities. The ability of IEs to adapt their behaviours autonomously to changes in 
activity patterns is still an open research area. Configuring new sensor and effector 
systems to allow their IEs to produce useful behaviours is time consuming and labour 
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intensive. A motivated learning agent, for example, as introduced by Singh et al [3], is 
an agent that is self-motivated to learn. Self-motivated learning as a basis for an intel-
ligent room creates an IE that is driven to adapt to new sensors and effectors and 
changing usage patterns. In this paper we present a model for an intrinsically moti-
vated intelligent room that can adapt its learned behaviours from patterns of usage de-
rived from its sensor data. 

2   Intelligent Environments 

An IE is a physical space for living or working that is agent controlled and can bring 
computational power embedded within it to bear in a manner that helps users of the 
environment perform their daily tasks. The term Intelligent Environment has not been 
universally adopted and IEs also go under other names such as Jeng’s [4] Ubiquitous 
Smart Spaces. An IE would necessarily need to be able to sense what is happening in-
side of it and respond to it with effectors - whether lights, projectors, or doors - in or-
der to exhibit intelligent behaviour and help users. 

IE research could be regarded as a sub-field of ubiquitous computing since a major 
aim of ubiquitous computing is to seamlessly integrate computers into everyday liv-
ing. IEs have several specific design requirements. Brooks [1] and Coen [2] have ar-
gued that IEs should adapt to, and be useful for, ordinary everyday activities; they 
should assist the user, rather than requiring the user to attend to them; they should 
have a high degree of interactivity; and they should be able to understand the context 
in which people are trying to use them and behave appropriately. An IE is essentially, 
as Kulkarni [5] suggests, an immobile robot, but its design requirements differ from 
those of normal robots, in that it ought to be oriented towards maintaining its internal 
space rather than exploring or manipulating an external environment. 

MIT’s intelligent room prototype e21, shown in Fig 2, facilitates activities via a 
system called ReBa, described by Hassens et. al. [7] which is the context handling 
component of the room. ReBa observes a user’s actions via the reports of other agents 
connected to sensors in the room's multi-agent-society and uses them to build a higher 
level representation of the user’s activity. Each activity, such as watching a movie or 
giving a presentation, has an associated software agent, called a behaviour agent 
which responds to a user action and performs a reaction, such as turning on the lights 
when a user enters the room. Behaviours can then layer on top of one another based 
on the order of user actions, acknowledging differences in context such as showing a 
presentation in a lecture setting versus a showing one in an informal meeting. Al-
though ReBa can infer context in this way, it cannot adapt to new ways of using the 
room. In order for an entirely new context to be created, ReBa’s behaviour agents 
must be pre-programmed to recognize the actions of the user and take an appropriate 
action. It does not self-adapt to new usage patterns. Furthermore, when new sensors 
are added to the room, the existing rules must be modified manually if they are to take 
advantage of the new sensor data. Our model, by contrast, uses intrinsic motivation to 
learn behaviours rather than having the behaviours implemented as part of the agent. 

Other researchers have taken approaches to designing environments that are not 
explicitly agent-based. Both the University of Illinois’ Gaia [8] and Stanford Univer-
sity’s Interactive Workspace Project [9] have taken a more OS-based approach, de-
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veloping Active Spaces and Interactive Workspaces respectively, which focus on the 
role of the room as a platform for running applications and de-emphasizing the role of 
the room as a pro-active facilitator. The specification of an action in these systems is 
is triggered by the user and the behaviour is programmed by an applications devel-
oper. Gaia’s context service provides the tools for applications developers to create 
agent-based facilitating applications, and the overall model is reactive rather than 
adaptive. Georgia Tech’s Aware Home Research Initiative plans on incorporating an 
infrastructure for developing context-aware applications [10], but so far no systems 
exist which allow IEs to self-adapt to new usage patterns. We believe that a motivated 
agent-based approach allows for this kind of adaptation. 

