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Abstract. Distributed real-time and embedded (DRE) applications
possess stringent quality of service (QoS) requirements, such as pre-
dictability, latency, and throughput constraints. Real-Time CORBA, an
open middleware standard, allows DRE applications to allocate, sched-
ule, and control resources to ensure predictable end-to-end QoS. The
Real-Time Specification for Java (RTSJ) has been developed to provide
extensions to Java so that it can be used for real-time systems, in or-
der to bring Java’s advantages, such as portability and ease of use, to
real-time applications.

In this paper, we describe RTZen, an implementation of a Real-Time
CORBA Object Request Broker (ORB), designed to comply with the
restrictions imposed by RTSJ. RTZen is designed to eliminate the un-
predictability caused by garbage collection and improper support for
thread scheduling through the use of appropriate data structures, thread-
ing models, and memory scopes. RTZen’s architecture is also designed to
hide the complexities of RTSJ related to distributed programming from
the application developer. Empirical results show that RTZen is highly
predictable and has acceptable performance. RTZen therefore demon-
strates that Real-Time CORBA middleware implemented in real-time
Java can meet stringent QoS requirements of DRE applications, while
supporting safer, easier, cheaper, and faster development in real-time
Java.
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1 Introduction

For as long as computers have been able to talk to one another, software en-
gineers have struggled with the task of building distributed applications. Over
the years, various technologies have been created to deal with the problem,
culminating in the “golden age of networking” of the early 1980s, which saw
the advent of remote procedure calls and the socket metaphor. More recently,
object-oriented architectures such as CORBA have become popular for making
computer communication easier to implement.

Traditionally, the overhead of CORBA-based middleware has limited its de-
ployment to large enterprise-class servers and workstations. Developers of dis-
tributed, real-time, and embedded (DRE) systems, who must contend with far
more limited resources, often seek lighter-weight alternatives, such as socket li-
braries, but these solutions are nearly as tedious and error-prone as they were
following their invention a quarter-century ago.

In the last few years, however, research has shown that intelligent design
and careful implementation of CORBA can produce middleware that meets the
needs of today’s DRE developers [1]. By bringing the CORBA model to the DRE
domain, the low-level details of the network are abstracted away to the middle-
ware layer, which shortens and simplifies the development cycle for distributed
applications. Thus, DRE developers can enjoy the same benefits of CORBA that
enterprise developers have enjoyed for many years, such as interoperability across
varying hardware, languages, and operating systems.

CORBA middleware for DRE developers offers more benefits than just sim-
plicity and portability. The recent Real-Time CORBA Specification [2] provides
stringent quality of service (QoS) constraints on memory, performance, and de-
pendability. CORBA middleware that conforms to this specification improves
predictability by bounding priority inversions and managing system resources
end-to-end. Such features are vital for DRE systems.

One key challenge in adopting CORBA, however, has been the steep learning
curve for C++ middleware implementations, primarily due to the complexity of
the CORBA-C++ mapping [3,4,5]. Simpler, easier-to-use languages, particularly
Java, have been applied successfully to address this problem [6]. Java offers less
“accidental complexity” than C++, a higher degree of portability, native support
for concurrency and synchronization, a comprehensive class library, and other
features that make it attractive to application developers.

In the DRE domain, however, Java middleware has previously been unable
to offer the necessary QoS guarantees of predictability for two primary reasons:
i) the under-specified scheduling semantics of Java threads can lead to the most
eligible thread not always being run; and ii) the Java garbage collector can
preempt any other Java thread, thus yielding unpredictably long preemption
latencies.

The need to allocate or reclaim memory can potentially be a major source
of unpredictability if such operations are allowed to occur on demand in unex-
pected circumstances (e.g., reallocating a buffer to handle a larger-than-expected
amount of data, or having a garbage collector run to reclaim memory). To
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address this concern, the Real-Time Java Experts Group has defined the Real-
Time Specification for Java [7]. RTSJ brings a simpler, more portable, and easier-
to-use language to the world of DRE systems. It provides stronger guarantees on
thread semantics than conventional Java and defines a new memory management
model that allows allocation of objects not subject to garbage collection.

By using these newly-defined real-time Java features, CORBA middleware
implemented in Java can provide the best of both worlds: a portable, developer-
friendly language and the guarantee of predictability required by DRE systems.
Implementing such middleware is not simply a feat of engineering, however.
It remains to be seen, for instance, if the developer community will accept the
strict scoped memory model of RTSJ, or whether ongoing research into real-time
garbage collection will make such memory models obsolete.

Real-time systems are inherently more complex to develop and maintain than
conventional systems. Thus, designing and implementing a software system as
powerful as CORBA middleware, using the new RTSJ features for real-time
memory management, is necessarily more complex than developing systems in
conventional Java. However, RTSJ still retains many of Java’s advantages com-
pared to C++, such as superior portability and native thread support. Further-
more, RTSJ’s memory model may be easier to manage than that of C++, which
requires programmers to handle the memory management of each individual ob-
ject. RTSJ addresses this problem with the concept of scoped memory, allowing
the system to reclaim the memory of multiple objects automatically. Maintain-
ing entire blocks of memory as scopes can be less complex and error-prone than
managing each object manually, as in C++.

Mapping Real-Time CORBA object lifetime models into this RTSJ memory
model is a challenging task. The system must be designed carefully to ensure
predictability through RTSJ features, while simultaneously complying with the
Real-Time CORBA Specification, all the while shielding these complexities from
the middleware user and maintaining Java’s key advantage: ease of use.

