Modular Security Proofs for Key
Agreement Protocols

Caroline Kudla* and Kenneth G. Paterson

Information Security Group,
Royal Holloway, University of London, UK
{c.j.kudla, kenny.paterson}@rhul.ac.uk

Abstract. The security of key agreement protocols has traditionally
been notoriously hard to establish. In this paper we present a modu-
lar approach to the construction of proofs of security for a large class
of key agreement protocols. By following a modular approach to proof
construction, we hope to enable simpler and less error-prone analysis
and proof generation for such key agreement protocols. The technique
is compatible with Bellare-Rogaway style models as well as the more re-
cent models of Bellare et al. and Canetti and Krawczyk. In particular,
we show how the use of a decisional oracle can aid the construction of
proofs of security for this class of protocols and how the security of these
protocols commonly reduces to some form of Gap assumption.

1 Introduction

Background

The first works formalizing the notion of security for key agreement were those
of Bellare and Rogaway [78]. Extensions have been made to these models, most
notably by Blake-Wilson et al. [9] and later Bellare et al. [6]. Although these
models are generally accepted as being reasonable approaches to modelling the
security of key agreement protocols, in general it appears to be rather difficult
to prove key agreement protocols secure in such models and only relatively few
protocols have full proofs of security in these models.

A more “modular” approach to constructing key agreement protocols was ad-
vocated by Bellare, Canetti and Krawczyk [5]. This approach entails constructing
a secure protocol for ideally “authenticated links”, and then applying “authen-
ticators” to all the protocol flows to obtain a protocol secure in the standard
“unauthenticated links” model. A library of basic protocols and authenticators
may be built up, from which many different secure key agreement protocols may
be constructed.

The disadvantage of using this modular approach is that it says nothing
about the security of certain very efficient protocols that are not constructed
in this modular way. In addition, cryptographic primitives such as encryption,
signatures or MACs are usually required to build these “authenticators” and

* This author is funded by Hewlett-Packard Laboratories.

B. Roy (Ed.): ASTACRYPT 2005, LNCS 3788, pp. 549-565] 2005.
© International Association for Cryptologic Research 2005

550 C. Kudla and K.G. Paterson

the application of these “authenticators” often increases the round complexity
of a protocol. Therefore the resulting protocols are also often less efficient than
protocols designed without the modular approach in mind. Of course protocols
constructed using this modular approach may be modified to be more efficient
using various techniques, but then the security proof may no longer be valid.

However, due to the ease of designing secure protocols using this modular ap-
proach, it has subsequently been advocated in later models such as [I5/T6] and has
been used in the design of various key agreement protocols such as [T2[T3[TTI22].
Although the security models of [BIT5T6] do not mandate a modular approach in
that their definitions of security apply directly in the standard unauthenticated
network model, they do not consider protocols that are not constructed in this
modular fashion. Direct proofs for non-modular protocols in the standard unau-
thenticated network models of [BI5T6] seem to be difficult to construct.

In many environments, the benefits of being able to easily design secure
protocols outweigh the possible disadvantages. However there exist environments
in which efficiency is of utmost importance, and most key agreement protocols
optimized for efficiency are not constructed in a modular way. Indeed we can
find several efficient key agreement protocols in the literature which do not have
formal proofs of security (such as protocols in [YT923124]27]) or have only proofs
of security in weakened models (such as protocols in [2317]. Since the structure
of these protocols is not compatible with the modular approach in [5], complete
proofs of security for such protocols appear to be difficult to construct.

Contributions

In this paper, we consider protocols which are not designed in a modular way
but which we nevertheless wish to prove secure. Since such protocols are not
designed in a modular way, the proofs of security are often complicated and
error-prone. We present a technique by which the proof process of a large class
of key agreement protocols can be simplified.

Informally, our technique for proving the security of a protocol II works as
follows. The first step is to prove that protocol II has a property that we call
“strong partnering” (which is defined in Section 4.1). The second step is to prove
that a related protocol 7 is secure in a highly reduced security model. Finally,
as the main result of the paper, we show how the proof of security of 7w in the
reduced model can be translated into a proof of security for II in the full security
model using a Gap assumption.

Each step above is far simpler than a single proof of security in the full
security model. The result is a modular technique for constructing proofs of
security for a large class of key agreement protocols which are not constructed
using the modular approach presented in [5].

We then use this technique to consider various key agreement protocols in the
literature previously without proofs or with incomplete proofs of security. It is
possible, using our techniques, to provide full proofs of security for protocols such
as [2BI9IT7I27] (possibly after slight modifications to the protocols if necessary).
Due to lack of space, we focus in detail only on the long-standing Protocol 4 in
[9] which was previously without proof.

Modular Security Proofs for Key Agreement Protocols 551

We also hope that our methods will aid future designers of lightweight key
agreement protocols in the formal analysis of their protocols in simplifying their
task by breaking it up into components.

Related Work

Since the pioneering work of Bellare and Rogaway [7I8], many extensions and
modifications have been made to the definition of secure key agreement
[6/59UTHITEI26]. The model of security in which work is a slightly modified ver-
sion of the model of Bellare et al. [6], although analogous versions of our results
also hold in the models of [7I9IT5].

