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Abstract. In this paper we present an image segmentation technique
based on the concepts of circulation and topological control. Circulation
is a mathematical tool widely used for engineering problems, but still
little explored in the field of image processing. On the other hand, by
controlling the topology it is possible to dictate the number of regions
in the segmentation process. If we take very small regions as noise, the
mechanism can be seen as an efficient means for noise reduction. This
has motivated us to combine both mathematical tool in our algorithm.
As a result, we obtained an automatic segmentation algorithm that gen-
erates segmented regions bounded by simple closed curves; a desireable
characteristic in many applications.

1 Introduction

Segmentation plays an important role in image processing especially for edge
and object detection, coding and analysis. The spectrum of applications in which
segmentation is to be found is quite wide, ranging from medical imaging to robot
vision. Over the years a great number of approaches have been proposed, led by
the fact that the efficiency of segmentation methods are heavily domain-oriented:
the particularities of a problem found in a certain domain may demand the
development of techniques with characteristics that are not necessarily suitable
for other domains.

In this work we present a new segmentation technique that automatically de-
composes an image into a set of regions whose boundaries are Jordan’s curves,
while keeping the topology of these regions under control. Three-dimensional
reconstruction and object recognition (in which the topology of the object un-
der investigation is normally known and where simple closed curves - Jordans
curves - bounding the regions can be handled geometriacally) are examples of
applications where such feature is desirable.

Making use of a vector field derived from image data, our approach employs
the concept of circulation for such a field to decide which adjacent regions must
be glued, as expected in region growing methods. The gluing is conducted by a
mathematical framework capable of controlling the topology during the entire
process.
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A consequence of the methodology above is that the segmentation process
can be controlled by thresholding the circulation between adjacent regions as
well as by the topological properties of the objects in the image. This flexibility
makes our approach an interesting segmentation technique, which can be useful
in many applications.

This paper is organized as follows: section ] presents a brief description of
prior work in image segmentation. In section B] we review definitions and some
properties necessary to figure out the next sections. The theoretical background
for our algorithm is described in section @l The algorithm itself is presented in
section Bl Results are discussed in section [6l Section [7 contains our conclusions
and further work.

2 Related Work

The problem of image segmentation has received considerable attention in the
literature [I2/16]. Several methodologies have been proposed to tackle this prob-
lem, and the majority of them fall into two major approaches widely used in this
context: edge-based-like [8J7UT5] and region-based-like [3].

Region-based segmentation methods group pixels of similar properties (spe-
cific to a particular application domain), providing closed regions, which in turn
give the boundaries. In edge-based approaches, on the other hand, discontinuities
are extracted and the segmentation is guided by contours. The two approaches
are complementary, and one may be preferred to the other for some specific
applications or domain.

Compared to region-based segmentation techniques, however, edge detection
has some very appealing properties. Usually, the algorithms are based on deriv-
ative calculations and can be implemented as a simple control structure and
regular operators like convolution and, thus, lend themselves to an efficient im-
plementation on special purpose image processors and parallel computers. In
addition, edge detection techniques are able to localize surface boundaries more
precisely in general.

In this paper, we add three different “functional views” or “perspectives” in
which image processing techniques could be categorized, according to the role
played in the application domain. They are: degree of automation, topological
control and local/global information usage.

Under the first perspective, image processing techniques are classified accord-
ing to the degree of automation provided. For some domains, like medical imag-
ing, user-free segmentation techniques are highly desirable, as some modalities
(CT, MRI) produce multidimensional data sets and require the interpretation
of various slices. From this perspective, several semi-automatic and automatic
methods for segmenting images have been proposed. Semi-automatic methods
are those which require some degree of information, usually entered by the user
interactively, either in the beginning or during the process. Various classes of al-
gorithms fall into this category. One typical example are the deformable models
such as snakes [5], in which an initial snake (mostly outlined manually around
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an object of interest) is deformed under internal (bending) and external forces
(lines and edges, mainly), converging to a final form to reach an equilibrium
energy state.