 

Fig. 2. MIT’s Intelligent Room Prototype e21, from [6] 

3   Motivated Learning Agents 

In AI literature an agent is anything that can be viewed as perceiving its environment 
through sensors and then acting within its environment using effectors on the basis of 
this sensor input. Agent models have a lot in common with IEs: both are described as 
having sensors for monitoring their environment and effectors for making changes to 
the environment. A variety of agent models have been developed over time with dif-
fering ways of mapping sensor input to effector output, from simple rule-based reac-
tive agents through to complex cognitive agents that try to maintain, and reason about, 
an internal model of the world. The question then is, what kind of agent model would 
be a suitable basis for an IE? 

An IE needs to be driven to assist users, adapt to changes in its configuration, adapt 
to changing uses of the IE, and understand context. Drives of this kind have been 
modelled by the concept of motivation in agent research, leading to several different 
varieties of motivated agent models. Norman and Long [11, 12, 13] developed a mo-
tivated agent model where motivation was modeled by the temporal urgency of tasks 
to be completed in order for a motivated agent-controlled warehouse to fill orders. 
Part of the model is shown in Fig 3, which illustrates how the motivation component 
directed the reasoning process to create new goals for the agent. 
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Fig. 3. Norman and Long’s motivation model, from [11] 

Beaudoin and Sloman [14] developed a simulation of a robot nursery in which a 
robot nursemaid implementing a motivated agent model was shown to effectively pri-
oritise tasks using a sophisticated model of motivation that included logical proposi-
tions, temporal urgency, and levels of insistence. In their design of an agent-
controlled water filtration plant, Aylett et al. [15] explicitly extended the role of moti-
vation in their agent model to planning, which showed promise despite the relatively 
simplistic motivation model used. Kasmarik et al [16] experimented with a domain 
independent model of motivation based on a novelty detector and used it as a trigger 
for reinforcement learning in different domain applications. 

The requirement for adaptation in an IE can be satisfied with a model of learning 
new behaviours through the interpretation of sensor data. Rather than specifying a spe-
cific set of competencies or goals with an external reward, we look for computational 
models of novelty and curiosity that allows the agent to respond to unexpected changes 
in the kinds of activities in the room. Saunders and Gero [17] modeled curiosity com-
putationally as a process that internally generates reinforcement signals that reward the 
discovery of novelty. They then modeled novelty as the property of being similar 
enough to other entities of the same class so as to be recognisable as part of that class, 
but different enough from the norm of that class’ form to be unusual. Computationally, 
novelty was modeled using a self-organizing map that categorized entities presented to 
the curious agent. The further from the centroid of a class that the new entity’s proper-
ties lay in the map, the more novel it was considered, but if it were more than a certain 
threshold away from the centroid the degree of novelty fell off following a Wundt 
curve, shown in Fig 4, representing dissatisfaction with an entity’s “strangeness”. 

Saunders and Gero demonstrated the utility of this model by using it to simulate 
the formation of cliques in artistic communities [18], to explore the design space of a 
simple architectural problem [19], and to provide a richer social force model of hu-
man crowds in museums [17]. This model of curiosity as a motivation could be ex-
tended for an IE by following the discovery of novelty with learning.  

Schmidthuber [18] and Singh et al [3] have developed agent prototypes that are mo-
tivated by their own models of curiosity. Schmidthuber developed an agent with a co-
evolutionary learning strategy using a highly idiosyncratic model of curiosity that 
showed promising empirical results in performing exploration when compared with 
other learning strategies. Singh et. al.  developed a model of an intrinsically motivated 
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reinforcement-learning agent. Inspired by a psychological definition of intrinsic moti-
vation, which is being motivated to do something because it is inherently enjoyable, 
they developed a learning algorithm in which the learner is rewarded internally for dis-
covering new properties of its domain. They also gave the agent the capacity to build 
incrementally upon the list of actions that it discovered it could undertake in its domain 
and allowed them to be chained together into more complicated actions. A comparison 
between their prototype and a regular reinforcement learning agent showed that it was 
significantly faster at learning new behaviours. The most interesting feature of the pro-
totype that they built was that the agent was able to learn new behaviours relatively 
quickly with no human intervention at all. The successes of Schmidthuber and Singh et 
al.’s motivated learning agents suggest that a motivated learning agent model could be 
a viable solution to providing the adaptation required for an IE. 

