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Abstract. This paper proposes a novel multiclass support vector ma-
chine with Huffman tree architecture to quicken decision-making speed
in pattern recognition. Huffman tree is an optimal binary tree, so the
introduced architecture can minimize the number of support vector ma-
chines for binary decisions. Performances of the introduced approach are
compared with those of the existing 6 multiclass classification methods
using U.S. Postal Service Database and an application example of radar
emitter signal recognition. The 6 methods includes one-against-one, one-
against-all, bottom-up binary tree, two types of binary trees and directed
acyclic graph. Experimental results show that the proposed approach is
superior to the 6 methods in recognition speed greatly instead of decreas-
ing classification performance.

1 Introduction

Support vector machine (SVM), developed principally by Vapnik [1], provides a
novel means of classification using the principles of structure risk minimization.
The subject of SVM covers emerging techniques that have been proven to be
successful in many traditional neural network-dominated applications [2]. SVM
is primarily designed for binary classification problems. In real world, there are
many multiclass classification problems. So how to extend effectively it to mul-
ticlass classification is still an ongoing research issue [3]. The popular methods
are that multiclass classification problems are decomposed into many binary-
class problems and these binary-class SVMs are incorporated in a certain way
[4]. Some experimental results [3-9] verify that the combination of several bi-
nary SVMs is a valid and practical way for solving muticlass classification prob-
lems. Currently, there are mainly 6 methods for combining binary-class SVMs.
They are respectively one-against-all (OAA) [3,5], one-against-one (OAO) [3,6],
directed acyclic graph (DAG) [3,7], bottom-up binary tree (BUBT) [8,9], two
types of binary trees labeled as BT1 and BT2 [10]. For an N -class classification
problem, these methods need test at least log 2N binary SVMs for classification
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decision. To decrease the number of binary SVMs needed in testing procedure, a
novel multiclass SVM with Huffman tree architecture (HTA) is proposed in this
paper. The outstanding characteristic of the introduced method lies in faster
recognition speed than OAA, OAO, DAG, BUBT, BT1 and BT2 instead of
lowering classification capability.

2 Support Vector Machines

For many practical problems, including pattern matching and classification, func-
tion approximation, optimization, data clustering and forecasting, SVMs have
drawn much attention and been applied successfully in recent years [1-9]. An
interesting property of SVM is that it is an approximate implementation of the
structure risk minimization induction principle that aims at minimizing a bound
on the generation error of a model, rather than minimizing the mean square er-
ror over the data set [2]. SVM is considered as a good learning method that can
overcome the internal drawbacks of neural network [1].

The main idea of SVM classification is to construct a hyperplane to separate
the two classes (labelled y ∈ {−1, +1}) [1]. Let the decision function be

f(x) = sign(w · x + b) (1)

where w is weighting vector, and b is bias and x is sample vector. The following
optimization problem is given to maximize the margin [1], i.e. to minimize the
following function

φ(w, ξ) =
1
2
||w||2 + C

l∑

i=1

ξi (2)

Subject to
yi((w · xi) + b) ≥ 1 − ξi

ξi ≥ 0 i = 1, 2, · · · , l (3)

In (4) and (5), yi is the label of the ith sample vector xi; ξi and l are the
ith relax variable of the ith sample vector and the dimension of sample vector,
respectively [1].

The dual optimization problem of the above optimization problem is repre-
sented as

W (α) =
l∑

i=1

αi − 1
2

l∑

i,j=1

yiyjαiαjK(xi,xj) (4)

Subject to

0 ≤ αi ≤ C,

l∑

i=1

αiyi, i = 1, 2, · · · , l (5)

where K(xi,xj) is a kernel function. xi and xj are the ith sample vector and
the jth sample vector, respectively. α is a coefficient vector,α = [α1, α2, · · · , αl]
[1]. The decision function of the dual optimization problem becomes the form:
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f(x) = sign[(
l∑

i=1

αiyiK(xi,xj) + b)] (6)