On the other hand, automatic methods do not require user interaction. Some
edge- and region-based approaches can be categorized according to this func-
tionality. Signal Processing techniques (Fourier Transform [I], Wavelets [9]) and
some statistical methods - if one considers segmentation as a pixel classification
problem - such as Fuzzy [I3] and Clustering [4], can lead to segmentation with
no human intervention.

A second, but nonetheless important perspective, is the control over the
image topology while carrying out segmentation. Few methods are to be found
in the literature that are capable of, simultaneously, keeping track of topology
while splitting an image into regions of interest. In practical terms, by controlling
the topology one can dictate the number of nested segmented regions. This is a
very desirable feature for certain domains like segmentation of medical images in
which different anatomical structures are sought. For example, the segmentation
of an axial image of the brain with Euler number equal to 1 could produce
a single contour of the skull (assuming this is the most external anatomical
structure present). But, if Euler number is set to values smaller than 0, other
internal structures (along with the skull itself) would appear as the result of the
segmentation [11].

The third perspective takes into account the usage of either local or global
information to reach segmentation. Local information based algorithms use the
pixel neighborhood and pixel connectivity as input of the segmentation process.
Several families of algorithms belong to this class: classic edge detection[§], math-
ematical morphology [14], convolution-based techniques, etc. Algorithms based
on global information, on the other hand, consider information from an image
region or a larger set of pixels, as opposed to a pixel and its near neighbor-
hood. In general, approaches based on global information are used on region
segmentation, texture algorithms and active contours.

Both local and global information-based approaches hold important infor-
mation of the image nature and are functionally complementary. Techniques
that explore both local and global features may be very promissing. Methods
based on Markov Random Fields (MRF) [6l2], for example, fall in this category.
MRF models represent an image through local characteristics, by defining the
dependency of each pixel value with its neighbouring pixels. This dependency is
expressed in terms of a conditional probability defined globally.

To our knowledge there is no method that combines the three functional
view altogether. The majority of the techniques available concentrate on a single
view alone and some combines two of them. The method described in this paper
encompasses characteristics from the three functional views presented above. It is
an automatic approach with full control over topology and, moreover, combines
both local and global information.
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3 Basic Concepts

This section presents the basic definitions and notation that will be used through-
out this paper. The approach undertaken here has been restricted to the two—
dimensional Euclidean space R2.

A cell with center (a, b) and radius ¢ is the set of points (z,y) € R? satisfying
max(|z —al, |y — b|) < g, i.e., a square with side length 2¢ centered in (a,b). The
corners of a cell are called vertices of the cell and the four segments bounding
the cell are its edges.

A square grid G is a cell decomposition of R? where each point (a, b), where
a and b are integers, is the center of one single cell V' (grid cell) with radius equal
to L.
2A finite subset of grid cells R is a region of G if for any two cells V, and
Vp in R there is a sequence of grid cells (Vi,...,V,) in R such that V, = V4,
Vo = Vi, and V; N V41 contains a common edge of V; and V1. From this we
can see that each edge in R is contained in either one or two cells of R, which
are called boundary edges and interior edges, respectively. Note from the
definion above that each region is a 4-connected set of cells.

Two regions R and S are called adjacent regions if RN S = o, where o is
a set of boundary edges.

Let v = (e1,...,e,) be a sequence of distinct boundary edges of a region
R such that e; and e;11 (enr1 = €1), 2 = 1,...,n, have a vertex in common.
v is said to be a external boundary curve of R if « encloses R and as one
“walked” from edge e; to e;y1, the cells (or cell) in R containing e; and e;11
are always located on the left of these edges. If 7y is enclosed by R and the cells
containing its edges are always to the right of the edges, then + is called a hole
of R. With the definitions above we stipulate a counter-clock-wise orientation
for the boundary of the regions in G, which is essential for the Green’s theorem
described in next section. The union of the external boundary curve with the
holes of R is called the boundary curve of R, denoted By(R).