Our technique also makes use of Gap assumptions, as defined by Okamoto
and Pointcheval [25]. Informally, a Gap problem is the problem of solving some
computational problem (e.g. computational Diffie-Hellman) with the help of a
corresponding decisional oracle (in this case a decisional Diffie-Hellman oracle).
The decisional problem may be easy or hard; irrespective of this a Gap problem
may still be defined.

Gap assumptions have recently found several applications in cryptography.
In particular, Gap assumptions have been used in [I[T4J20] to prove the security
of certain key agreement protocols.

In this paper, we show that, if a protocol satisfies some weakened notion of
security and has a specific form, then using the Gap assumption, a full proof
of security can be constructed. This result holds for protocols analyzed in the
Bellare-Rogaway model [7] (or its extensions [6/9]) or in the Canetti-Krawczyk
model of SK-security [I5].

2 Preliminaries

Following the notation of Okamoto and Pointcheval [25], we informally define a
family of Gap problems.

Let f: X xY — {0,1} be any relation on sets X and Y. The computational
problem (or inverting problem in the language of [25]) of f is, given x € X, to
compute any y € Y such that f(z,y) = 1 if such a y exists, or to return Fail
otherwise.

The decisional problem of f is, given (z,y) € X x Y, to decide whether
f(z,y) =1 or not.

Definition 1. The Gap problem of [is to solve the computational problem of
f using an oracle which solves the decisional problem of f.

As an example, we define the computational, decisional and Gap Diffie-
Hellman problems.

Let p and ¢ be primes where ¢|p — 1. Let G be a multiplicative subgroup
of Zy, of order ¢, and let g € G generate G. We denote by DL(g,h) € Z, the
discrete logarithm of h € G with respect to base g. So gPL@") = h mod p.

Given a,b, ¢ € Z,, we define the Diffie-Hellman relation fpg as follows:

1 if g% = ¢

) a b _cy _
for : (G xG) x G —{0,1}, where fpu(9®,9°,9°) = {0 otherwise

552 C. Kudla and K.G. Paterson

We can now define the computational, decisional and Gap problems of fpy,
better known as the computational, decisional and Gap Diffie-Hellman problems.

Computational Diffie-Hellman (CDH) Problem: Given g%, g® € G, where
a,b €r Z,, compute g¢ € G, such that fpm(g%,g° ¢g°) = 1. That is, compute
g¢ = ¢®® mod p.

Decisional Diffie-Hellman (DDH) Problem: Given ¢¢,¢° ¢¢ € G, where
a,b €r Z,, determine whether fpu (g2, g°,g¢) = 1 or not. That is, determine
whether ¢ = ab mod ¢ or not.

Gap Diffie-Hellman (GDH) Problem: Given g%, ¢ € G where a,b € Z,,
as well as an oracle that solves the DDH problem on G, compute ¢** mod p.

The corresponding assumptions are that the above problems are hard, that
is, they are infeasible to solve in polynomial time in a security parameter used
to define the problem instances.

3 The Modified Bellare-Rogaway Model

We start by defining a modified Bellare-Rogaway (mBR)) model for authenticated
key agreement protocols. The model follows closely the model of Bellare et al.
[6] which extends the original Bellare-Rogaway model [7]. However we present
our model in the public key setting as in the model of Blake-Wilson et al. [9].

The model includes a set of participant IDs {U}, where each participant
has a distinct ID U, a long-term public key Py and a long-term private key
Su. We use II}; to denote the oracle modelling the ith instance of participant
U. An oracle II}, may accept at any time, and once accepted it should hold a
role role € {initiator, responder}, a partner ID pid (the ID of the oracle with
which it assumes it is communicating), a session ID sid and a session key sk.
We note that the value ¢ is not the sid but rather an internal session counter for
each oracle. This may act as an internal identifier for the session until the sid is
established.

Oracles follow the rules of the protocol, responding to input messages (from
the adversary). Each oracle maintains a public transcript T 77, Which records all
messages they have sent or received as a result of queries they have answered.

3.1 The mBR Game

The security of a key agreement protocol is modelled via the following game
between a challenger C' and an adversary F.

C' runs a Setup algorithm on a security parameter k to create the public
parameters, a set of participants {U} and oracles II}; to model instances of
each participant U, and to distribute long-term keys to each participant. C' also
randomly selects a bit b.

The model also includes an adversary E who is given all the participants’
public keys and has access to all the participants’ oracles as well as any random
oracles in the game. E' can make the following queries:

Modular Security Proofs for Key Agreement Protocols 553

Send(U,i,M): FE can send the oracle I}, a message M. If oracle II¢; has
pid = U’, then I}, assumes that M has come from U’ and responds according
to the protocol. E may also make a special Send query A to an oracle IT%;
which instructs U to initiate a protocol run with its partner U’. An oracle

¢, sets roley = initiator and is called an initiator oracle if the first message
it has received is \. If II}; did not receive a message \ as its first message,
then it sets roley = responder and is called a responder oracle.

Reveal (U,) : this allows E to ask the oracle II}; to reveal the session key (if
any) it currently holds to E.

Corrupt (U) : this allows E to ask participant U to reveal its long-term private
key.

Oracle States. An oracle exists in one of the following possible states:

Accepted: an oracle has accepted if it decides to accept, holding a session key,
after receipt of properly formulated messages.

Rejected: an oracle has rejected if it decides not to establish a session key and
to abort the protocol.

State *: an oracle is in state
reject.

Revealed: an oracle is revealed if it has answered a reveal query.

Corrupted: an oracle is corrupted if it has answered a corrupt query.