3 SVM with HTA

On the basis of fast-speed and powerful-function computers, various methods for
signal recognition, character recognition and image recognition were presented
[11]. However, comparing with human brain, the methods are obviously too slow.
One of the most important reasons is that man identifies objects or patterns in
an unequal probability way and most of the existing pattern recognition methods
are based on a consideration: all patterns appear in an equal probability. How-
ever, in some applications such as radar emitter signal recognition, handwritten
digit recognition in postal service and letter recognition in natural text, some
patterns may come up frequently, while the others emerge rarely. If all patterns
are recognized equiprobably, the efficiency may be very low. On the contrary, if
the patterns with high probability are classified preferentially, the speed of rec-
ognizing all patterns can be quickened greatly. According to this idea, Huffman
tree architecture is introduced to combine multiple binary-SVMs for multiclass
classification problems.

An example of HTA with 8 nodes is given in Fig.1. HTA solves an N -class
pattern recognition problem with a hierarchical binary tree, of which each node
makes binary decision with an SVM. Using different probabilities of occurrence of
different patterns, Huffman tree can be constructed using the following algorithm
[12,13].

Step 1. According to N probability values {p1, p2, · · · , pN} given, a set F =
{T1, T2, · · · , TN} of N binary trees is constructed. For every binary tree Ti (i =
1, 2, · · · , N) , there is only one root node with probability value pi and its both
left-child tree and right-child tree are empty.

Step 2. Two trees in which root nodes have the minimal probability values
in F are chosen as left and right child trees to construct a new binary tree. The
probability value of root node in the new tree is summation of the probability
values of root nodes of its left and right child trees.

Step 3. In step 2, the two trees chosen in F are deleted and the new binary
tree constructed is added to the set F .

Step 4. Step 2 and step 3 are repeated till only one tree left in F . The final
tree is Huffman tree.

Huffman tree is an optimal binary tree [13], which can minimize the number
of SVMs for binary decisions. Once the probabilities of all nodes are given, the
structure of HTA is determinate and unique. The SVM-HTA classifier takes
advantage of both the efficient computation of HTA and the high classification
accuracy of SVMs.

To bring into comparison, the performances of the 7 methods including
OAA, OAO, DAG, BUBT, BT1, BT2 and HTA are analyzed in the following
description.
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Fig. 1. Huffman tree architecture with 8 nodes

OAA is perhaps the simplest scheme for combining binary SVMs to solve mul-
ticlass problems. In OAA, every class need train to distinguish the rest classes,
so there are N binary SVMs to be trained for an N -class classification problem,
while in testing procedure, Max Wins strategy is usually used to classify a new
example and consequently N binary decision functions are required to solve. The
Max Wins strategy is

f(x) = arg max
i

(wi · x + bi) (7)

Another scheme called pairwise is used in OAO, DAG and BUBT. In this ap-
proach, each binary SVM separates a pair of classes and N(N − 1)/2 binary
SVMs in total are trained when there are N classes. In decision phase, there
is much difference among the three methods. OAO uses traditional Max Wins
strategy and need test N(N − 1)/2 SVMs. DAG employs directed acyclic graph
in which every class is eliminated step by step from the list composed of all
classes. Thus, for a problem with N classes, N − 1 binary SVMs will be tested
in order to drive an answer. In BUBT, a bottom-up binary tree architecture is
introduced to incorporate N(N − 1)/2 binary SVMs trained and a tournament
strategy is used to classify a new example. Similar to DAG, BUBT also need
test (N − 1) binary SVMs for the classification decision. BT1 and BT2 use a
hierarchical scheme that a multiclass classification problem is decomposed into
a series of binary classification sub-problems. The difference between BT1 and
BT2 lies in different decomposition method. BT1 separates one class from the
rest classes with an SVM. In every step of decomposition, there is at least one
terminal node between two siblings. Thus, for an N -class problem, BT1 need
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train (N − 1) binary SVMs and (N2 + N − 2)/(2N) binary decision functions
are required to solve in testing procedure. While BT2 usually decomposes an
N -class problem in a peer-to-peer way into (N − 1) binary classification sub-
problems. So there are (N − 1) binary SVMs to train in training procedure and
only log 2N binary SVMs need test in decision phase.

