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Abstract. In this work, the problem of estimating high density regions
from univariate or multivariate data samples is studied. To be more pre-
cise, we estimate minimum volume sets whose probability is specified in
advance. This problem arises in outlier detection and cluster analysis,
and is strongly related to One-Class Support Vector Machines (SVM).
In this paper we propose a new simpler method to solve this problem.
We show its properties and introduce a new class of kernels, relating the
proposed method to One-Class SVMs.

1 Introduction

The task of estimating high density regions from data samples arises explicitly
in a number of works involving interesting problems such as outlier detection or
cluster analysis (see for instance [5,7] and references herein). One-Class Support
Vector Machines (SVM) [10,12] are designed to solve this problem with tractable
computational complexity. We refer to [10] and references therein for a complete
description of the problem and its ramifications.

In the recent years papers showing failures in the estimations found by One-
Class SVM have appeared [4,6]. In this work, a new algorithm to estimate high
density regions from data samples is presented. The algorithm relaxes the density
estimation problem in the following sense: instead of trying to estimate the
density function at each data point, an easier to calculate data-based measure
is introduced in order to establish a density ranking among the sample points.

The concrete problem to solve is the estimation of minimum volume sets of
the form Sα(f) = {x|f(x) ≥ α}, such that P (Sα(f)) = ν, where f is the density
function and 0 < ν < 1. Throughout the paper, sufficient regularity conditions
on f are assumed.

The rest of the paper is organized as follows. Section 2 introduces the method
and its properties. In Section 3, a kernel formulation of the proposed algorithm
is shown. Section 4 shows the numerical advantages of the new method over
One-Class SVM. Section 5 concludes.
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2 The Naive One-Class Algorithm

There are data analysis problems where the knowledge of an accurate estimator
of the density function f(x) is sufficient to solve them, for instance, mode esti-
mation [2], or the present task of estimating Sα(f). However, density estimation
is far from trivial [11,10]. The next definition is introduced to relax the density
estimation problem: the task of estimating the density function at each data
point is replaced by a simpler measure that asymptotically preserves the order
induced by f .

Definition 1. Neighbourhood Measures. Consider a random variable X
with density function f(x) defined on IRd. Let Sn denote the set of random
independent identically distributed (iid) samples of size n (drawn from f). The
elements of Sn take the form sn = (x1, · · · , xn), where xi ∈ IRd. Let M : IRd ×
Sn −→ IR be a real-valued function defined for all n ∈ IN. (a) If f(x) < f(y)
implies lim

n→∞ P (M(x, sn) > M(y, sn)) = 1, then M is a sparsity measure.

(b) If f(x) < f(y) implies lim
n→∞P (M(x, sn) < M(y, sn)) = 1, then M is a

concentration measure.

Example 1. M(x, sn) ∝ 1/f̂(x, sn), where f̂ can be any consistent non-
parametric density estimator, is a sparsity measure; while M(x, sn) ∝ f̂(x, sn) is
a concentration measure. A commonly used estimator is the kernel density one
f̂(x, sn) = 1

nhd

∑n
i=1 K(‖x−xi‖

h ).

Example 2. Consider the distance from a point x to its kth-nearest neighbour in
sn, x(k): M(x, sn) = dk(x, sn) = d(x, x(k)): it is a sparsity measure. Note that dk

is neither a density estimator nor is it one-to-one related to a density estimator.
Thus, the definition of ‘sparsity measure’ is not trivial. Another valid choice is
given by the average distance over all the k nearest neighbours: M(x, sn) = d̄k =
1
k

∑k
j=1 dj = 1

k

∑k
j=1 d(x, x(j)). Extensions to other centrality measures, such as

trimmed-means are straightforward.

Our goal is to obtain some decision function h(x) which solves the problem stated
in the introduction, that is, h(x) = +1 if x ∈ Sα(f) and h(x) = −1 otherwise.
We will show how to use sparsity measures to build h(x).

Consider a sample sn = {x1, . . . , xn}. Consider the function g(x)=M(xi, sn),
where M is a sparsity measure. For the sake of simplicity we assume g(xi) �=
g(xj) if i �= j (the complementary event has zero probability).