In this paper, we show how we achieved these goals in designing and imple-
menting the first open-source real-time Java, Real-Time CORBA middleware,
which we call RTZen.1 The largest known open-source RTSJ project, RTZen
demonstrates that real-time Java and Real-Time CORBA are maturing into
viable technologies for DRE system development. More importantly, our work
proves that these specifications can be integrated into a single middleware ar-
chitecture that combines the advantages of each. The result is a predictable,
efficient, customizable, and embeddable RTSJ implementation of CORBA.

The remainder of this paper is organized as follows: Section 2 explains the
RTSJ features used in RTZen to ensure predictability, with special focus on
memory scoping; Section 3 describes the RTSJ-specific design patterns that
we adopted in RTZen’s implementation; Section 4 describes the architecture
of RTZen; Section 5 presents empirical results that demonstrate RTZen’s ability
to accommodate real-time requirements; Section 6 describes related work; and
in Section 7 we provide concluding remarks.

1 Available at http://doc.ece.uci.edu
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2 Overview of RTSJ

Java offers developers significant advantages, with features like object-oriented
programming, platform independence, dynamic class loading, simplified memory
management, exception handling, and run-time consistency checks. However, the
Java VM mechanism that enables simplified memory management—the garbage
collector—introduces challenges for real-time systems by potentially causing un-
bounded priority inversions, thus reducing predictability. To address this chal-
lenge, RTSJ reduces the need for garbage collection by introducing new types of
memory regions and real-time threads.

2.1 RTSJ Memory Areas and Switching

In addition to heap memory in standard Java, RTSJ introduces two new mem-
ory regions with restrictions aimed at making memory management more pre-
dictable. RTSJ specifies three memory regions: heap memory, immortal memory,
and scoped memory. Each memory region has an associated life-span, and ob-
jects may be allocated within these regions by setting the allocation context
before making allocations.

– Heap memory is the same as the original Java heap. Objects can be al-
located in heap memory, and are alive until the last reference to them is
removed, when the object becomes “garbage.” Garbage objects may be col-
lected automatically by the garbage collector. The running of a garbage
collector is undesirable for real-time systems, because it may be invoked at a
time which causes higher-priority tasks to be interrupted from accomplishing
their time-critical task.2 The lifespan of heap memory is the same as that of
the JVM; i.e., objects created in heap memory can stay alive as long as the
JVM exists or until they become garbage.

– Immortal memory is a fixed-sized area whose lifetime is the same as that
of the JVM. Objects allocated in immortal memory, however, will never
be garbage collected. Therefore, if not managed carefully, the memory in
this region could easily become exhausted which will cause an OutOfMemory
Exception. As a consequence, this region must be used sparingly and man-
aged carefully. In particular, memory allocations from the immortal region
should generally occur at application initialization.

– Scoped memory is a memory region with a limited lifetime. The end of
this lifetime occurs when there are no more threads executing in the region.
Scoped memory is ideal for temporary allocations that follow the lifetimes of
specific threads of control. The benefit of using scoped memory is that it is
both allocated and reclaimed as a single (not necessarily contiguous) block,3

which are predictable operations.

2 This is assuming that real-time garbage collection is not used.
3 While RTSJ supports both linear- and variable-time allocation of scoped memory

regions, we strictly use the linear-time allocation mechanism in this work.
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RTSJ also introduces two new thread types which can be used to execute
in memory regions and are used to determine the lifetime of scoped regions.
The most important feature of these new threads is that they are scheduled
preemptively so that the highest priority thread is always running.

– RealtimeThreads (RTTs) are used to enter scoped, immortal, and heap
regions. Also, memory located in the heap can be referenced from any other
region, following the rules imposed by RTSJ (see Sect. 2.2).

– NoHeapRealtimeThreads (NHRTTs) are similarly used to enter scoped and
immortal regions, but possess one important distinction: no heap access is
allowed. According to normal memory access rules, any region can access the
heap. However, if there is code executing in a NHRTT, that code cannot ac-
cess the heap. The important consequence of this restriction is that NHRTTs
can never be preempted by the garbage collector, whereas RTTs can. There-
fore, NHRTTs should be used whenever possible to ensure predictability,
even if heap memory will also be used in the application.

2.2 Nested Scopes

Scoped memory may be nested, producing a scoping structure called a scope
stack. Since multiple memory areas can be entered from an existing memory
area, this scope stack can form a tree-like structure. One key relationship is as
follows: if region B is entered from region A, then A is considered the parent
of B (see Fig. 1(a)). Certain rules govern memory access among scopes. Code
within a given memory scope A can reference memory in another region B only
if the lifetime of the memory in the region B is at least as long as that of
the first region A. This lifetime can be guaranteed only if the requested object
resides in an ancestor region (i.e., a parent or grandparent, etc.), immortal, or
heap memory. A violation of this rule results in an IllegalAssignmentError
or IllegalAccessError.

One important constraint is that a memory region can have only one parent,
thereby preventing cycles in the scope stack. Consequently, a single scope can-
not have two or more threads from different parent scopes enter it. If one thread
takes a particular path to get to a memory region and forms a scoped memory

B

Immortal

A

C

Heap

(a) Nested Scopes

to Heap to Immortal to A to B to C
from Heap yes yes no no no

from Immortal yes yes no no no
from A yes yes yes no no
from B yes yes yes yes no
from C yes yes yes no yes

(b) Access rules for (a)

Fig. 1. RTSJ Access Rules
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hierarchy, a second thread will have to follow the same hierarchy to reach the
same memory region, otherwise a ScopedCycleException is thrown. For exam-
ple, if a thread enters scope B from A, then another thread that enters B must
also be entered from A. An important implication of this restriction on scoping
structure is that a given region cannot access memory residing in its “sibling”
region. In the event that these two regions need to coordinate to perform some
task, they will need to do so through memory stored in a common ancestor re-
gion. For example, in Fig. 1(a), scope C cannot access scope B. These regions
can coordinate only via objects stored in A or immortal memory. Table 1(b)
depicts the complete access rules among scopes in Fig. 1(a).4

The new memory regions introduced in RTSJ and described above provide
memory that will not be managed by the garbage collector, but the restric-
tions imposed on these memory regions pose challenges for designing real-time
middleware such as RTZen.