Let U be a subset of G such that the center (a,bd) of each cell in U satisfies
1<a<Nand1<b< M.An N x M digital image, denoted I, is a pair (U, I),
where I : U — R™ is a function that associates each grid cell in &/ with a positive
value. Note that in our context a digital image can be seen as a set of cells with
scalars associated with them.

Let nc(R) and nh(R) be the number of connected components and holes of
a region R C G, respectively. The Euler characteristic of R can be defined by

X(R) = ne(R) — nh(R). (1)

It is worth mentioning that the Euler characterisctic is usually defined either
in terms of the number of vertices, edges, and faces or as a difference between
the number of connected components and the number of holes in an object. As
will be shown in the next section, this last definition is more appropriate in the
context of this work.
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4 Circulation and Topological Control

In this section we describe the mathematical framework that is the background
of our segmentation algorithm. Such a framework is based on two main concepts,
namely: circulation through boundary curves and topological control during the
gluing process. These concepts are detailed in the following subsections.

4.1 Circulation Through Boundary Curves

Let R be a region in a digital image I = (U, I), i.e., each cell in R is associated
with a positive scalar, and E the set of the edges in R. Let Fr : E — R? a
map that relates each edge e € E to a two-dimensional vector Fr(e) = (p,q),
where p : Ng, — R and ¢ : Ng, — R are real functions from a neighborhood
NEg, of e, in R, to R. Notice that Fg is a vector field defined in R. It is worth
mentioning that the vector Fr(e) will depend on the arrangement of the cells in
the neighborhood of e as well as the escalar values of these cells.

Proposition[Il below states an important result that is essential for our region-
based segmentation algorithm.

Proposition 1. If Fr : E — R? is constant, i.e., p = ¢1 and ¢ = ca, for all

edge in R then
%FR ds=0

Ba(R)

Proof. The proof follows from Green’s theorem, as

]{Fds—// apdd

By R)
and 8‘1 =0, 8” = 0 for all edges in R. O

Proposition [I] deserves some comments. Although Green’s theorem is usually
defined in the context of continuous vector fields, there are different versions of
such a theorem for the discrete case (see [I8]). With some manipulation, the
proof of Proposition [1l can similarlly be carried out with a discrete version of
Green’s theorem.

Let’s investigate more carefully the relation § Frds = f f g’; dzdy,

Ba(R)
given by Green’s theorem in the proof of Proposition[Il The term ag 8 on the
right double integral represents the z component of the rotational vector of F and
it measures the circulation of Fr in each point of the domain. The important
fact is that circulation can be seen as a high-pass filter when Fg is properly
defined, as illustrated in figure [l Figure [[b) shows the circulation of figure [Ih)
for FR = (p, q) defined as P = 03I7J + 025([14_13 + Ii—lj) + 0~1(Iij—1 + Iij+1)7
q = 031” + 0.25([@;1 + Iij+1) + 0.1(Ii+1j + Iiflj) (We are supposing that R
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Fig. 1. Circulation as a high-pass filter

is the whole image). Notice from figure[Ib) that the high-frequence areas of the
image in figure[Th) could be well detected by measuring the circulation of F.
Hence, in low-frequence areas, the integral [[ gz — gg dzdy will assume values
R

close to zero, the same happening with ¢ Frds. Thus, by analyzing this last
Ba(R)
integral we can have an indication whether the region R is crossing or not a
high-frequence area. This is an essencial matter in image segmentation. Regions
where the integral ¢ Fr ds is equal to zero are named homogeneous regions.
Ba(R)

Notice that regions where Fr is constant are always homogeneous. This fact will
be important in the development of the segmentation algorithm presented in the
next section.