To solve the One-Class problem, the following algorithm is introduced:

Naive One-Class Algorithm

(1) Choose a constant ν ∈ [0, 1].
(2) Consider the order induced in sn by the sparsity measure g(x), that is,

g(x{1}) ≤ g(x{2}) ≤ . . . ≤ g(x{n}), where x{i} denotes the ith-sample.
(3) Consider the value ρ∗ = g(x{νn}) if νn ∈ IN, ρ∗ = g(x{[νn]+1}) otherwise,

where [x] stands for the largest integer not greater than x.
(4) Define h(x) = sign(ρ∗ − g(x))
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Note that the choice of the function g(x) is not involved in the algorithm; it has
to be determined in advance. The role of ρ∗ and ν will become clear with the next
proposition, which shows that the decision function h(x) = sign(ρ∗ − g(x)) will
be non-negative for at least a proportion equal to ν of the training sn sample.
Following [10], this result is called ν-property.

Proposition 1. ν-property. The following two statements hold for the value
ρ∗:

1. 1
n

∑n
i=1 I(g(xi) < ρ) ≤ ν ≤ 1

n

∑n
i=1 I(g(xi) ≤ ρ), where I stands for the

indicator function and xi ∈ sn.
2. With probability 1, asymptotically, the preceding inequalities become equali-

ties.

Proof. 1. Regarding the right-hand side of the inequality, 1
n

∑n
i=1 I(g(xi) ≤

ρ) = νn
n = ν if νn ∈ IN and equals [νn]+1

n > ν if νn /∈ IN. For the left-hand side a
similar argument applies. 2. Regarding the right-hand side inequality, if νn ∈ IN
the result is immediate from the preceding argument. If νn /∈ IN, [νn]+1

n → ν as
n → ∞. Again, for the left-hand side a similar argument applies. �

Remark 1. If g(x) is chosen to be a concentration measure, then the decision
function has to be defined as h(x) = sign(g(x) − ρ∗).

Notice that in the naive algorithm ν represents the fraction of points inside
the support of the distribution if g(x) is a sparsity measure. If a concentration
measure is used, ν represents the fraction of outlying points. The role of ρ∗

becomes now clear: it represents the decision value which, induced by the sparsity
measure, determines if a given point belongs to the support of the distribution.
As the next theorem states an asymptotical result, we will denote every quantity
depending on the sample sn with the subscript n. Also we will suppose νn ∈ IN.
The theorem goes one step further from the ν-property, showing that, asymp-
totically, the naive One-Class algorithm finds the desired α-level sets. In order
to formulate the theorem, we need a measure to estimate the difference between
two sets. We will use the dµ-distance. Given two sets A and B

dµ(A, B) = µ(A∆B) ,

where µ is a measure on IRd, ∆ is the symmetric difference A∆B = (A ∩ Bc) ∪
(B ∩ Ac), and Ac denotes the complementary set of A.

Theorem 1. Consider a measure µ absolutely continuous with respect to the
Lebesgue measure. The set Rn = {x : hn(x) = sign(ρ∗n − gn(x)) ≥ 0} dµ-
converges to a region of the form Sα(f) = {x|f(x) ≥ α}, such that P (Sα(f)) = ν.
Therefore, the naive One-Class method estimates a density contour cluster Sα(f)
(which, in probability, includes the mode).

Proof. For space reasons, we omit some mechanical steps. Consider the set
Cν = {xν ∈ IRd : f(xν) = α}, where ν = P (Sα(f)). By Proposition 1, point
2, limn→∞ P (gn(x) < gn(x{νn})) = ν (fact 1). Besides, it is easy to prove that
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given C ⊂ Sf(y)(f) with µ(C) < ∞, then µ(x ∈ C : gn(x) < gn(y)) tends to
µ(C). Thus limn→∞ P (gn(x) < gn(xν)) = ν, ∀xν ∈ Cν (fact 2). From facts 1 and
2, and using standard arguments from probability theory, it follows that ∀ε > 0,
limn→∞ P (

∣
∣f(x{νn}) − f(xν)