3 RTZen’s Design Patterns

Traditional design patterns [8,9] are used to simplify the development process
of large software systems. Using design patterns leads to better modularity and
maintainability of code. RTZen is based on such design patterns, especially those
used in the development of networked and concurrent object-oriented middleware
systems such as Acceptor-Connector, Half-sync/Half-async and Interceptor.

Design patterns have the potential to mitigate the complexity of RTSJ to
a large degree. Consequently, some RTSJ design patterns have been proposed
in the literature [10,11,12]. Also, additional RTSJ design patterns have been
discovered in the course of developing RTZen, and the main goal of this section
is to describe them.

3.1 Summary of Existing RTSJ Patterns

The patterns below alleviate some of the most common difficulties that an RTSJ
programmer is likely to encounter. These difficulties mostly pertain to properly
handling scoped memory hierarchies and obeying memory access rules.

Immortal Singleton. The Immortal Singleton pattern [12] is a simple adap-
tation of the classical Singleton pattern [8]. It allows the creation of a unique
instance of a class from immortal memory, allowing it to be accessed from any
memory area.

Wedge Thread. A Wedge Thread [10,11] is used to prevent the premature
reclamation of a scoped memory area by controlling its lifetime. It consists of
a real-time thread that enters a scope and blocks, waiting for a signal to exit
the area. Wedge threads should be used sparingly since they occupy system
resources.
4 Table 1(b) assumes that real-time threads are used. Note that if no-heap real-time

threads are used, no references to the heap are permitted.
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Memory Pool. The Memory Pool pattern [10] is a set of instances of a given
class preallocated in a specific memory area (e.g., immortal memory). When an
instance of this class is requested, an object is taken from the pool and when
the instance is no longer needed, it is returned to the pool. Depending on the
implementation, the pool size may vary (e.g., if the pool is empty, a new instance
may be created and returned). In general, pooled objects must be mutable, so
they can be reconfigured and reused.

Encapsulated Method. The Encapsulated Method pattern [11] allows the al-
location of objects that represent intermediate results of an algorithm in a tem-
porary scope. After the final result is obtained, the temporary scope is discarded,
thereby avoiding unnecessary allocations in the original scope.

Multi-scoped Object. The Multi-scoped Object pattern allows transparent
access of an object regardless of the originating region of the callee. This pattern
ensures that the necessary steps are taken to guarantee that a given method is
called from the correct scope by performing the proper memory scope traversals
on behalf of the callee. Pizlo et al. [11] attempt to generalize the idea, but they
cover only the case of a multi-scoped object performing allocations in its own
scope from a child scope, among other simpler cases.

Memory Block. The Memory Block pattern [10] allows the pooling, via serial-
ization, of objects of varying sizes in a byte array block allocated from immortal
memory, thus allowing read and write access from any memory scope and any
thread type. When an object is discarded, the memory block makes those bytes
available for further use. This pattern can be used to communicate information
between scopes and threads otherwise forbidden by RTSJ access rules. However,
it has important disadvantages: i) it requires explicit memory management, and
ii) (de)serialization incurs additional overhead.

3.2 New RTSJ Patterns

In developing one of the largest and most complex open-source RTSJ software
projects, we have encountered more situations that warrant the use of four new
design patterns.

Separation of Creation and Initialization
Context. To use memory efficiently, RTSJ applications typically create some
pools of recyclable objects, preallocated in specific memory areas such as im-
mortal memory [10].

Problem. Creation of objects in another memory area requires the use of Java
reflection. But reflection can become memory inefficient when creating objects
with parameters because the parameters for the reflection call must be objects
themselves.

Solution. To solve this issue, the Separation of Creation and Initialization pat-
tern is used. It defines classes with the default constructor that creates unini-
tialized instances, as well as accessor methods that allow the modification of the
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object’s internal state (i.e., the configuration) just before they are going to be
used. RTZen uses this pattern to (de)marshal requests, as well as to create ORB
and POA façades in memory pools.

Cross-scope Invocation
Context. RTSJ programmers often encounter situations in which the calling
object needs to invoke an operation on an object allocated in an different scope,
such as in a sibling scope.

Problem. However, the memory access rules of RTSJ dictate that a given object
can be accessed directly only if it is residing in the calling object’s scope stack
(an ancestor scope). Therefore, for indirect access to occur, elaborate memory
traversal must be performed, in which the control thread must first jump to a
scope that is a common ancestor of both objects, then enter the callee object’s re-
gion (possibly traversing intermediate regions along the way), and finally invoke
the operation.

Solution. By using the ExecuteInRunnable class (see Fig. 2), the Cross-scope
Invocation pattern can simplify the indirect access process. If necessary, this
ExecuteInRunnable class can be used repeatedly to perform such a memory
traversal.

Figures 3 and 4 show the use of this pattern. Assume the simplest case in
which B and C are sibling scopes and A is their parent memory region, with
B being the current scope (Fig. 4). After being instantiated using the default
constructor or obtained from a pool, the ExecuteInRunnable object is initialized
within the sibling scope C and a Runnable object that contains the logic to be
executed in B. Once the executeInArea method of the MemoryArea class is
called by B, the ExecuteInRunnable object starts to run in A, making the
current thread enter C and finally execute the logic provided in the Runnable
object.