* if it has not made any decision to accept or

Partners. When running the protocol, if oracles II}, holding (sk, sid, pid) and
I17,, holding (sk’, sid’, pid’) have both accepted and the following conditions hold:

1. sid = sid’, sk = sk’, pid = U’ and pid = U,

2. roley = initiator and roley: = msponder or vice versa,

3. No oracle in E’s game besides II}; or I, accepts with session ID equal to
sid,

then I}, and H{], are said to be partners.

Freshness. An oracle II}; is called unfresh if it is revealed, or it has a revealed
partner, or if its partner IIj,, was corrupted. If an oracle is not unfresh, then the
oracle is fresh.

Test Query. F may make a polynomial number of queries in k. Then at some
point F makes a special Test query to an oracle IT};. This oracle must be accepted
and fresh, and it answers as follows. If b = 0, then IT}; randomly chooses a session
key sk and outputs it, otherwise if b = 1 it outputs its own session key sk;.

After this point E can continue querying the oracles except that F cannot
reveal or corrupt the test oracle or its partner (if it exists). Finally E outputs a
guess b’ for b.

E’s advantage, denoted advantage®(k), is the probability that E outputs a
bit b such that b =1'.

554 C. Kudla and K.G. Paterson

3.2 Definition of Security

We define a benign adversary as in [7]. Informally, a benign adversary is one who
simply relays messages between parties without modification. We then define
secure authenticated key agreement (AKE) protocols as follows:

Definition 2. A protocol is an mBR-secure AKE protocol if:

1. In the presence of the benign adversary, two oracles running the protocol both
accept holding the same session key and session ID, and the session key is
distributed uniformly at random on {0,1}*; and

2. For any adversary E, Advantage® (k) is negligible.

We say that protocol II is mBR-insecure if it is not mBR-secure. That is,
there exists an adversary E which, with non-negligible probability (in k), wins
the game against challenger C'. We say that such an adversary F can successfully
mBR-attack protocol II.

3.3 Notes on the Security Model

Our model of security is closely related to that of Bellare et al. [6]. However we
do not explicitly distinguish between acceptance and termination as is done in
[6], and we do not model perfect forward secrecy. Both of these properties can
be added as in [6]. We omit them for simplicity of presentation, but our results
still hold if these properties are included.

Notice that corruption in our model is simply a query to an oracle which re-
veals the long-term secret key held by the oracle. The adversary does not learn
other internal state of the oracle and does not gain control of the oracle. There-
fore a corrupted oracle may still be considered to be fresh and can therefore still
be chosen as a Test oracle. This is important in order to model key compro-
mise impersonation attacks as defined in [9], since these attacks involve oracles
whose long-term private keys have been compromised but which are not under
adversarial control.

The main differences between our model and the original models of Bellare
and Rogaway [7] and its public key version [9], are that our model is adaptive
(that is, the adversary may continue making queries after the Test query), and
we define partnering via session IDs and partner IDs (as in [6]) rather than by
matching conversations. We also include the possibility for corrupted oracles to
be considered fresh, allowing us to model key compromise impersonation attacks.
As mentioned before, our model can easily be extended to model perfect forward
secrecy as well.

We direct the reader to [6] for further details of the model presented here
and to [BIGITIIITS] for details of other models illustrating different methods for
dealing with partnering, corruptions and freshness.

4 Modular Construction of Security Proofs

From now on, we assume that we are only dealing with key agreement protocols
that produce a hashed session key on completion of the protocol. By this we mean

Modular Security Proofs for Key Agreement Protocols 555

that the key agreement protocol II specifies that the session key be computed
as the hash H of some string which we call the session string ss;y. We define
the session string for a particular oracle II¢;, to be ss ;- We will model H as a
random oracle in our security analysis.

This reliance on hashing to produce a session key does not seem to be too
strong a restriction since it is fairly common to use a key derivation function
to obtain a session key from a secret value established during a key agreement
protocol, and this key derivation function is usually implemented via a hash
function.

4.1 Protocol Partnering

When trying to establish that a protocol II is secure in the BR-style model,
we need to ensure that an adversary cannot trivially win the game defined in
Section 3] by an attack on the partnering properties of II.

Definition 3. Suppose 11 is a key agreement protocol. If there exists an adver-
sary B, which when attacking I1 in an mBR game defined in Section[3 1l and with
non-negligible probability in the security parameter k, can make any two oracles
i, and I, accept holding the same session key when they are mot partners,
then we say that II has weak partnering. If II does not have weak partnering,
then we say that I1 has strong partnering.

If a protocol II had weak partnering against an adversary F, then E could make
oracles II}; and II},, accept holding the same session key but without being
partners. The rules of the mBR game would then allow the adversary to reveal
the session key held by II¢;, and then choose II7,, as the test session, allowing E
to can trivially win the game.

Therefore, for I to be a secure key agreement protocol as defined in Definition
2 IT must have strong partnering.

The observations above apply equally to our BR-style model as they do
to the Canetti-Krawczyk model [I5], even though the concept of partners are
slightly different in the two models. In our security model, partnership is defined
via session keys, session IDs and partner IDs. For oracles H@ and H{], to accept
holding the same session key but without being partners, they must have different
sids and/or pids. To ensure that the protocol II has strong partnering, we must
ensure thatl (with overwhelming probability) ski, = sk, only if role}, # rolei,,
sidi, = sidy;, and pid}; = pid};,. This can be ensured by including role;, sid;
and pidy; in the session string ss i, (and therefore in the computation of the
session key ski;).