Let R and S be two adjacent regions in a digital image I = (U,I) and
o = RN S be the intersection curve between R and S. In order to analyze the
circulation in o we need to define the vector field in the edges of o. A natural
way to do this is define F, = (p,q) so that the components p and ¢, for each
edge e € o, are real functions from a neighborhood of e in RU S.

Next proposition, which is a consequence of the discussion above, tell us how
to glue homogeneous regions while keeping the homogeneity.

Proposition 2. Let R and S be adjacent homogeneous regions and F, = (p,q)
the vector field defined in 0 = RN.S as discussed above. If gg — gg =0, for each
edge in o, then RU S is also homogeneous.

4.2 Topological Control

In this subsection we shall investigate how to characterize the topology of the
union of two adjacent regions. More specifically, we are interested in identifying
the Euler characteristic of RUS where R and S are two adjacent regions whose
topologies are given by y(R) and x(.5), respectively.

In section 2l we defined the Euler characteristic of a region R in terms of its
number of connected components and holes, i.e., x(R) = nc(R) — nh(R). As in
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our context regions are always constituted by single connected component, if we
characterize the number of holes in R U S, we shall identify its topology.

Before presenting such a characterization, let us understand the topological
behavior of curves generated by intersecting two adjacent regions. If R and S are
two adjacent regions then either S is inside R (or vice-versa) or R and S are side
by side, as shown in figure 2l In the former, the intersection curve consists in a
simple closed curve, as illustrated in figure[Zh). Curves generated by intersecting
side by side adjacent regions can be formed by a set of disjoint segments. For
example, in figure Bb), the intersection between the adjacent regions gives rise
to a curve with two connected components.

L

a) b)

Fig. 2. Intersection of adjacent regions generating: a) a simple closed curve, b) a set
of curve segments

Hence, supposing that o = RN S is the intersection curve between R and .S,
we can also compute the Euler characteristic of o as x (o) = nc(RNS)—nh(RNS),
where nc(R N S) and nh(R N S) are the number of connected components (or
segments) and holes in R N S, respectively. Notice that nh(R N S) can only
assume value 1 if S is inside R (or R is inside S). Otherwise, nh(RNS) becomes
0. Furthermore, if nh(RN S) =1 then ne(RNS) = 1.

Next proposition allows us to quantify, in terms of x(c¢), the number of new
holes created when two adjacent regions are unified. We denote this number of
new holes by nhpew (R U S), i.e., nhpew(RUS) = nh(RUS) — nh(R) — nh(S).

Proposition 3. Let R and S be two adjacent regions and ¢ = RN S their
intersection curve. The number nhpew (R U S) of new holes generated by gluing
R and S is:

Nhpew(RUS) = x(0) — 1

Proof. We know that
Nhpew(RUS) = nh(RUS) — nh(R) — nh(S) (2)

Additionally, we have that x(RUS) = x(R) + x(S) — x(0), which from equation
[ becomes

nh(RUS) =nc(RUS) —ne(R) + nh(R) — ne(S) +nh(S) + x(o)
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Substituting equation above in ([2) and remembering that nc(RUS) = nc(R) =
nc(S) = 1 we conclude the proposition. O

In the next section we show how the mathematical framework presented
above can be handled in order to suit image segmentation effectively.

5 Algorithm

The segmentation algorithm proposed in this work can be divided in three parts,
namely: vector field definition, initialization, and region growing. The following
subsections are devoted to detailing each of these parts.

5.1 Vector Field Definition

The vector field plays an essential part in our algorithm, as it dictates the behav-
ior and the quality of the segmentation process. Notice that different vector fields
can produce distinct results. In our implementation the vector field is defined
from weighted mean values in the neighborhood of each edge. More specifically,
let R be a region in a N x M digital image I = (U4, I) and E the edges of R. We
define the vector field Fr = (p, q) as follows:

o= g 3 eIV 3

VieENR,

ae)= o 3 diI(v) (4)

ViENR,

where ¢; and d; are constants satisfying ¢;,d; > 0, Vi and C = Z ¢, D =
NRe

Z d;. It is important to note that C and D depend on the number of cell in

NRe

Ng.. The values of ¢; and d; are composed by applying a mask to each edge

e. Figure Bh) and Bb) shows the masks for horizontal and vertical edges, which

define the values for ¢; and d;, respectively.