As is common in RTSJ programming, the allocation of arguments and re-
turned values of the requested method require special care to avoid illegal access

public class
ExecuteInRunnable

implements Runnable{
private Runnable r;
private MemoryArea a;
public void init(
Runnable r,MemoryArea a){
this.r = r; this.a = a;

}
public void run(){
try { a.enter(r);}
catch(Throwable ex){...}

}}

Fig. 2. The Execute-

InRunnable class

MemoryArea parent;
ScopedMemory sibling;
Runnable logic;
...
ExecuteInRunnable eir =

EIRPool.getEIR();
eir.init(logic, sibling);
...
try { parent.executeInArea(

eir);}
catch (Throwable t) { ... }
finally { EIRPool.freeEIR(eir

);}
...

Fig. 3. Using Execute-

InRunnable

Scope A Scope B

Parent Memory Area

executeInArea() enter()

Fig. 4. Invocation between
sibling scopes
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errors: arguments must be accessible from the callee scope, and returned values
must be accessible from the caller scope. This requirement may add significant
code complexity, but this complexity can be alleviated by the adoption of the
Memory Pool and Memory Block patterns [10].

Immortal Exception
Context. In RTSJ applications, exceptions may need to be thrown and handled
in different memory areas.

Problem. However, in RTSJ, the propagation of exceptions is restricted by
memory access rules. A given exception object must be handled in a memory
area that can legally reference that exception. If not, a ThrowBoundaryError is
returned and the original exception is lost.

RTSJ’s memory area rules introduce accidental complexity into exception
handling. The CORBA specification requires exceptions to be thrown in many
scope regions. However, some of those exception objects cannot be handled in
their local scopes, yet cannot be legally accessed from the region that can handle
them either. For example, an exception raised in the Thread Pool Scope may
need to be handled in ORB Memory Scope, but this access is prohibited by
RTSJ memory access rules.

Corsaro et al. [12] proposed that exceptions can be initially handled in the
local scope. With this approach, the notification of the exceptional condition
is encapsulated in a status variable or object and then transferred to an outer
scope, where the condition is finally handled, or propagated again to an outer
scope. Although effective, this approach has the following drawbacks: 1) the
code complexity is increased; 2) the exception propagation mechanism is tightly
coupled with the system’s memory structure; 3) the actual exceptional condition
may not be reported correctly because of an inappropriate mapping between the
exception type and the status variable or object (e.g., exceptions are commonly
handled using general types); and 4) system performance may be affected since
the exception must be re-instantiated several times as it is propagated from
scope to scope.

Solution. Consequently, we have designed the Immortal Exception pattern, an
efficient and flexible solution that allows exceptions to be handled independently
of the memory area in which they are thrown, without violating RTSJ referencing
rules. In this pattern, a factory class that creates exception objects of specified
types resides in immortal memory. The Immortal Singleton pattern [12] is used
to cache the exception objects in the factory so that they can be reused (i.e.,
re-thrown). Distinct families of exceptions, such as CORBA system exceptions
and application exceptions, are organized into different factories.

This pattern offers important advantages and a minor disadvantage. Since
all exceptions are allocated in immortal memory, they can be accessed from
anywhere, thereby avoiding the boundary problem. This design is particularly
useful when the system must handle a large number of exceptions, such as the 400
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instances of CORBA system exceptions handled by RTZen. A limitation of this
pattern, however, is that since exception objects are preallocated, no message
that explains the cause of the run-time exception can be associated with the
exception objects. However, good documentation can alleviate this
inconvenience.

Immortal Façade
Context. A consequence of RTSJ’s scoping rules is that large RTSJ applications,
such as RTZen, often have complex scoping structures.

Problem. Scoping structures introduce more development complexity to appli-
cation users. In general, when objects in different scopes interact using method
calls, the complexity of traversing the memory structure is exposed to both the
caller object and callee object. Furthermore, the caller is typically tightly cou-
pled with the system’s memory structure, in particular with the callee object’s
locality. This exposed complexity makes development and system maintenance
more difficult and therefore compromises one of RTZen’s design goals.

Solution. To hide complexity from the application developer, as well as to mini-
mize the dependencies of the caller object on the callee object’s memory locality,
we used the Immortal Façade pattern based on the Gang of Four’s Façade design
pattern [8]. The Immortal Façade consists of a façade class and an implemen-
tation class. The façade class acts as a surrogate for and typically implements
the same interface as the actual implementation class. It encapsulates the logic
that handles the cross-scope invocation. The façade objects need to be accessi-
ble from scopes of interest, so they are frequently allocated in immortal memory
and managed by a pool. The implementation class implements the actual busi-
ness logic behind the façade. An instance of it is allocated in a specific scoped
memory.

In RTZen, two key patterns, Cross-scope Invocation and Immortal Façade,
have been used to hide the complex scoping structures between callers and
callees. One example of the combined use of these two patterns is the ORB
façade. RTZen maintains a pool of ORB façade objects in immortal memory.
These façades do not implement any business logic. All the logic is contained in
the ORB implementation object hosted in the ORB scope. Since the ORB façade
is in immortal memory, the user can access it with ease and make invocations
on it. The Cross-scope Invocation pattern is used when the invocation thread
needs to laterally traverse scoped regions.

4 Architecture

This section explains the rationale behind the design of RTZen. First, we outline
the goals for RTZen and the CORBA features influenced by the memory and
thread constructs of RTSJ. Next, we describe the design of RTZen, emphasizing
its scoped memory structure and illustrating the processing of an invocation
on a remote object. Finally, we present an overview of RTZen’s customization
features.
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4.1 RTZen Design Goals

The design of RTZen has been driven by the following requirements.