This idea of including the “partnering information” in the session string en-
sures strong partnering in other models as well. For example, in the models of
[71/819], partnering is defined via matching conversations, or transcripts. There-
fore a key agreement protocol secure in these models can never allow two oracles
to share the same key without having identical transcripts. Strong partnering
in these models can therefore be ensured by including the protocol transcript in
the session string of each oracle.

556 C. Kudla and K.G. Paterson

4.2 Reduced Games

We now consider two reduced mBR games. The first game is identical to the
mBR game defined in Section Bl except that the adversary E is not allowed to
make any Reveal queries. We call this reduce game a No-Reveals mBR (NR-
mBR) game. The second game is identical to the NR-mBR game, except that the
adversary no longer makes a Test query. Instead, to win the game, the adversary
must select an accepted and fresh Test oracle at the end of its computation
and output the session key for this oracle. Since the adversary in this game
must actually compute the session key of an oracle (instead of having to decide
between a session key and a random value from the key space), we call this game
a computational NR-mBR (cNR-mBR) game. We define E’s advantage, denoted
Advantage® (k), in the cNR-mBR game to be the probability that E outputs a
session key sk such that sk = Skn;ﬁj where IT}; is the Test oracle selected by the
adversary.

Definition 4. A protocol I is a (¢)NR-mBR-secure key agreement protocol if:

1. In the presence of the benign adversary, two oracles running the protocol both
accept holding the same session key and session ID, and the session key is
distributed uniformly at random on {0,1}*; and

2. For any adversary E, Advantage” (k) in the (¢)NR-mBR game is negligible.

We say that protocol IT is (¢)NR-mBR-insecure if it is not (¢)NR-mBR-
secure. That is, there exists an adversary E which, with non-negligible proba-
bility (in k), wins the (¢)NR-mBR game against challenger C'. We say that such
an F can successfully (¢)NR-mBR-attack protocol II.

As part of our proof process for a given protocol II which produces hashed
session keys on completion of the protocol, we will consider a related protocol 7.
Protocol 7 is defined in the same way as II except that the session key generated
by 7w will be the session string of II. That is, sk,.: = = S8y - It will then be
necessary to prove that protocol 7 is cNR-mBR secure. Since the cNR-mBR
game is a highly reduced game, it is usually fairly easy to establish a protocol’s
security in this model. Although it may not be obvious how a proof of security
in this reduced model may be helpful, in Section 4.3 we present a theorem which
shows how a proof of cNR-mBR security for = can be transformed into a proof
of mBR security for Il using a Gap assumption, provided that II has strong
partnering.

The reason we defined NR-mBR security when cNR-mBR security is our
focus is that, although it is a more complex game than the cNR-mBR game, a
number of recent papers presenting new key agreement protocols prove that their
protocols meet such a weakened definition of security [2/9/I7I3]. That is, they
take an appropriate security model, and prove the security of their protocols in
the No-Reveals (NR) variant of the security model.

It is trivial to see that if protocol II is NR-mBR secure, then it is also cNR-
mBR secure. We also have the following result relating the NR-mBR security of
IT and the cNR-mBR security of the related protocol .

Modular Security Proofs for Key Agreement Protocols 557

Theorem 1. If a protocol I1 produces a hashed session key via hash function H
and is NR-mBR secure, then the related protocol w is cNR-mBR secure.

A sketch of the proof of this theorem is in Appendix A. We note that in the
proof of the above theorem, no assumption is required concerning the properties
of H.

4.3 Handling Reveal Queries Using Gap Assumptions

We now consider a protocol II which has strong partnering and for which the
related protocol 7 is cNR-mBR secure. In order to translate these results into a
proof of mBR security for II, we need to be able to construct a challenger C in
an mBR game for II which is able to answer an adversary E’s Reveal queries.
At first glance, it seems that C' needs to be able to compute the session key
sky for any oracle IT}; that F may wish to reveal during the mBR game. However
this is not the case if II produces a hashed session key (via hash function H)
and if H is modelled as a random oracle. We will see below in Theorem [2] that
in this case, C' only needs to be able to solve the following decisional problem:

Given the transcript T} of oracle II}; in an mBR game, as well as the
Py and Py (the public keys of U and U’ where pidi;, = U’) and s, where
s is a string, decide whether s = ss i where ss mi 18 the session string
of oracle IT%;.

We call this decisional problem the session string decisional problem for pro-
tocol TI.
We now present our main result.

Theorem 2. Suppose that key agreement protocol 11 produces a hashed session
key on completion of the protocol (via hash function H) and that 1 has strong
partnering. If the cNR-mBR security of the related protocol 7 is probabilistic
polynomial time reducible to the hardness of the computational problem of some
relation f, and the session string decisional problem for 11 is polynomial time
reducible to the decisional problem of f, then the mBR security of 11 is probabilis-
tic polynomial time reducible to the hardness of the Gap problem of f, assuming
that H is a random oracle.

Proof. Since the cNR-mBR security of 7 is probabilistic polynomial time re-
ducible (in security parameter k) to the hardness of the computational problem
of some relation f, there exists an algorithm A that, on input a problem in-
stance of the computational problem of f and interacting with an adversary
E which has non-negligible probability 1 of winning the ¢cNR-mBR game for
7 in time 7, is able to solve the computational problem of f with some non-
negligible probability ¢g(n) and in time h(7), where g and h are polynomial
functions.