∣
∣ > ε) = 0, that is, limn→∞ f(x{νn}) = f(xν) in

probability.
Now consider x ∈ Sα(f))∩Rc

n. From f(x) > f(xν) and Definition 1, it holds
that limn→∞ P (gn(x) < gn(xν )) = 1. Given that limn→∞ f(x{νn}) = f(xν) in
probability, it follows that limn→∞ P (gn(x) < gn(x{νn})) = 1, that is, P (hn(x) <
0) → 1. Therefore, µ (Sα(f)) ∩ Rc

n) → 0.
Let now x ∈ Rn ∩ Sα(f)c. From f(x) < f(xν), Definition 1 and

limn→∞ f(x{νn}) = f(xν) in probability, it holds that P (gn(x) ≥ gn(x{νn})) →
1, that is, P (hn(x) > 0) → 1. Thus µ (Rn ∩ Sα(f)c) → 0, which concludes
the proof. �

We provide an estimate of a region Sα(f) with the property P (Sα(f)) =
ν. Among regions S with the property P (S) = ν, the region Sα(f) will have
minimum volume as it has the form Sα(f) = {x|f(x) ≥ α}. Therefore we provide
an estimate that asymptotically, in probability, has minimum volume.

Finally, it is important to remark that the quality of the estimation pro-
cedure heavily depends on using a sparsity or a concentration measure (the
particular choice is not – asymptotically – relevant). If the measure used is nei-
ther a concentration nor a sparsity measure, there is no reason why the method
should work.

3 Kernel Formulation of the Naive Algorithm

In this section we will show the relation between the naive algorithm and One-
Class SVM. In order to do so we have to define a class of neighbourhood mea-
sures.

Definition2.PositiveandNegativeNeighbourhoodMeasures. MP (x, sn)
is said to be a positive sparsity (concentration) measure if MP (x, sn) is a
sparsity (concentration) measure and MP (x, sn) ≥ 0. MN(x, sn) is said to be a
negative sparsity (concentration) measure if −MN(x, sn) is a positive con-
centration (sparsity) measure.

Given that negative neighbourhood measures are in one-to-one correspondence
to positive neighbourhood measures, only positive neighbourhood measures need
to be considered. The following classes of kernels can be defined using positive
neighbourhood measures.

Definition 3. Neighbourhood Kernels. Consider the mapping φ : IRd →
IR+ defined by φ(x) = MP (x, sn), where MP (x, sn) is a positive neighbourhood
measure. The function K(x, y) = φ(x)φ(y) is called a neighbourhood kernel. If
MP (x, sn) is a positive sparsity (concentration) measure, K(x, y) is a sparsity
(concentration) kernel.
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Note that the set {φ(xi)} is trivially separable from the origin in the sense of
[10], since each φ(xi) ∈ IR+. Separability is guaranteed by Definition 2.

The strategy of One-Class support vector methods is to map the data points
into a feature space determined by a kernel function, and to separate them
from the origin with maximum margin (see [10] for details). In order to build a
separating hyperplane between the origin and the points {φ(xi)}, the quadratic
One-Class SVM method solves the following problem:

min
w,ρ,ξ

1
2
‖w‖2 − νnρ +

n∑

i=1

ξi

s.t. 〈w, φ(xi)〉 ≥ ρ − ξi ,
ξi ≥ 0, i = 1, . . . , n ,

(1)

where φ is the mapping defining the kernel function, ξi are slack variables, ν ∈
[0, 1] is an a priori fixed constant, and ρ is a decision variable which determines
if a given point belongs to the estimated high density region.

The next theorem illustrates the relation between our naive algorithm and
One-Class SVMs when neighbourhood kernels are used.

Theorem 2. Define the mapping φ(x) = MP (x, sn). The decision function
hV (x) = sign(ρ∗V − w∗φ(x)) obtained from the solution ρ∗V and w∗ to the One-
Class SVM problem (1) using the sparsity kernel K(x, y) = φ(x)φ(y) coincides
with the decision function h(x) obtained by the naive algorithm.