– Predictability. Real-time middleware must provide a high degree of pre-
dictability. As a result, a Real-Time CORBA implementation requires elim-
inating priority inversions and bounding the size of critical sections.

– Specification Compliance. An ORB must be compliant to the CORBA
specification to ensure application portability across ORB implementations.
However, proprietary features and optimizations should still be available if
they prove to be advantageous in certain cases.

– Performance. Even though real-time applications tend to favor predictabil-
ity over performance, it is the goal of RTZen not to compromise on this re-
quirement. RTZen aims to provide both a predictable and high performance
CORBA implementation.

– Minimize User Complexity. One of the key aspects of middleware is that
it offloads the complexities of distributed programming from the application
developer to the middleware developer. In the case of RTSJ middleware,
complexities related to distributed programming brought on by the addition
of memory and thread constructs are offloaded as well.

– Efficient Use of Memory. RTSJ memory constructs must be used effi-
ciently. Allocations must be made in the context of memory scopes or man-
aged carefully in pools or caches located in immortal memory. Memory leaks
must be completely avoided to ensure continuous system operation. If pos-
sible, use of heap memory should be avoided to ensure that the garbage
collector always remains idle.

– Customizability. Finally, middleware should be customizable and support
minimization of footprint for embedded applications while maintaining all
the advantages of using middleware.

Our earlier work with ZEN [13] focused on each of these goals except for the
efficient use of memory, as RTSJ implementations have only recently become
available. Maturing RTSJ implementations, such as jRate [14], have provided the
real-time JVM layer necessary to ensure predictability and make the memory
model of RTZen possible.

4.2 Mapping Real-Time CORBA to RTSJ

Primary features of RTZen are heavily influenced by the constraints imposed by
the added memory and thread constructs of RTSJ. To understand the architec-
ture of RTZen we must first examine them.

The feature that influences the architecture of RTZen the most is the CORBA
requirement that an application developer must be able to control the lifetimes
of various components, including ORB instances, POA instances, and CORBA
objects. As a result of this requirement, each of these components is mapped onto
a scoped memory region (Section 4.3). Furthermore, the CORBA specification
defines the API that must be exposed to application programmers. Since RTZen
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will use scoped memory regions, the traversal of its internal scoped memory
structure must not be exposed to the user.

The final issue is the selection of priorities of RTSJ threads. Recall that RTSJ
introduces two new types of threads: RealtimeThread (RTT) and
NoHeapRealtimeThread (NHRTT). The RTSJ platform was designed under the
assumption that any NHRTT will possess a higher priority than any RTT, so
that NHRTTs will never block for garbage collection [15]. If the application
developer chooses to use both RTTs (to access heap memory) and NHRTTs,
the priority mappings can ensure that NHRTTs are always mapped to higher
priorities than are RTTs.

4.3 RTZen Design

To meet all of the goals and successfully implement the Real-Time CORBA
specification, RTZen was designed with a unique memory hierarchy (Fig. 5).
The main purpose of this hierarchy is to enable objects to be independently
allocated and freed to follow the Real-Time CORBA specification. As a side
effect, this design also allows for pluggable and customizable architecture that
does not use the heap.

The idea of lifetime – the length of time for which an object is valid – is central
to understand the rationale behind the design of RTZen. CORBA exposes to the
application the ability to both create and destroy various CORBA components
(e.g., ORBs and POAs). RTZen enables this by assigning memory scopes to these
components. When the user creates one of these components, the associated
memory scope is created, along with a wedge thread if required. Recall that
wedge threads occupy system resources; therefore they are only used in scopes
where there is not already an active thread keeping that scope alive. When the
component is destroyed, the associated memory scope is freed by signaling all
active threads in that region to terminate (including wedge threads).

RTZen is organized as a scoped hierarchy: Fig. 5 shows the memory layout of
the RTZen components. Each component with a defined lifetime is allocated in its
own scope and maintains its state within the scope. Moreover, some components
have child scopes for dependent components with smaller lifetimes, thus creating
a tree-like scoped memory structure.

In RTZen the application initially starts in immortal memory. The first ap-
plication scope region is above the initial immortal region and holds references
to the ORB façade and POA façade objects which are allocated from immortal
memory and cached. The ORB and POA façades internally hold a reference to
the ORB and POA scoped memory region respectively, not to the corresponding
implementation object itself. In both cases the implementation object is the por-
tal of the scope. Under the ORB scope, there are various other scoped regions
for transport, acceptor, POAs, thread pools, and temporary request processing.
Each region has at least one thread object inside to keep the region alive. Wedge
threads keep the ORB and POA regions alive, whereas threads in the other
regions perform an active role for request processing.
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Fig. 5. Scoped Memory Structure of RTZen

The scoped memory structure combined with object-oriented concepts like
inheritance and polymorphism enables the development of customizable and
adaptable systems [16,13]. Each component can inherit its interface from a base
class and implement different features. And since each component is maintained
in an individual scoped region, it can be easily plugged in and out of the run-
time memory structure of the program. RTZen’s protocol and transportation
framework is built using this technique. Thus transports and protocols can be
configured, added, and removed in a pluggable manner without affecting the
other components of the ORB.

This scoped hierarchy also allows RTZen to avoid any heap allocation. How-
ever, since RTSJ scoped regions are not garbage collected, RTSJ developers have
to be very careful about allocating and maintaining references to objects in these
scoped regions. In RTZen, this issue has been resolved using memory pools and
the immortal singleton pattern. Memory pools are used for any object that stores
state and is simultaneously accessed by multiple request threads, while an im-
mortal singleton is maintained for those objects which require only a global state
and are accessed in a synchronous manner.