We now define an algorithm B which, given an adversary D which has non-
negligible probability 1’ of winning the mBR game for II in time 7/, is able to

558 C. Kudla and K.G. Paterson

solve the Gap problem of f with some non-negligible probability ¢'(n') and in
time h/(7’) where ¢’ and h’ are polynomial functions. B will act as a challenger
for D. B will also run algorithm A and will simulate an adversary for A. Since B
attempts to solve the Gap problem of f, B will also have access to a decisional
oracle for f.

Since IT has strong partnering, we know that if two oracles share the same
session key, then they must be partners (with overwhelming probability). We
therefore know that D will never reveal a session key sk where sk is equal to the
Test oracle II4’s session key sk i This is because D is not permitted to reveal
the session key of the Test oracle or its partner (if it exists).

We also assumed that the session string decisional problem for II is polyno-
mial time reducible to the decisional problem of f. That is, there exists some
algorithm C which, given a decisional oracle for f, is able to solve the session
string decisional problem for IT in polynomial time 7”.

B runs A on the problem instance of the computational problem of f and
simulates an adversary for A. A sets up a cNR-mBR game for B and gives all the
public parameters to B. B in turn passes these public parameters to adversary
D. B now answers all of D’s queries as follows.

B passes all D’s queries besides Reveal and H queries to A. Since, in any
session, protocol 7 is identical to protocol II until the session is completed and
the session key is computed, these queries will all be answerable by A. B passes
A’s responses back to D.

In order for B to answer D’s Reveal queries, 5 maintains a Guess session key
list (G-List). Each element on the G-List is a tuple of the form (T},, Py, Py+, R},)
where Té is the transcript of oracle H{,, Py is the public key of V, Py is the
public key of V' where pid m = V', and R{/ is a random guess for the session

key sk{, of oracle H{,. Initially the G-List is empty.

In order for B to answer E’s H queries, B maintains an (initially empty)
H-List containing tuples of the form (s;, sk;, str). For each H query on string s
that D makes, B checks whether s is on the H-List as the first component in
some tuple (s;, sk;, str). If it is, then B outputs sk;. If s is not on the H-List
then B uses the algorithm C' to determine whether s is a valid session string for
any oracle II{, on the G-List. If s = ss i, is the session string for some oracle

H{, on the G-List, then B outputs R{, and adds the tuple (S,R{/,str) where
str="“V.,j” to the H-List. Otherwise B selects a random sk from the session key
space, adds the tuple (s, sk, str) (where str is the empty string A) to the H-List,
and outputs sk.

When D makes a Reveal query on any oracle I}, which has accepted, B pro-
ceeds as follows. If IT¢; has an entry on the G-List of the form (T}, Py, Pyr, RY;),
B outputs the value Rf;. Otherwise B checks whether any entry on the H-List
of the form (s;, sk;, str) where str = A has s, = 587, using algorithm C. If such
an entry (s;, sk;, str) exists, then str is set to “U,i” on the H-List and the entry
(T{;, Py, Py, Ri;) is added to the G-List, where R, = s;, T, is the transcript of
I1%;, Py is the public key of U and Py is the public key of U’ where pid m, =U .

Modular Security Proofs for Key Agreement Protocols 559

Otherwise a random session key R} is selected and the entry (T}, Py, Py, R%])
is added to the G-List. To answer the Reveal query, B outputs the value R}, in
every case.

In this way, B can consistently answer D’s Reveal and H queries. At some
point D selects a Test oracle IT%.. B selects a random element sk from the session
key space and gives this to D.

If D does not query H on the Test oracle’s session string ss i then D can
only win with probability 1/Sy where Sy is the size of the output space of H,
which we assume is negligible in security parameter k. So with overwhelming
probability 1 —1/Sg, D queries H on ss .- B can detect this value by checking
which of the tuples (s;, sk;, str) on the H-List with str = A has s; = 811, using
algorithm C'. B gives this s; to A.

Since ss m = sk , B has simulated a valid adversary E for A with non-
negligible probablhty 77 =7 (1-1/Sy) and in polynomial time 7 = 7/ + 7"
Ny - (Ngr 4+ 1), where Ny and Np are the number of H and Reveal queries
that D makes respectively. So A outputs the solution to the instance of the
computational problem of f with non-negligible probability ¢g(n) and in time
h(T).

Therefore B solves the Gap problem of f with non-negligible probability g(7)
and in time (7).

|

4.4 Different Security Models

Analogous results to Theorem [2] can be obtained for the security models of
[6I7IRIT5).

For each of these models, an equivalent definition of strong partnering can
be made. In the models of [TI89] partnering is defined via the concept of match-
ing conversations, so strong partnering would be defined in this context as
well.

For each of these models, NR and cNR versions can be defined in the same
way as for our mBR model. The definition of the related protocol 7 is indepen-
dent of the model used.

It is then possible to prove analogous versions of Theorem Bl for these models.
These in turn illustrate how proofs in these models can be constructed in a
modular way.

We notice that analogous versions of Theorem 1 for alternative security mod-
els are also easy to formulate and prove.

Further details will be provided in the full paper.