Proof. Consider the dual problem of (1):

max
α

−1
2

n∑

i=1

n∑

j=1

αiαjK(xi, xj)

s.t.
n∑

i=1

αi = νn ,

0 ≤ αi ≤ 1 , i = 1, . . . , n ,

(2)

where xi ∈ sn. For the sake of simplicity we assume φ(xi) �= φ(xj) if i �= j (the
complementary event has zero probability) and that νn ∈ IN (the proof for νn /∈
IN can be derived with similar arguments to those in the proof of Proposition
1). Consider the order induced in sn by the mapping φ(x) and denote x{i}
the ith-sample and α{i} the corresponding dual variable. Therefore φ(x{1}) ≤
φ(x{2}) ≤ . . . ≤ φ(x{n}). Since K(xi, xj) = φ(xi)φ(xj) and, by Definition 2,
φ(xi) ∈ IR+, the maximum of the objective function of problem (2) will be
attained for α{i} = 1, i ∈ {1, . . . , νn} and αj = 0 otherwise. At the solution, the
objective function takes the value − 1

2

∑νn
i=1

∑νn
j=1 K(x{i}, x{j}). By the weak

theorem of duality, the value of the objective function of problem (1) has to
be equal or greater than the value of the objective function of problem (2)
at the solution. Consider the solution w∗ =

∑νn
i=1 φ(x{i}), ρ∗V = w∗φ(x{νn}),

ξ{i} = w∗ [
φ(x{νn}) − φ(x{i})

]
for i ∈ {1, . . . , [νn]}. For the remaining indexes

ξj = 0.
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At this point the solution to problem (1) coincides with the solution to prob-
lem (2), that is, the duality gap is zero. The decision function takes the form
hV (x) = sign(w∗ [

φ(x{νn}) − φ(x)
]
) which coincides with the decision function

of the naive algorithm (the scalar w∗ > 0 does not affect the sign). So the
theorem holds. �

It remains open to show if the decision function obtained from One-Class
SVM algorithms within the framework in [10,8] can be stated in terms of positive
sparsity or concentration measures. The next remark provides the answer.

Remark 2. The exponential kernel Kc(x, y) = e−‖x−y‖2/c is neither a spar-
sity kernel nor a concentration kernel. For instance, consider a univariate bi-
modal density f with finite modes m1 and m2 such that f(m1) = f(m2).
Consider any positive sparsity measure MP (x, sn) and the induced mapping
φ(x) = MP (x, sn). As n → ∞, the sparsity kernel K(x, y) = φ(x)φ(y) would
attain its minimum at (m1, m2) (or at two points in the sample sn near to the
modes). On the other hand, as the exponential kernel Kc(x, y) depends exclu-
sively on the distance between x and y, any pair of points (a, b) whose distance is
larger than ‖m1−m2‖ will provide a value Kc(a, b) < Kc(m1, m2), which asymp-
totically can not happen for kernels induced by positive sparsity measures. In
this case, the neighbourhood kernel has four minima while the exponential ker-
nel has the whole diagonal as minima. The reasoning for concentration kernels is
analogous. A similar argument applies for polinomial kernels with even degrees
(odd degrees induce mapped data sets that are non separable from the origin,
which discards them).

Note that, while the naive algorithm works with every neighbourhood measure,
the separability condition of the mapped data is necessary when One-Class SVM
are being used, restricting the use of neighbourhood measures to positive or
negative ones. This restriction and the fact that our method provides a simpler
approach make the use of the naive algorithm advisable when neighbourhood
measures are being used.

4 Experiments

In this section we compare the performance of One-Class SVM and the naive
algorithm for a variety of artificial and real data sets. Systematic comparisons
of the two methods as data dimension increases are carried out. First of all we
describe the implementation details concerning both algorithms.

With regards to One-Class SVM we adopt the proposal in [10], that is, the
exponential kernel Kc(x, y) = e−‖x−y‖2/c is used. This is the only kernel used
for experimentation in [10], and it is also the only (non neighbourhood) kernel
for which a clear relation to density estimation has been demonstrated (see [6]).
To perform the experiments, a range of values for c has been chosen, following
the widely used rule c = hd (see [9,10]), where d is the data dimension and
h ∈ {0.1, 0.2, 0.5, 0.8, 1.0}.
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Concerning the naive algorithm, three different sparsity measures have been
considered:

– M1(x, sn) = dk = d(x, x(k)), the distance from a point x to its kth-nearest
neighbour x(k) in the sample sn. The only parameter in M1 is k, which takes
a finite number of values (in the set {1, · · · , n}). We have chosen k to cover a
representative range of values, namely, k will equal the 10%, 20%, 30%, 40%
and 50% sample proportions. Therefore we choose k as the closest integer to
hn, where n is the sample size and h ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