On the other hand, the scoped hierarchy introduces two accidental complexi-
ties into the design of RTZen. The first one is exception handling. Exceptions in
RTSJ are not propagated beyond the scope in which they were thrown. However,
the CORBA specification requires that the ORB throw exception in many loca-
tions. To solve this issue, RTZen uses a combination of local exception handling
and the Immortal Exception pattern (Section 3). The second issue that may oc-
cur is creation of objects and references across scopes. RTSJ does allow creation of
objects across scopes using reflection. However, if the constructor requires any ar-
guments, then reflection causes wasteful allocation of memory for the arguments.
To solve this issue, RTZen separates the creation and initialization of objects.
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While allowing for more efficient memory usage and customizability, the
scoped hierarchy described above potentially increases the complexity perceived
by application developers – since it requires traversing the application and ORB
internal scoped hierarchy to make invocations – if not for the use of two key pat-
terns: cross-scope invocation and immortal façade (Section 3.2). One example of
the combined use of these two patterns is the ORB façade. RTZen maintains a
pool of ORB façade objects in immortal memory. These façades do not imple-
ment any business logic. All the logic is contained in the ORB implementation
object hosted in the ORB scope. Since the ORB façade is in immortal memory,
the user can access it with ease and make invocations on it. The cross-scope
invocation pattern is used if this invocation’s thread needs to laterally traverse
scoped regions.

Along with using RTSJ scoped memory to enhance predictability, RTZen
also ensures that priorities are maintained and respected throughout the ORB.
To achieve this, RTZen is implemented with an endpoint-per-priority paradigm:
for every distinct priority level, RTZen maintains a separate endpoint [17]. Each
endpoint executes at the highest priority of requests that it may process. This
ensures that i) high priority requests are not queued behind low priority requests,
and ii) incoming requests are guaranteed that the thread reading the request data
from the socket will run at an equal or higher priority.

RTZen also includes many of the performance and predictability enhancing
techniques pioneered in ZEN [18,19,20] and TAO [21,22,23,24]. For example,
RTZen’s thread pool implements the Half-Sync/Half-Async pattern [9] to min-
imize complexity and allow high throughput, and the POA uses active-demux
tables to allow O(1) demultiplexing of server-side objects.

4.4 Sample Invocation Using RTZen

This section traces through an invocation on the client and server side to illus-
trate the traversing of the scoped memory structure of RTZen during a remote
method call. We assume that priorities are propagated with each request from
the client to the server and that the server is using a thread-pool with lanes.

The server object is created on the remote end with the appropriate policies,
and the corresponding Interoperable Object Reference (IOR) is generated. The
IOR informs the client about the remote object’s location and some supported
policies. When the server object is registered on the server side, RTZen creates
a separate endpoint for each supported request priority. This allows requests of
varying priorities to be handled independently of each other. This information
is also propagated to the client in the IOR.

After obtaining the IOR (e.g., from a Naming Service), the client application
reads it and uses the client-side ORB to create a stub of the remote object.
The stub acts as a placeholder for the remote object: local invocations made
on the stub are translated to remote invocations on the server object by the
ORB. RTZen creates the stub objects in the application scope so that the client
application may invoke requests on them directly without having to traverse any
scopes.
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The invocation starts when the client application sets the priority of the re-
quest and invokes a method on the stub. Based on the priority, the stub locates
the appropriate endpoint on the remote ORB to contact, sends the request mes-
sage and then waits for the return value. Within the ORB, this translates to
using the Cross-Scope Invocation pattern to jump to the ORB scope and then
to the transport scope. At this point, the message is sent and the active thread
jumps back to the ORB scope and then enters to a temporary scope where it
waits for the reply.

After the request message is received by the server transport, the transport
thread reads the request header to locate the POA that the remote object is
registered with. Then the transport thread uses cross-scope invocation to jump
from the transport scope to the POA scope where it locates the reference to the
target remote object. At this point, the transport thread jumps to the thread
pool region and locates a thread which supports the priority of the request. The
request is passed to a thread from the thread pool, and the transport thread re-
turns to its initial scope (i.e., the transport scope) and listens for more incoming
requests (Half-Sync/Half-Async pattern [9]). The thread-pool thread now pro-
cessing the request uses cross-scope invocation to jump to a temporary memory
scope where the request is processed. At this point, the invocation is made on
the actual remote object and once the invocation is complete, the thread jumps
to the transport thread and sends back the reply message.

Finally, on the client side, the client transport thread receives the reply mes-
sage and jumps to the temporary scope where the thread that made the request
is waiting. The client transport thread hands the reply back to the waiting thread
which exits back to the client scope and returns from the invocation on the stub.

4.5 Customization Features

Over and above the Real-Time CORBA specification, RTZen also implements
some additional features which allow for greater customizability. First, RTZen
allows the server-side object to be hosted on thread pools which can be based on
either RTTs or NHRTTs. This feature allows the application developer to choose
the tradeoff between being able to use the heap or having a more predictable
environment.

Second, RTZen includes the implementation of a pluggable transport and pro-
tocol framework [25,13] that allows the application developer to plug in custom
transport layers or protocols to the ORB. This is specially useful in embedded
environments where standard TCP/GIOP functionality may be unnecessary or
wasteful. Currently, RTZen includes a very compact version of GIOP with re-
duced functionality as well as a pluggable serial transport that enables the use
of the serial port for CORBA invocations.