5 Applying the Technique to Existing Protocols

We are now able to apply our results to key agreement protocols in the literature.
We find numerous protocols [2I3[9/17] which use a hash function to derive a
session key and which have proofs of security reducing to some computational

560 C. Kudla and K.G. Paterson

assumption but only in the NR version of the security model used!]. For each
such protocol II, full proofs of security in the relevant model can be obtained as
follows.

1. It must be shown that the protocol II has strong partnering. If II does not
have strong partnering, this can be achieved by modifying the protocol to
include the appropriate partnering information (for the security model used)
in the session string. It should be checked that such modifications do not
affect the existing proof of security.

2. The appropriate version of Theorem 1 can now be applied to II to guarantee
that the related protocol 7 is secure in the cNR version of the security model
used.

3. It must be shown that the appropriate decisional oracle can be used to
solve the session string decisional problem of II. In general this is a trivial
reduction.

4. The appropriate version of Theorem 2 may now be used to obtain a complete
security proof for IT in the full version of the security model used.

For example, the proof of security for Protocol 3 of [9] can be completed in the
manner described above, although the protocol does require some modifications
to achieve strong partnering. A suitably modified version of this protocol is in
fact presented in [2I] together with a proof of security. Interestingly, Protocol
3 of [9] and the modified version in [21I] are vulnerable to a key compromise
impersonation attack. However this does not affect the proof of security since
the model of [9] does not capture security against these attacks.

5.1 A Concrete Example

We now consider Protocol 4 in [9], which was conjectured to be secure in [9]

but has never been proven secure. We modify the protocol slightly to guarantee

strong partnering and then prove this protocol secure in our mBR model. It is

possible to prove the unmodified protocol secure in the model of [9] using the

method described above, but the proof of strong partnering is more complicated.
We now present our modified version of Protocol 4 of [9].

Protocol 1

The Setup algorithm generates primes p and ¢ where g|p — 1. It then chooses G
to be a multiplicative subgroup of Z;, where G has order ¢, and element g € G
generates G. It also sets the session ID space S = G* and selects a hash function
H :G? xS — {0,1}* . Each participant I selects a private key z; randomly
from Z, and sets their public key to be X; = ¢”’ mod p.

Suppose that A and B are participants with public keys X4 = ¢g*4 mod p
and Xp = ¢*8 mod p respectively. A and B run the protocol as follows:

1 A proof for the protocol of [I7] appearing in [TI0] allows the adversary to make some
but not all Reveal queries.

Modular Security Proofs for Key Agreement Protocols 561

A, as initiator will receive some input (Xp,initiator) and initiates session
Hf4, setting pids = Xp and role 4 = initiator.
A randomly picks a value a € Z,, computes T4 = g mod p and sends the
following to B:
A— B:Ts, X4, XpB.

On receipt of the message from A, B initiates session H{B with pidp = X4
and rolep = responder. B randomly picks a value b € Z, and computes Tp =
g® mod p. B then sends the following to A:

BHA:TB,TA,XB,XA.

B computes sidp = X4, Xp,Ta,Tp and K = H(T4® mod p, Xffl mod p, sidg)
and accepts with session key skp = Kp.

On receipt of the message from B, A computes sidg = X4, Xp,Ta,Tp and
K = H(X% mod p, T5* mod p, sida) and accepts with session key ska = Ka.

If the protocol completes correctly, it is easy to see that K4 = Kp.

The modified version of Protocol 1 in which the session key is equal to the
session string of Protocol 1 is denoted by Protocol 1'.

Theorem 3. The cNR-mBR security of Protocol 1' is probabilistic polynomial
time reducible to the hardness of the CDH problem in G.

This is proved in Appendix A. It is interesting to note how short the proof of
this theorem is; this is due to the simplicity of the cNR-mBR model.

We note that a common error when proving that a protocol II is mBR-secure
(or even NR-mBR or cNR-mBR secure) is to make the assumption that the Test
oracle IT; has a partner, and that the input to II¢; comes from this partner.
In fact the challenger has no control over the input to II%; since the adversary
controls all communications between oracles. This error can be seen in papers
such as [4I18] where proofs of security were attempted in the full security model.
Their corrected versions [3[17] provide proofs in the NR versions of the original
models.

Theorem 4. Protocol 1 has strong partnering in the random oracle model.
The simple proof of this theorem is left to the reader.

Corollary 1. Protocol 1 is secure in the random oracle model assuming the
hardness of the Gap Diffie-Hellman problem.

Proof. This result comes immediately from Theorems [2] 3] and 4 and the obser-
vation that a decisional Diffie-Hellman oracle can be used to solve the session
string decisional problem for Protocol 1. Therefore the session string decisional
problem for Protocol 1 is reducible to the decisional Diffie-Hellman problem (in
constant time). O

We note that Protocol 1 can easily be extended to have perfect forward secu-
rity by including the value Tfl mod p into the computation of the hash function

562 C. Kudla and K.G. Paterson

H. This extended Protocol 1 can then be proven secure in an extended mBR
model which models perfect forward secrecy.

The protocol of [27], after slight modifications to ensure strong partnering,
can also be proven secure in the random oracle model in a similar way to our
Protocol 1.

6 Special Gap Groups

The Gap assumptions may not be acceptable to all, since in developing security
proofs, one must assume the use of an oracle which is not known to exist: a
decisional oracle. For instance, for Protocol 1, the proof of security ultimately
requires an oracle which solves DDH in the group G. This is thought to be a hard
problem, so there is no known method of constructing such an efficient oracle.