If e is either a boundary edge or an edge close to the boundary of R, the
values of ¢; and d; are specified by intersecting the mask with R. Figure [ shows
two examples of such an intersection. Notice that the normalization factors C
and D are computed as a sum of the mask values in the intersection.

5.2 Initialization

The initialization step aims at starting the segmentation process with a set of
regions satisfying proposition [I], i.e., Fg must be constant in each edge of the
inicial regions, implying that the line integral of Fgr on the boundary curve of
each region R is equal to zero.
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Fig. 4. Examples of the intersection between the mask (applyed in the bold edges) and
a region R (gray cells)

An easy way to create these initial regions while ensuring proposition [l is
to make use of the grid cell comprising the whole image as the initial regions.
Moreover, since each grid cell of the image is associated with a single scalar,
the vector field Fr is constant, thus ensuring proposition [l The main reason
for restraining Fr to be a constant in each initial region is that this property
guarantees the homogeneity, i.e., such regions are not crossing a high-frequence
area.

After initializing the regions, we compute and store, in a priority queue, the
values (and edges) of gg - g]y’ evaluated on the boundary edges. The priority
queue stores the elements in increasing order and it is used in the growing process
to decide which regions must be merged, as discussed in next subsection.

Fig. 5. Least square approximation takes into account the values of p and ¢ in the
marked boundary edges
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Before presenting the growing process, it is important to discuss how to
estimate the derivatives gi and g].vj . In our implementation we are making use
of least square interpolation to compute second order polynomials from which
the derivatives are computed. The least square approximation generates a second
order polynomial for each component p and ¢ of the vector field in each boundary
edge e, taking into account the values of p and ¢ from the edges of the cells
adjacent to e. Figure [ illustrates which are the the values of p and ¢ involved
in the calculation of the polynomials in an edge e.

5.3 Region Growing

The region growing process makes use of the values stored in the priority queue
to decide which regions must be glued. The regions adjacent to an edge extracted
from the priority queue are merged and the boundary curve of the new region is
updated. In order to continue with the growing process it is necessary to compute
the circulation on the new boundary curve.

Inspired by proposition[2] we estimate the circulation in each new component
of the boundary curve by computing the scalar field line integral

dq Op
1ol ol 6

B4 (RNS)

where R and S are regions that become adjacent after gluing. The computed
value is also inserted into the priority queue. For example, suppose that R; and
Rs are the regions selected to be merged, as shown in figure Bh). After gluing
R; and Rs, the new boundary curve component (highlighted as bold in figure
[6b)) is updated and the scalar field line integral (&) is computed on it, and the
computed value is stored into the priority queue. Therefore, the region growing
process aims at merging the regions in an order that preserves homogeneity.

a) b)

Fig. 6. Keeping the homogeneity in the growing process

The region growing process will have control over the region’s topology if
proposition B is employed, as it allows us to know if new holes are been created
during the gluing process. Hence, it is possible to specify, for example, a maximal
number of holes in each region. It is also possible to control the size of the holes
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in a straightforward way. In fact, it is well known that Green’s theorem allows
us to compute the area of a region through the line integral of the vector field
given by F' = (—y, ), or similiarly, by computing the summation

Z,Uz i+1 z z+1 (6)

where vF and v’; are the components = and y of the vertices v¥ of a poligonal
curve (boundary curve).

As a result, we can estimate the areas of each new hole created by the gluing
operation, discarding the ones whose areas are below a desired value. Notice that
this procedure can be employed as an alternative tool to noise reduction.