According to the above analysis, OAA, OAO, DAG, BUBT, BT1 and BT2
need train at least (N −1) SVMs and require to test at least log 2N SVMs for an
N -class classification problem. While in HTA illustrated in Fig.1, only (N − 1)
binary SVMs need be trained for N -class problem. Because Huffman tree is the
optimal binary tree that has the minimal average depth, HTA need test much
smaller than log 2N SVMs for the classification decision. For example, in Fig.1,
if the probability values of node 1 to node 8 are 0.135, 0.048, 0.058, 0.39, 0.039,
0.23, 0.067 and 0.033, respectively, HTA need test 2537 SVMs and BT2 need
test 3000 SVMs when the number of testing samples is 1000. So among the 7
multiclass SVM classifiers, HTA need the minimal SVMs both in training and
in testing procedures.

4 Simulations

4.1 Performance Test

HTA is evaluated on the normalized handwritten digit data set, automatically
scanned from envelops by U.S. Postal Service (USPS) [7,14,15]. The USPS
database contains zipcode samples from actual mails. This database is com-
posed of separate training and testing sets. The USPS digit data consists of 10
classes (the integer 0 through 9), whose inputs are pixels of a scaled image. The
numbers 0 through 9 have 1194, 1005, 731, 658, 652, 556, 664, 645, 542, 644
training samples respectively and have 359, 264, 198, 166, 200, 160, 170, 147,
166, 177 testing samples respectively. Thus, there are totally 7291 samples in
training set and 2007 samples in the testing set. Every sample is made up of 256
features. The difference of the number of the 10 integers extracted from actual
mails verifies that the 10 integers occur in an unequal probability. To be con-
venient for testing, the occurring probabilities of the 10 classes 0 through 9 in
testing set are used to construct a Huffman tree. The probabilities of 0 through
9 are respectively 0.1789, 0.1315, 0.0987, 0.0827, 0.0997, 0.0797, 0.0847, 0.0732,
0.0827 and 0.0882. The constructed Huffman tree architecture is illustrated in
Fig.2.

Seven approaches OAA, OAO, DAG, BUBT, BT1, BT2 and HTA are used
to make comparison experiments. The computational experiments are done on
a Pentium IV-2.0 with 512 MB RAM using MATLAB implementation by Steve
Gunn. Gaussian kernel function K(xi,xj)

K(xi,xj) = e
|xi−xj |2

2σ (8)

and the same parameter C and σ are used in 7 SVM classifiers. We use similar
stop-ping criteria that the KKT violation is less than 10−3. For each class, 504
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Fig. 2. Huffman tree architecture for digit recognition

samples selected randomly from its training set are used to train the SVM classi-
fiers. The criterions for evaluating the performances of the 7 classifiers are their
error rate and recognition efficiency including training time and testing time. All
samples in the testing set are used to test the performances of the 7 classifiers.
Statistical results of many experiments using the 7 classifiers respectively are
given in Table 1.

Table 1 shows the results of experiments. HTA, BT1, BT2 and OAA consume
much shorter training time than OAO, DAG and BUBT. Because HTA, BT1
and BT2 need train the same number of binary SVMs, the training time of
the three methods has small difference. Similarly, the three methods including
OAA, BUBT and DAG consume nearly same training time because they train
the same number of SVMs. In the 7 methods, the testing time of HTA is the
shortest. In Table 1, HTA consumes 445.44 seconds of testing time, which is a
litter shorter than that of BT1 and BT2 and much shorter than that of OAA,
OAO, DAG and BUBT. From the recognition error rate, HTA is much superior
to OAA and OAO; HTA is a little superior to BUBT and BT1; HTA is not

Table 1. Experimental results of digit recognition

Methods Training Time (sec.) Testing time (sec.) Error rate (%)

HTA 8499.21 445.44 3.42
OAA 9470.81 1391.57 95.59
OAO 44249.48 6068.75 89.57
DAG 43153.70 1217.69 2.32
BUBT 44938.34 1255.61 3.52
BT1 8397.35 641.14 4.83
BT2 8125.30 463.57 3.40

SVM SVM

SVM0

SVM

1

SVM 

SVM

5 7 83

SVM 

96

SVMSVM 

42



30 G. Zhang

inferior to DAG and BT2. In a word, experimental results indicate that HTA
has high recognition efficiency and good classification capability.

