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Abstract. Civil structures could undergo hysteresis cycles due to crack-
ing or yielding when subjected to severe earthquake motions or even high
wind. System identification techniques have been used in the past years
to assess civil structures under lateral loads. The present research makes
use of a polynomial artificial neural network to identify and predict, on-
line, the behavior of such nonlinear structures. Simulations are carried
out using the Loma Prieta and the Mexico City seismic records on two
hysteretic models. Afterwards, two real seismic records acquired on a
24-story concrete building in Mexico City are used to test the proposed
algorithm. Encouraging results are obtained: fast identification of the
weights and fair prediction of the output acceleration.

1 Introduction

Health monitoring of structures has been a focus of interest for researchers in
structural and control engineering for the past two decades. Civil structures,
such as buildings and bridges, are instrumented to acquire output acceleration,
velocity and displacement data due to lateral loads, which could be severe wind
or strong earthquake motions. The data is later analyzed to assess the lateral
resistant capacity of the structure and to check output maximums against those
allowed by construction codes. In some instances, wind or earthquake forces may
induce lateral loads to civil structures such that energy may dissipate through
hysteretic phenomena, a nonlinear time-variante behavior which reduces their
resistant capacity [5]. Many buildings have been instrumented around the world
in order to monitor their structural health. The identification of such nonlinear
systems is therefore an important task for engineers who work in areas affected
by these natural hazards, and thus, the subject of the present paper.
Forecasting time series has been solved with a broad range of algorithms such
as ARMAX [I], NARMAX [2], Fuzzy Logic [14], Neural Networks [3], etc. Some
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researchers have succesfully identified nonlinear structures with a wide variety
of proposed algorithms [4]. Some examples include: ERA-OKID, Subspace and
Least Squares algorithms to estimate linear parameters of structures [9]. An
Orthogonal NARMAX model is proposed in [6]. Sequential regression analysis,
Gauss Newton optimization and Least Squares with extended Kalman filter is
reviewed in [§]. Least Squares methods have also been used by [10], [13], and [16].

Although artificial neural networks have not been widely used in civil and
structural engineering, some researchers have succesfully applied them ([I1], [12],
and [7]). Nonetheless, the models and architectures of those networks seem quite
complex and computer time consuming.

The present research proposes the use of a polynomial artificial neural net-
work [3] to identify a nonlinear structural system with a fairly small amount of
samples for on-line training. One important issue to consider is the use of on-line
algorithms for closed-loop control applications or simulation and fault detection
analysis, that is the reason an on-line algorithm is proposed.

In the present research, the Loma Prieta (California, USA, 1989) and SCT
(Mexico City, Mexico, 1985) seismic records are used to test the proposed al-
gorithm on a hysteretic simulated shear building structure. A Bouc-Wen model
[15] is used to simulate a hysteretic nonlinear single degree of freedom structure
(SDOF). Simulation results show that the proposed network is able to identify
the nonlinear system and predict with good accuracy the acceleration output
with a fairly simple model. Later on, one actual seismic record, acquired on a
real 24-story concrete structure in Mexico City in 2002, is used to identify the
behavior of the building. The identified model is then used to predict the ac-
celeration motion of the same real building, subjected to another actual record
acquired ten months later, in 2003, and the results show that this simple model
predicts with very good accuracy the behavior of the system.

The proposed network model has two interesting features: (1) the driving
external forces are considered unknown and not needed, which for the case of
wind loading this model is applicable; and (2) this model does not need physical
structural parameters, which in turn is a nice advantage when an instrumentation
is set up in an unknown structural system. A long term aim of the present
research is to develop a technique that could be used in conjunction with fault
detection analysis, structural health monitoring, and structural control.

2 Polynomial Artificial Neural Network
The model of a polynomial artificial neural network (PANN) is shown in ().
ng = [(ﬁ(.’lka, x?,kH .. 7xni,k7 xl,k—ly x?,k—17 ey
Tnik—nis - Yh—1, Yk—2; - - - >ykfn2)]jz:::; (1)

where g, € R is the estimated time series, ¢(z,y) € R is a nonlinear function,
x; € X are the inputs for ¢ = 1,...,n;; and n; is the number of inputs. y,_; € Y
are the previous values of the output, for 5 = 1,...,n9; n; is the number of
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delays of the input, no is the number of delays on the output, X and Y are
compact subsets of . Simplifying the notation, it results into ().

Z = (xl,kn x27k7 sy xn1,k7 e Yk—1,Yk—2,- - -y yk—HQ);
Z:(Z17Z27Z37"'7zn»u); (2>
where n,, is the total number of elements in description z, and n, = n;+nin;+ns.

The nonlinear function ¢(z) € &, belongs to a family @, of polynomials that
can be represented as (3]

@P(Zlaz%' . '3Zn’u) = ((,ZS(Z) : ¢(Z) = (10(21,2’2, .. '3Zn’u) +(11(Zl,22, .. 'aznv)a
+ag(z1,22, .-y 2n,) + oo+ ap(21, 22, ., 20, ))- (3)

The subindex p is the maximum power of the polynomials expression and
ai(z1, 22, .., zn, ) are homogeneous polynomials of total degree i, for i = 0, ..., p.
Every homogeneous polynomial could be written as shown in (@)

ao(21,22, - - -5 Zn,) = Wo
a1(21,22, -+ 2n,) = W1,121 + W1,222 + .« .. + Wi n, Zn,
_ 2 2
az(z1,22,. .., 2n,) = W212] + W2 22122 + ... + W2 N, 25,
_ P p—1 D .
ap(Zth,...,va) = Wp,12] + Wp,22] zg—&—...—&—wp,szM, (4>

where w; ; is the associated weight of the network. The term wg corresponds to
the input bias of the network. The homogeneous polynomial a;(z) is equivalent
to weight the inputs. The polynomials az(z) to a,(z) represent the modulation
between the inputs and the power of each polynomial. IV; is the number of terms
of every polynomial with:

Ny—1MNy—81

N():l;le’I’LU;NQ ZZ N3_Z Zl

S1= =0 =1
Ny—1 My —83 Ny —82 Ny —S1
YooY Y Y (5)
sp—2=0 s9=0 s1=0 =1
~ ~ -
p—1

The dimension of Ng of each family &, could be computed by No = Y%_ N;.
The activation function is given by (&)

[B(2)]57 = $(2) Gmin < ¢< ) < Gmas - 6)
¢mm ¢( ) S ¢mm

The weights of the PANN could be found with a recursive Least Squares
algorithm during training. It is worth noting that in [3] the PANN is shown to
lead to better and faster results compared to a normal ANN. The architecture
of the PANN model is shown in fig. [l
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Fig. 1. PANN architecture

3 Simulations of Theoretical Models

The output acceleration, velocity and displacements of a one-story shear building
(SDOF) are only lateral motion of the mass. In the simulations, two theoretical
SDOF were introduced: (a) structure subjected to the Loma Prieta earthquake
with mass m =1 kg, damping ¢ =1.2566 kgf - s/cm, and stiffness k =157.9137
kgf/cm; and (b) structure subjected to the Mexico City earthquake with mass
m =1 kg, damping ¢ =0.3142 kg f-s/cm, and stiffness k =9.8696 kg f/cm. In both
cases the theoretical acceleration output, sampled at 0.02 sec., was contaminated
with 2% random noise, and the structure was subjected to smooth and compact
hysteresis for stability purposes. In this sense, for SDOF (b) the seismic record
had to be scaled to 30% amplitude.

A PANN with p =2, n; =n; =0, and no = 4 is used for training. Training
neural networks is usually based on two criteria: (1) minimizing the error, or
(2) by reaching a fixed number of iterations (epochs). Real-time techniques need
a different approach due to the fact that the learning process has to be done
on-line; thus, training criteria was done with the weight variance herein. One
conclusion drawn from the results is that at least two cycles of motion are needed
for training because the weight variance tends to zero after that time.

In our simulations, 100 samples (2 seconds) are required for training SDOF
(a), and 200 (4 seconds) for SDOF (b). Fig.[2lshows the training and prediction
of the hysteretic SDOF (a) in a three-second window.
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Fig. 3. Prediction of the intense part, Mexico City input

Training could identify a nonlinear model with very small hysteresis, and
when the hysteresis cycles become wider at the intense part of the excitation,
around 12 seconds of motion, the prediction looses some accuracy. Nonethe-
less, the proposed PANN is able to predict fairly well the acceleration output.
Increasing training time could increase accuracy because hysteretic cycles be-
come wider.

On the other hand, fig. Bl shows the prediction of the hysteretic SDOF (b) in
a ten-second window. It is worth noting that the PANN is able to identify very
well the nonlinear model, since a bit wider hysteresis occurs from the beginning,
and when the intense part takes place the prediction is still very good.
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4 Identification Using Real Data

In this section, the PANN is used to identify a model of a real instrumented
building. This structure is a 24-story concrete building located in Mexico City.
It is instrumented with accelerometer sensors located throughout the building,
and several earthquakes have been acquired since its activation. The building
has a period of around 3 seconds, thus, training was done with 6 seconds of the
output acceleration motion at the centroid of the roof. The seismic event of April
18, 2002, was used for training and prediction.
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Fig. 5. Prediction of the intese part, January 21 2003 record
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Fig. @ shows the prediction of the motion of the building. It is worth noting
that both lines seem overlapped due to the fact that the PANN is a very fine
tool to identify this structure. The proposed approach is so efficient that no
distinction between both lines could be observed.

After training, the weights of the network are kept unchanged to predict the
acceleration output for the seismic event of January 21, 2003. Fig. Bl shows the
prediction of the motion. Note again that both lines seem overlapped beause
the prediction error is very small. In this case, this coud mean that the building
has not suffered a noticeable change on its structural properties, since the model
still predicts accurately the motion, even after ten months between both seismic
events. Therefore, this technique could be used later as a tool for fault detection
analysis.

5 Conclusions

In the last two decades, several buildings have been instrumented in order to
monitor their structural health through the analysis of measured acceleration,
velocity and displacement records. The present research proposes the use of a
polynomial artificial neural network (PANN) to identify the nonlinear behavior
of a building structure, and to forecast the acceleration output. The PANN is
trained on-line with only the first two cycles of motion.

To test the effectiveness of the proposed algorithm, two theoretical simula-
tions were introduced. The hysteretic structures were subjected to the seismic
records of Loma Prieta (USA, 1989) and Mexico City (Mexico, 1985). The re-
sults show fast convergence speed of the weights, and good accuracy to forecast
the nonlinear output.

Later on, a model of a real instrumented building was identified with the
PANN. The real acquired seismic event of April 18, 2002, was used to train and
forecast the motion of the roof.

Finally, the real acquired seismic event of January 21, 2003, was used to
predict the motion of the roof using the model identified earlier. Very encourag-
ing results are derived from the analysis. In the long run, the present research
is aimed to develop a technique that could be used in conjunction with fault
detection analysis, structural health monitoring, and structural control.
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