However there do exist groups in which the computational problem is thought
to be hard but where the decisional problem is known to be easy. For instance,
groups of points on an elliptic curve on which an efficient bilinear map (or
pairing operation) is defined. In such groups, the pairing operation can be used
to construct an efficient DDH oracle, and the Gap problem is in fact equivalent
to the computational problem. Therefore if Protocol 1 had been defined over
such a group, then its security would in fact reduce to the CDH problem.

7 Conclusions

We have presented a modular technique that makes use of Gap assumptions for
simplifying proofs of security for key agreement protocols which are not built
using the modular approach of [5]. Protocols of this type have traditionally been
notoriously hard to prove secure, and we have indicated how the proofs of security
of many such protocols in the literature may be constructed or completed using
our technique. Our technique works not only with the model presented in this
paper, but also with the models of [7I8I9T5].

We considered in detail a long-standing protocol presented in [9] which pre-
viously lacked a proof of security. We then provided a full proof of security for a
slightly modified version of this protocol using the techniques introduced in this
paper. We also indicated how full proofs of security for protocols in [23I9T727]
may be constructed using our techniques.

References

1. M. Abdalla, O. Chevassut, and D. Pointcheval. One-time verifier-based encrypted
key exchange. In S. Vaudenay, editor, Public Key Cryptography - PKC 2005, volume
3386 of LNCS, pages 47-64. Springer-Verlag, 2005.

2. S.S. Al-Riyami and K.G. Paterson. Authenticated three party key agreement pro-
tocols from pairings. In K.G. Paterson, editor, Proceedings of 9th IMA Interna-
tional Conference on Cryptography and Coding, volume 2898 of Lecture Notes in
Computer Science, pages 332-359. Springer-Verlag, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

Modular Security Proofs for Key Agreement Protocols 563

. P.S.L.M. Barreto and N. McCullagh. A new two-party identity-based authen-

ticated key agreement. Cryptology ePrint Archive, Report 2004/122, 2005.
http://eprint.iacr.org/.

. P.S.L.M. Barreto and N. McCullagh. A new two-party identity-based authenticated

key agreement. In Topics in Cryptology — CT-RSA’2005, volume 3376 of Lecture
Notes in Computer Science, pages 262-274. Springer-Verlag, 2005.

. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and

analysis of authentication and key exchange protocols. In Proceedings of the 30th
Annual Symposium on the Theory of Computing, pages 419-428. ACM, 1998.

. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure

against dictionary attacks. In B. Preneel, editor, Advances in Cryptology — EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139-155.
Springer-Verlag, 2000.

. M. Bellare and P. Rogaway. Entity authentication and key distribution. In

Advances in Cryptology - CRYPTO ’93, volume 773 of LNCS, pages 232-249.
Springer-Verlag, 1994.

. M. Bellare and P. Rogaway. Provably secure session key distribution: The three

party case. In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing STOC, pages 57-66. ACM, 1995.

. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their

security analysis. In Cryptography and Coding, volume 1355 of LNCS, pages 30—45.
Springer-Verlag, 1997.

C. Boyd, K.-K.R.. Choo, and Y. Hitchcock. On session key construction in provably-
secure key establishment protocols. In Proceedings of International Conference
on Cryptology in Malaysia - Mycrypt 2005, volume 3715 of LNCS, page 116131.
Springer-Verlag, 2005. http://eprint.iacr.org/2005/206.

C. Boyd, W. Mao, and K. Paterson. Key agreement using statically keyed au-
thenticators. In Applied Cryptography and Network Security: Second International
Conference, ACNS 2004, volume 3089 of Lecture Notes in Computer Science, pages
388-401. Springer-Verlag, 2004.

C. Boyd, J.M. Gonzéalez Nieto, and Y. Hitchcock. Tripartite key exchange in the
Canetti-Krawczyk proof model. In Proceedings of 5th International Conference on
Cryptology in India INDOCRYPT 2004, volume 3348 of Lecture Notes in Computer
Science, pages 388—401. Springer-Verlag, 2004.

C. Boyd, J.M. Gonzalez Nieto, Y. Hitchcock, P. Montague, and Y.S.T. Tin. A
password-based authenticator: Security proof and applications. In Proceedings of
4th International Conference on Cryptology in India INDOCRYPT 2008, volume
2904 of Lecture Notes in Computer Science, pages 388-401. Springer-Verlag, 2003.
C. Boyd, J.M. Gonzilez Nieto, and Y.S.T. Tin. Provably secure mobile key ex-
change: Applying the Canetti-Krawczyk approach. In Information Security and
Privacy, 8th Australasian Conference, ACISP 2003, volume 2727 of Lecture Notes
in Computer Science, pages 166—179. Springer-Verlag, 2003.

R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In B. Pfitzmann, editor, Advances in Cryptology —
EUROCRYPT 2001, volume 2045 of LNCS, pages 453-474. Springer-Verlag, 2001.
R. Canetti and H. Krawczyk. Universally composable notions of key exchange and
secure channels. In L.R. Knudsen, editor, Advances in Cryptology - EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 337-351. Springer-
Verlag, 2002.