Third, RTZen also includes a set of Mock RTSJ classes5 which enable it to
run on standard (non-RTSJ) Java VMs. This feature also allows Java developers
to use a standard Java VM to prototype RTSJ applications.
5 Currently, the Mock RTSJ classes expose a reduced set of the RTSJ API and do not

perform allocation of access checks.
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Finally, we have also developed ZEN-kit [26], a user-friendly graphical tool
for customizing RTZen. ZEN-kit implements a customization strategy based on
conditional compilation that takes advantage of the RTZen’s modular architec-
ture. Using this tool, developers can selectively include Core and Real-Time
CORBA features into the ORB in order to meet specific requirements of DRE
applications, in particular those related to memory footprint.

5 Empirical Results

5.1 Testing Environment

All experiments were run on 865 MHz Pentium III (Coppermine, 256KB Cache)
processors with 512MB PC133 ECC SDRAM, for both server side and client
side, connected via 10 Mbps Ethernet on a closed subnet. The operating system
was TimeSys Linux GPL 4.1 based on the Linux kernel 2.4.21, which supports
the Native POSIX Thread Library (NPTL) [27]. The non-real-time Java Virtual
Machine (JVM) used for comparison was the Sun JDK 1.4 JVM. The real-time
Java platform was jRate [14], a real-time Java ahead-of-time compiler.

5.2 Performance Measurements

For all tests, measurements were based on steady state observations, where the
system is run until the transitory effects of cold starts are eliminated before
collecting the measured observations.
Measuring typical performance. We used the median as a measure of typical
performance because, as so often is true in real-time systems, distributions were
typically highly skewed toward the minimum observation, with a large spike
near the typical observation, and with a long, low-probability tail toward the
maximum.
Measuring worst-case performance. We used the maximum as an estimate of a
system’s “worst case.” The worst case is an important measurement for real-
time systems because real-time systems must be designed with the assumption
that the system will always deliver the worst possible performance, even though
designing to that assumption is wasteful since typical times are usually near the
best case [15].

For these experiments, the observed maximum in a sample size of 10,000
observations was used to estimate the worst case for each message size. A sample
size at least this large was necessary to observe a reasonable estimate for the
maximum latency because the maximum values tended to be extremely low-
probability events. The range of the observations (maximum − minimum), or
jitter was also used as another measure of a system’s predictability.

5.3 Typical Performance: Comparison of RTZen on jRate; TAO,
JacORB on Sun JVM; and RTZen on Sun JVM

The test case used here has a single thread running on the client side, sending
variable-size octet sequences to the server side. The size ranged from 32 bytes
to 1024 bytes.
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Fig. 6. Typical Performance: Comparison of RTZen on jRate; TAO, JacORB on Sun
JVM; and RTZen on Sun JVM

Comparison of RTZen on Sun JVM to JacORB on Sun JVM. Java developers
in non-real-time domains can afford to be careless about memory management
because of the existence of the garbage collector. The process of memory house-
keeping — allocating memory and cleaning it after it is used — creates overhead
that can slow an application substantially. RTSJ developers, on the other hand,
do not have the luxury of depending on a garbage collector for memory reuse,
and must instead be more heedful of memory usage. Section 4 described the
careful memory management design in RTZen. Along with the obvious effect
of improved predictability, yet another consequence of careful memory manage-
ment is improved performance. This would be shown by the fact that the typical
performance of RTZen is better than JacORB’s.

To measure this performance improvement, we compared RTZen with
JacORB [6], a widely used Java-based ORB. Both ORBs were tested on the
standard Sun non-real-time JVM detailed above. In this case, RTZen used its
Mock RTSJ classes (Section 4.5), so all scopes and immortal memory regions
were therefore simulated as heap memory, and all allocations in those regions
were subject to garbage collection.

The performance of JacORB was measured using the four types of garbage
collectors (default, throughput, concurrent low pause, and incremental) sup-
ported by the JVM [28]. JacORB obtained its highest throughput with the
throughput garbage collector, shown in Fig. 6. Note that, in the same conditions,
RTZen significantly outperforms JacORB. Thus, the test shows the performance
improvement gained from the extensive memory reuse (memory pools) and other
performance enhancing techniques in RTZen (Section 4.3).

Comparison of RTZen on Sun JVM and RTZen on jRate. Figure 6 shows that
RTZen on jRate performs about 30% slower than RTZen on Sun JVM. On the Sun
JVM, RTZen uses the heap instead of the scoped memory and immortal memory
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regions; thus it does not incur any RTSJ scoped region traversal or access/alloca-
tion check penalties. In addition, jRate is not an optimizing compiler, so it gener-
ates unoptimized code; jRate also uses an open-source implementation of the Java
API libraries which may not have been optimized. This measurement provides an
approximate idea of the overhead introduced by RTSJ over normal Java.

Comparison of RTZen on jRate and TAO. We used TAO as our baseline mea-
surements for RTZen performance. TAO was written in C/C++ and thus pro-
vides a good approximation of the highest performance possible by a Real-Time
CORBA ORB. Figure 6 shows that RTZen is slower than TAO; however, con-
sidering the overhead of RTSJ and Java VMs discussed above, RTZen compares
favorably to TAO.

5.4 Consistency: Comparison of RTZen on jRate to JacORB on
Sun JVM

We next compared the round-trip latency jitter of RTZen and JacORB. JacORB
was run on the Sun JVM with the default garbage collector, on which JacORB
obtained its narrowest jitter; RTZen was run on jRate. Although the platforms
were different, the measurements show the performance that can be expected
from these ORBs on the platforms for which they were designed. Since perfor-
mance was more or less equivalent across different message sizes, as shown in
Fig. 6, we compared the two ORBs for a message size of 128 bytes. Figure 7
shows the distribution of the round-trip latency values with the maximum and
minimum bound indicated, as well as the circle to represent the median value.
From Fig. 7 we can see RTZen is highly predictable compared to JacORB, with
the jitter value of 90 µs and 9770 µs respectively; RTZen’s maximum value is
close to its median. Also, RTZen has not achieved this predictability by unduly
degrading performance. Notably, RTZen’s typical performance and predictabil-
ity, as measured by the worst case observed, are within the range of time units
typically used for distributed real-time systems (10 ms) [15]. These jitter values
were expected and highlight the predictability gained by developing in RTSJ.