– M2(x, sn) =
1

∑n
i=1 exp

(
− ‖x−xi‖2

2σ

) , where σ ∈ IR+. The only parameter

in M2 is σ. We want σ to be related to the sample variability and, at the
same time, to scale well with respect to the data sample distances. We choose
σ = hs, where s = max d2

ij/ε, h ∈ {0.1, 0.2, 0.5, 0.8, 1.0}, d2
ij = ‖xi−xj‖2 and

ε is a small value which preserves scalability in M2. For all the experiments
we have chosen ε = 10−8.

– M3(x, sn) = log

(
1

∑n
i=1

1
‖x−xi‖p

)

, where p ∈ IR+. Parameter p in M3 is re-

lated to data dimension [3]. We choose p = hd, where d is the data dimension
and h ∈ {0.01, 0.02, 0.05, 0.08, 0.1}. In this case the values of h are smaller
for smoothing reasons (see [3] for details).

Measure M1 has been described in Example 2 in Section 2. Measures M2 and
M3 are of the type described in Examples 1 and 4 in the same section. M2 uses
as density estimator the Parzen window [11], while M3 is based on the Hilbert
kernel density estimator [3] and could take negative values. Note that Theorem
1 guarantees that asymptotically every sparsity measure (and in particular the
three chosen here) will lead to sets containing the true mode.

4.1 Artificial Data Sets

An Asymmetric Distribution. In the first experiment we have generated
2000 points from a gamma Γ (α, β) distribution, with α = 1.5 and β = 3. Figure 1
shows the histogram, the gamma density curve, the true mode (α − 1)/β as a
bold vertical line, the naive algorithm estimations with sparsity measure M1

(five upper lines) and the One-Class SVM (five lower lines) estimations of the
50% highest density region. The parameters have been chosen as described at the
beginning of Section 4, and lines are drawn for each method in increasing order in
the h parameter, starting from the bottom. Being our goal to detect the shortest
region of the form Sα(f) = {x : f(x) > α} (that must contain the mode), it is
apparent that the naive regions improve upon the One-Class SVM regions. All
the naive regions regions contain the true mode and are connected. All the One-
Class SVM regions are wider and show a strong bias towards less dense zones.
Furthermore, only in two cases the true mode is included in the estimated SVM
regions, but in these cases the intervals obtained are not simply connected. The
naive algorithm using measures M2 and M3 provide similar intervals to those
obtained using measure M1, and are not shown for space reasons.



200 A. Muñoz and J.M. Moguerza

Fig. 1. Gamma sample with 2000 points. The figure shows the histogram, the density
curve, a vertical line at the true mode, the naive estimations with sparsity measure M1

(five upper lines) and One-Class SVM (five lower lines) estimations of the 50% highest
density region.

Fig. 2. Mixture sample with 3000 points. The figure shows the histogram, the estimated
density curve, the naive estimations with sparsity measure M1 (five upper lines) and
One-Class SVM (five lower lines) estimations of the 50% highest density region.

A Mixture of Distributions. This second experiment considers a mixture of a
normal N(0, 1) and a uniform U(6, 9) distribution. Figure 2 shows the histogram,
the estimated density curve, the naive estimations with sparsity measure M1 (five
upper lines) and the One-Class SVM (five lower lines) estimations of the 50%
highest density region. Again, the parameters have been chosen as described at
the beginning of Section 4, and lines are drawn for each method in increasing
order in the h parameter, starting from the bottom. Once more, the naive method
using measures M2 and M3 provide similar intervals to those obtained using
measure M1, and are not shown for space reasons. Regarding the quality of the



A Naive Solution to the One-Class Problem 201

results, note that the 50% densest region corresponds to points from the normal
distribution. All the naive estimations (upper lines) match the correct region,
while the One-Class SVM (lower lines) spreads part of the points in the uniform
zone. However, all points in the uniform zone have lower density than those
found by the naive procedure.