4.2 Application

In this subsection, an application example of radar emitter signal recognition is
applied to make the comparison experiments of OAA, OAO, DAG, BUBT, BT1,
BT2 and HTA. In the example, there are 8 modulation radar emitter signals (la-
beled as RES1, RES2, RES3, RES4, RES5, RES6, RES7, RES8, respectively).
Some features of these radar emitter signals have been extracted in our prior
work [21,22]. Two features obtained by the feature selection method [23] are
used to recognize the 8 modulation radar emitter signals. In experiments, ev-
ery radar emitter signal uses 360 training samples and thereby there are 2880
training samples in total. The training samples are employed to draw a feature
distribution graph shown in Fig.3 to illustrate distribution of radar emitter signal
features in feature space.

According to experts’ experiences, the occurrence probabilities of the 8 mod-
ulation signals can be approximately considered as 0.135, 0.048, 0.058, 0.39,
0.039, 0.23, 0.067 and 0.033, respectively. Thus, the Huffman tree architecture
constructed using 8 radar emitter signals is shown in Fig.1. In testing phase,
there are 8000 testing samples in total and the number of testing samples of 8
radar emitter signals is computed in the proportion of 13.5%, 4.8%, 5.8%, 39%,
3.9%, 23%, 6.7% and 3.3%, respectively. Both training samples and testing sam-
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Table 2. Experimental results of RES recognition

Methods Training Time (sec.) Testing time (sec.) Error rate (%)

HTA 1917.70 85.55 12.28
OAA 2154.95 255.08 45.64
OAO 8007.84 815.58 84.83
DAG 8151.94 199.75 13.40
BUBT 7737.49 238.01 12.25
BT1 1951.73 134.31 26.85
BT2 1910.94 112.59 22.00

ples are extracted from radar emitter signals when signal-to-noise (SNR) varies
from 5 dB to 20 dB. Experimental results of OAA, OAO, DAG, BUBT, BT1,
BT2 and HTA are given in Table 2.

Figure 3 shows that there are some overlaps between RES 7 and RES 8 and
there is much confusion among RES 1, RES 2 and RES 3. This brings many
difficulties to correct recognition. Also, the features of 8 radar emitter signals
have good clustering. Table 2 presents the results of comparing 7 multiclass
SVM classifiers. Although HTA is appreciably inferior to BUBT in recognition
error rate and it needs a little more training time than BT2, HTA has higher
recognition efficiency than OAA, OAO, BUBT, DAG and BT1. Especially, HTA
is the best among the 7 methods for the testing time and it achieves lower
recognition error rate than OAA, OAO, DAG, BT1 and BT2.

The experimental results of digit recognition and radar emitter signal recog-
nition are consistent with theoretical analysis in Section 3. In pattern recognition
including radar emitter signal recognition and USPS digit recognition, training
is off-line operation, while testing is usually on-line operation. So the testing
speed of classifiers is more important, especially in radar emitter signal recogni-
tion. Experimental results verify that HTA is the fastest among the 7 multiclass
SVM classifiers instead of decreasing classification performance. This benefit is
especially useful when the number of classes is very large.

5 Concluding Remarks

In the methods for combining multiple binary SVMs to solve multiclass classi-
fication problems, binary tree architecture is a good one because it needs small
binary SVMs both in training phase and in testing phase. However, how to
choose the root nodes in each layer is a very important issue in engineering
applications when binary tree architecture is used to combine multiple binary-
support-vector-machines. From the view of intelligent aspects of human brain
in pattern recognition, this paper introduces Huffman tree architecture to de-
sign a multiclass classifier. For a real problem, the Huffman tree architecture
is unique. The outstanding characteristic of the introduced architecture lies in
faster recognition speed than the existing 6 methods. Though, this paper dis-
cusses the technique for quickening recognition speed only from the architecture
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for combining support vector machines. In fact, the recognition speed has also
relation to the number of support vectors obtained in training phase of support
vector machines. This problem will be further discussed in later paper.
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