 

Fig. 4. The Wundt curve. Motivation rises and then falls off as novelty increases. From [16]. 

4   Intrinsically Motivated Intelligent Room 

Combining the ideas in IEs with motivated learning agents leads to a model for an in-
trinsically motivated intelligent room. Motivation can play a valuable role in the agent 
model for an intelligent room generally, not just in learning, because it provides a model 
for the pro-active characteristics that are desirable in IEs. We present a motivated agent 
model for an intelligent room that is motivated by novelty to learn and by competency 
to act, as illustrated in Fig 5. The model assumes two significant entities: the world and 
the agent. The world is described at any point in time by the data that can be sensed in 
the intelligent room. The agent has sensors to sense the state of the world, effectors to 
change certain aspects of the state of the room, a memory of world states and events, 
and a reasoning process that includes motivation, action, and learning. 

The World State. The motivated learning agent exists within a specific world. The 
state of the world is the basis for agent’s interaction with the world; therefore it be-
comes the basis for configuring sensors and effectors and adapting to new behaviour 
patterns. While models and systems for sensors and effectors can be complex hard-
ware and software architectures, we use a simple model here in order to focus on the 
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agent’s reasoning process. The world state at time t, W(t), is characterised as a parti-
tioned tuple of sensor inputs, which are in turn represented as attribute-value pairs 
such as PRESSURE_PAD=ON. One side of the partition represents inputs from sen-
sors without associated effectors, such as a pressure pad in the floor. The other side of 
the partition represents inputs from sensors that do have associated effectors, such as 
a sensor attached to a light switch which can be both activated manually by a human 
operator and automatically by the room itself. A world state representation W(t) will 
therefore take the form: 

W(t) ::= <senseData> 

<senseData> ::= “(” <senseOnly> “|” <senseEffect> “)” 

And an example of such a representation is: 

W(0) = (PRESSURE_PAD=ON | LIGHT_DIMMER_INTENSITY=0.5, 
DESK_LAMP=ON) 

This distinction is relevant because the intention is for the motivated agent to learn 
behavioural rules that include changes in the effectable sensor data part of its suffi-
cient conditions. For instance a rule such as the following would represent a behav-
iour that the IE would not have the capacity to enact since it does not have the effec-
tors necessary to achieve it: 

IF SENSE = (PRESSURE_PAD=ON) THEN EFFECT = 
(PRESSURE_PAD_4=ON) 

 

Fig. 5. The intrinsically motivated intelligent room model 
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Sensation. In the sensation process, sensor input from the world is converted into a 
form suitable for performing reasoning and learning. The new world state W(t) is 
stored in the set S of recent world states sensed by the agent. The sensation compo-
nent also records events or changes in the world state. An event is represented as 
Delta(t), the changes in sensor inputs between W(t) and W(t-1). Delta(t) takes the 
same form as W(t), a partitioned tuple, but the values of the tuple represent the change 
in value between W(t) and W(t-1) with numeric values being  calculated as normal-
ized differences and nominal elements being 0 if no change occurred and 1 if one did 
occur. For example: 

W(0) = (PRESSURE_PAD=ON | LIGHT_DIMMER_INTENSITY=0.5, 
DESK_LAMP=ON) 

W(1) = (PRESSURE_PAD=OFF | LIGHT_DIMMER_INTENSITY=0.8, 
DESK_LAMP=ON) 

Delta(1) = (PRESSURE_PAD=1 |LIGHT_DIMMER_INTENSITY=0.3, 
DESK_LAMP=0) 

The sensation component recognises new sensors as an event in the Delta(t) tuple. 
Delta(t) is converted to a set of event labels, {e1 …  en }, that occurred at time t. The 
event labels are the basis for motivation, learning, and acting. 