Increasing the Data Dimension. In this experiment we want to evaluate
whether the performance of the Naive method and One-Class SVM algorithms
degrades as the data dimension increases. To this end, we have generated 20
data sets with increasing dimension from 2 to 200. Each data set contains 2000
points from a multivariate normal distribution N(0, Id), where Id is the identity
matrix in IRd. Detailed results are not shown for space reasons. We will only
show the conclusions. Since the data distribution is known, we can retrieve the
true outliers, that is, the true points outside the support corresponding to any
percentage specified in advance. For each dimension and each method, we have
determined, from the points retrieved as outliers, the proportion of true ones.

As the data dimension increases, the performance of One-Class SVM de-
grades: it tends to retrieve as outliers an increasing number of points. The best
results for One-Class SVM are obtained for the largest magnitudes of the param-
eter c (only when convergence for the optimization problem within was achieved).

Regarding the naive method, robustness with regard to the parameter choice
is observed. Dimension barely affects the performance of our method, and results
are consistently better than those obtained with One-Class SVM. For instance,
for a percentage of outliers equal to 1%, the best result for One-Class SVM is
15%, against 100% using our method (for all the sparsity measures considered).
For a percentage of outliers equal to 5%, the best result for One-Class SVM is
68%, against 99% using the naive method.

4.2 A Practical Example: Outlier Detection in Handwritten Digit
Recognition

The database used next contains nearly 4000 instances of handwritten digits
from Alpaydin and Kaynak [1]. Each digit is represented by a vector in IR64

constructed from a 32 × 32 bitmap image. The calligraphy of the digits in the
database seems to be easily perceivable, which is supported by the high suc-
cess rate of various classifiers. In particular, for each digit, nearest neighbour
classifiers accuracy is always over 97% [1].

In the present case there is a nice interpretation for points outside the sets
Sα(f) (the support of the data set, see Section 1). The outlying points should
correspond to ‘badly’-written characters. In order to check out this behaviour, 10
apparent outliers (shown in Figure 3) have been added to the database. We will
consider the whole database as a sample from a multivariate distribution, and we
will verify if the proposed algorithm is able to detect this outlying instances. Note
that there is an added difficulty in this case, namely, the underlying distribution
is multimodal in a high dimensional environment.

Figure 4 shows the outliers obtained by the naive algorithm when the support
for the 99.5% percentile is calculated. Using this support percentage exactly 20
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Fig. 3. Ten (apparent) outliers added to the original Alpaydin & Kaynak handwritten
digits database

Fig. 4. The outlying digits found by the naive algorithm, ordered left–right and up–
down using the sparsity measure M(x, sn) = d(x, x(k))

outliers are to be retrieved. We expect to detect the 10 outliers we have included,
and we are curious about the aspect of the 10 other most outlying digits in the
database. In Figure 4, the digits retrieved as outliers by the naive method using
the sparsity measure M1 are shown in decreasing order (left-right and up-down).
Here k = 1, using k = n4/(d+4), where d is the space dimension. This value is
known to be proportional to the (asymptotically) optimal value [11] for density
estimation tasks. Nine of the ten added outliers are detected as the most outlying
points. The remaining eleven outliers include the other added instance (similar
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to a ‘3’), and ten more figures whose calligraphy seems to be different from
representative digits within each class. Similar results are obtained for sparsity
measures M2 and M3.

Using a One-Class SVM with exponential kernel (trying a wide range of
values for the c parameter, including those proposed in [9,10]) none of the ten
added outliers was detected.

5 Conclusions

In this paper a new method to estimate minimum volume sets of the form
Sα(f) = {x|f(x) ≥ α}, has been proposed. Our proposal introduces the use
of neighbourhood measures. These measures asymptotically preserve the order
induced by the density function f . In this way we avoid the complexity of solving
a pure density estimation problem. Regarding computational results, the naive
method performs consistently better than One-Class SVM in all the tested prob-
lems (the ones shown here and many others omitted for space reasons). The
advantage that the naive method has over the One-Class SVM is due to Theo-
rem 1 which guarantees that it asymptotically finds the desired α-level sets. The
suboptimal performance of One-Class SVM arises from the fact that its decision
function is not based on sparsity or concentration measures and that there are
no results of the nature of Theorem 1 for One-Class SVM. In particular, we
have shown that the neither the exponential kernel nor polynomial kernels come
from neighbourhood measures (and therefore Theorem 1 does not hold for these
kernels).
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