L. Chen and C. Kudla. Identity based authenticated key agreement from pairings.
Cryptology ePrint Archive, Report 2002/184, 2002. http://eprint.iacr.org/.

http://eprint.iacr.org/
http://eprint.iacr.org/2005/206
http://eprint.iacr.org/

564 C. Kudla and K.G. Paterson

18. L. Chen and C. Kudla. Identity based authenticated key agreement from pairings.
In IEEE Computer Security Foundations Workshop — CSFW-16 2003, pages 219—
233. IEEE Computer Society Press, 2003.

19. W. Diffie, P. C. van Oorschot, and M. J. Weiner. Authentication and authenticated
key exchange. Designs, Codes and Cryptography, 2:107-125, 1992.

20. M. Jakobsson and D. Pointcheval. Mutual authentication and key exchange pro-
tocol for low power devices. In Financial Cryptography, 5th International Confer-
ence, FC 2001, volume 2339 of Lecture Notes in Computer Science, page 178195.
Springer-Verlag, 2002.

21. L.R. Jeong, J. Katz, and D.H. Lee. One-round protocols for two-party authenti-
cated key exchange. In Applied Cryptography and Network Security: the Second
International Conference, ACNS 2004, volume 3089 of Lecture Notes in Computer
Science, pages 220 — 232. Springer-Verlag, 2004.

22. J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In
D. Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of LNCS,
pages 110-125. Springer-Verlag, 2003.

23. L. Law, A. Menezes, M. Qu, J. Solinas, and S.A. Vanstone. An efficient protocol
for authenticated key agreement. Designs, Codes and Cryptography, 28(2):119-134,
2003.

24. T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key-
distribution systems. Electronics Letters, E69(2):99-106, 1986.

25. T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In K. Kim, editor, Public Key Cryptography
- PKC 2001, volume 1992 of LNCS, pages 104—-118. Springer-Verlag, 2001.

26. V. Shoup. On formal models for secure key exchange. IBM Technical Report RZ
3120, 1999. http://shoup.net/papers.

27. N.P. Smart. An identity based authenticated key agreement protocol based on the
Weil pairing. Electronics Letters, 38(13):630-632, 2002.

Appendix A

Proof of Theorem [We provide a sketch of the proof of this theorem. The
details are left to the reader. We show that if there exists an adversary F that
can cNR-mBR attack 7, then we can build an adversary A that can NR-mBR
attack II.

Suppose that an adversary E wins the cNR-mBR game for protocol 7 with
non-negligible probability n. Suppose also that A runs an NR-mBR game with
challenger C. A in turn acts as a challenger for F in a cNR-mBR game. A passes
E’s queries to C and returns C’s outputs to F. Finally F will output the session
key skg; of some fresh oracle i, Recall however that skri = sspi -

A then chooses II¢; as the Test oracle and receives a challenge key sk. If
sk = H(sk‘,r%]) then A outputs 1, otherwise it outputs 0. A wins the NR-mBR
game with probability 7. O

Proof of Theorem [3. We assume that for security parameter k there exists an
adversary E for Protocol 1’ who can win the cNR-mBR game with advantage
1 which is non-negligible in £ and in polynomial time 7 of k. Suppose that the

http://shoup.net/papers

Modular Security Proofs for Key Agreement Protocols 565

number of participants is np and the number of sessions each participant may
be involved in is ng, where np and ng are polynomial functions of k.

We now construct from E algorithm F' which solves the CDH problem in G
with non-negligible probability. That is, given as input elements g%, ¢g¥ € G, F’s
task is to compute and output the value ¢g*¥ mod p.

F simulates a challenger in a cNR-mBR game with E. F' sets up the game
with the group G and generator g € G. F generates a set of participants of
size np. For each participant I, F' sets I’s private key to be a randomly chosen
27 € Zg and sets their public key to be X; = ¢*’ mod p. However for some
participant P, F' sets P’s public key to be Xp = ¢®. F also picks a random
participant) # P, a session number ¢ € {1,..,ng} and a number [€ {1,..,ngy}.
F starts E and answers E’s queries as follows.

Send: E may make a special Send query 117 which sets pid; = X and instructs
I to initiate a protocol run with its partner I'. E can also send any oracle II5
a message M, and the oracle responds according to the protocol. However if
F initializes or sends a message to oracle HtQ, then HtQ outputs g¥.

Corrupt(U): If E corrupts participant P, then F' aborts. Otherwise F' gives E
the long-term private key of the participant.

Test: When E asks a Test query to an oracle II§, F' outputs a random element
from the key space G2 x S = GS.

The probability that E queries oracle HZ; for the Test session and that pidg =
Xpis o 1ns. In this case, we note that E could not have corrupted participant
2,

P, and so F' would not have aborted.

FE finally outputs a session key of the form (a, b, ¢) where a,b € G and ¢ € G*.
If II{ was an initiator, then F' outputs b as its guess for the value g*¥ mod p,
otherwise F' outputs a as its guess. It is now easy to see that F' solves the CDH
problem on input (g%, g¥) with probability n" = 7.("2 1ns) which is non-negligible
in k, and in time 7. ([

	Introduction
	Preliminaries
	The Modified Bellare-Rogaway Model
	The mBR Game
	Definition of Security
	Notes on the Security Model

	Modular Construction of Security Proofs
	Protocol Partnering
	Reduced Games
	Handling Reveal Queries Using Gap Assumptions
	Different Security Models

	Applying the Technique to Existing Protocols
	A Concrete Example

	Special Gap Groups
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