Motivation. The intelligent room is motivated to learn when it recognizes a novel 
event. In the beginning, everything is novel and the agent is motivated to learn rather 
than act. As the agent builds a set of behaviours, it is motivated to act when it recog-
nizes an event that triggers a known behaviour and to learn when it recognizes a novel 
event. Our current novelty detector is based on a model of “interesting” developed 
and implemented by Kasmarik et al [16] for a motivated agent model. In this model, 
an event is interesting if it is rare in the agent’s cumulative experience of the world.  
This suits our need for identifying a novel event. Events are divided into groups using 
unsupervised clustering of event frequencies.  Each group is defined to be novel or 
not novel based on their frequencies of occurance. The novel events are then further 
clustered into groups of increasing rarity so that the agent can be motivated to learn 
about more common or ‘easier’ events that are more likely to have sufficient patterns 
in the agent’s memory.   

Clustering is performed by first sorting events in order of ascending frequency 
where frequency is calculated as the number of times the event has occurred divided 
by the size of the agent’s lifetime.  This produces an ordering (e1, f1), (e2, f2) … (en, fn) 
with differences d1, d2 … dn where dk = fk – fk-1.  K-means clustering with k=2 and ini-
tial centroids 0 and dmax where dmax = 

j
max dj produces two groups g1 and g2 with av-

erage distances to centroids a1 and a2. gi has the minimum average ai then events can 
be clustered as follows:  Place f1 in a new cluster.  For f2, f3 … fn, place fk in the same 
cluster as fk-1 if dk ∈ gi or in a new cluster otherwise.  We say that an event ei is novel 
if its frequency fi falls in the same cluster as f1.   

Learning. Learning must rely on finding patterns in previously experienced world 
states since it is inappropriate for an intelligent room to experiment with changes in 
the state of the room. The aim of the learning component of the agent model is to in-
fer a set R of behavioural rules from the set of stored world data S and then store R in 
memory for the action component to utilize. Such behavioural rules will be of the 
form: 
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Rule ::= IF SENSE = <window> THEN EFFECT = <action> 

Where <window> is a tuple of event label and time pairs satisfying a constraint on t 
and <action> is a tuple of event labels relating to effectors. Such rules are formed 
by considering the changes in world state within a given time window and construct-
ing rules to enact equivalent changes when sufficient support and confidence levels 
exist for such a rule to be derived. Data mining techniques such as MINEPI mining 
can find these rules from the memory of event labels.  

Action. The action component of the agent model maps the most recently sensed 
world state W(t) and previous world states within a given time window to a rule from 
the set of behavioural rules R to be executed by the IE’s effectors. It then sends the 
appropriate commands to the IE’s effectors to enact the changes in the world dictated 
by the rule selected. 

Memory. The sensation, motivation, learning, and action components all require in-
formation about earlier states of the world, and all except action update that informa-
tion. The memory component of the agent comprises a representation of previous 
worlds states, deltas, events, and behavioural rules.  

5   Conclusions 

A model for an intelligent room based on an intrinsically motivated learning agent 
moves us closer to an adaptable intelligent environment. Our initial tests with this 
model include sensor data that identifies different behaviours associated with the loca-
tion of people in the room (the pressure pads) and the state of the electric devices in 
the room (lights, projectors, applications being projected). Given this kind of data, 
behaviours can be learned that are based on patterns of use, rather than on the identi-
ties of the individuals in the room. We are currently simulating the sensor data based 
on activity scenarios to test the appropriateness of our novelty detector and rule min-
ing algorithms. The validation of this model is a test of its adaptability, that is, can the 
room change its behaviour when new sensor or effector data are introduced. 
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