5.5 Typical Performance and Consistency: RTZen on jRate with
Variable Message Size

Figure 8 shows that RTZen is predictable across varying message sizes. RTZen
performs within round-trip latency jitter of around 200 µs in all cases, which is
better than the distributed real-time application requirements of 10 ms [15].

While satisfying the jitter requirement, RTZen’s typical performance stays
roughly constant even when message size increases. Throughput increases mini-
mally (about 20 µs) as the message size increases from 32 bytes to 1024 bytes.
Once the message size exceeds the allocated buffer limit (1024 bytes), the round-
trip latencies increase slightly (about 50 µs, about 8%). RTZen allows applica-
tion developers to configure the message buffer size to customize performance
and predictability as required.
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5.6 Consistency: Comparison of RTZen on jRate and TAO

To compare the round-trip latency jitter of RTZen and TAO, we set up a test
case running two client threads. The purpose of this experiment was to test the
jitter bounds of both ORBs and to show that RTZen can be set up with NHRTTs
that are not interrupted by the garbage collector. The first thread was run at the
highest CORBA priority, while the second thread was run at the lowest CORBA
priority. The low priority thread performed a long operation; the high priority
thread performed a short action which would interrupt the lower priority thread.
In RTZen, the high priority was a NHRTT, and the low priority thread was a
RTT. The RTT was also set up to allocate data on the heap to generate some
garbage data which would be reclaimed by the garbage collector.

Figure 9 shows a comparison of jitter measurements on the high priority
thread with RTZen and TAO running. Although RTZen is still slower than TAO,
the jitter of the high-priority task in RTZen is similar to TAO’s. These perfor-
mance and jitter measurements demonstrate RTZen’s ability to accommodate
real-time requirements.
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Fig. 9. Consistency: Comparison of RTZen on jRate and TAO
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6 Related Work

During the last decade, a considerable amount of standardization [29] and re-
search [30,31,32,33,34] work has been done on CORBA, and some results derived
from this work have been incorporated in various ORBs available today, both
commercial [35,36] and open-source [37,6,38].

Additionally, significant efforts have been carried out to enhance the pre-
dictability and performance of CORBA and make it suitable for DRE sys-
tems. The research community has determined the strengths and limitations of
CORBA as foundation for DRE systems [39,40], and based on them, researchers
have proposed i) software architecture designs [25,23], ii) scheduling approaches
and mechanisms [41,42,43], iii) techniques for improving quality of service [44,24],
iv) extensions for real-time network protocols [25,45,46,47], v) the adaptation of
CORBA services [48,49], vi) techniques for tailoring CORBA ORBs to compu-
tational platforms under stringent resource constraints [50,51,13], and vii) mod-
eling and verification methods [52]. Meanwhile, the Object Management Group
has produced the Real-Time CORBA specifications [53,17].

Several Real-Time CORBA implementations exist as of this writing. Per-
haps the most well-known is TAO [21,54], a popular open-source ORB compli-
ant with most of the features and services defined in CORBA 3.x [55]. Built
on top of TAO is CIAO [56], a CORBA Component Model (CCM) implemen-
tation for developing component-oriented DRE systems. ROFES [57] is a mini-
mal memory footprint prototype of Real-Time CORBA. It has been adapted to
work with several different hard real-time networks, including SCI [45], CAN,
ATM, and an Ethernet-based time-triggered protocol [46]. Commercial Real-
Time CORBA implementations are also available: OpenFusion e*ORB C Edi-
tion for Real-time [58] from PrismTech, ORBexpress RT [59] from Objective
Interface Systems, and VisiBroker-RT [60] from Borland Software Corporation.
Very recently, PrismTechnologies and Objective Interface Systems announced
Real-Time CORBA compliant ORBs for RTSJ: OpenFusion RT for Java and
ORBexpress RT for Java, respectively.

Java Remote Method Invocation (RMI) [61] is a mechanism for developing
object-oriented distributed systems in Java, and there is some progress adapting
RMI so that RTSJ supports timely invocation of remote objects [62]. Stan-
dard Java RMI has become more compatible with CORBA, in particular due to
RMI/IIOP, a form of RMI that uses IIOP as the underlying protocol. RMI/IIOP
holds promise to evolve into a bridge to RT-CORBA.

7 Conclusion

Memory management is a vital part of any RTSJ application. The RTZen ar-
chitecture addresses the memory allocation and scoping issues related to imple-
menting a Real-Time CORBA ORB using RTSJ. It provides a solid foundation
for further research into implementations of Real-Time CORBA services and
applications based on Java. Such research would incorporate RTSJ scheduling
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features into the RTZen scheduling service and provide support for custom con-
figuration of RTZen to minimize its memory footprint for smaller embedded
applications. Further research is also needed for adapting RTZen to Java virtual
machines that support a real-time garbage collector.

In its current state, however, RTZen fulfills the essential goals of real-time
distributed systems: predictability, specification compliance, high performance,
minimal user complexity, customizability, and efficient use of memory. Our work
proves that the RTSJ and Real-Time CORBA specifications can be integrated
into a single middleware architecture that combines the advantages of each.
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