In our implementation we employ two different stopping criteria for the grow-
ing region process. The first one ends the process by thresholding the values of
the line integral (B). That is, when the priority queue returns a value higher than
a threshold, the region growing process stops.

The second stopping criterion takes into account the number of detected
regions. In this case the region growing process continues until a desired number
of regions is obtained. In our implementation, this criterion does not consider
the background of the image as a valid region.

6 Results

In this section we present some results obtained from the framework shown
above. The axial MRI image of the brain shown in figure [7 has been used to
illustrate our algorithm.

Fig. 7. Axial MRI image used in the segmentation

As mentioned in the previous section, our algorithm considers two different
stopping criteria: the line integral thresholding (Eq.[H]) and topological properties
thresholding. Figure [§ shows the boundary curve of the regions detected by
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thresholding line integral (B). In this case, the resulting segmentation contains
400 regions approximately and some of them can be accounted on noise. Such
noisy regions are not easily removed, since finding an appropriate threshold value
to remove them may be a difficult task.

Fig. 8. Boundary curves of the regions dected by thresholding the line integral (&)

The difficulty in removing noisy regions can be overcome by topological
thresholding. Some examples are shown in figure Figure [0k) shows the
resulting boundary curve when the topological threshold is set to a single region
without holes (we are not taken into account the background region). Note that
the curve that bounds the head is well detected and the small regions, which are
caracterized as holes, are eliminated altogether. Figure [I0b) presents the result-
ing regions (boundary curves) when the topological threshold is set to a single
component with a single hole. Figure [[0k) shows the resulting regions obtained
by setting the number of components to one, the number of holes inside this
component to one, and the number of holes within the hole equal two. As the
holes are indexed during the growing process, it is straightforward to select some
of them in accordance with a desired criterion. In our implementation the holes
are chosen from the area, i.e., the holes with the largest areas are selected.

Fig. 9. Segmented image by zero-crossing of the LoG with ¢ = 1.5
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Figure [ depicts an edge image obtained by the classical zero-crossing of the
Laplacian of the Gaussian (LoG) (with ¢ = 1.5). Although this segmentation
looks similar to that generated by the proposed method, it does not deal with
topological control and, therefore, can not guarantee that edges are closed curves,
which define a single region. The topological control provided by the proposed
method turns out to be an efficient mechanism to keep noise under control,
since the number of regions in the resulting image is defined by a set of parame-
ters when the segmentation begins. This behavior can be observed in figures

and [I0
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Fig. 10. Regions (and their boundary curves) dected by thresholding the topological
properties as: a) a single component; b) a single component with a hole; ¢) a single
component with a hole which has other two holes

To process the image in figure[7] the algorithm took 1.07s for the initialization
step and 1.77s for the region growing (with topological control) stage on a P4
2.4 GHz and 512 MB RAM. This is a satisfactory result when compared with
other automatic segmentation techniques described in the literature.

An important property of the algorithm, which can be observed in figure [I0,
is that the boundary curves produced are Jordan’s curves, which are adequate
for 3D reconstruction from contours as discussed in [I0]. Such feature is not
commonly found in other segmentation algorithms.
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7 Conclusions and Future Work

This paper presented a new framework to image segmentation that makes use
of circulation and topological control during the region growing process. From
such a framework we derived an automatic segmentation algorithm capable of
detecting regions while keeping their boundaries as Jordan’s curves; a desirable
property in many applications. The built-in topological control of the algorithm
has proven to be an efficient mechanism to reduce noise and enhance the quality
of the segmented regions.

The framework is also flexible, as different vector fields (from which the cir-
culation is computed) may produce different segmentations. In fact, this subject
is currently under investigation as we are now working on defining a vector field
to segment images with texture. We are also investigating how the topological
control can be used as a matching creterion. By imposing a certain number of
holes in a segmentation process for a single image, we can detect a set of other
images with similar characteristis, that is, those which holes are similar in shape
or area, for example.
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