
H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 229 – 237, 2005.
© IFIP International Federation for Information Processing 2005

A Parallel and Distributed Method for Computing High
Dimensional MOLAP*

Kongfa Hu1,2, Ling Chen1, Qi Gu1, Bin Li1, and Yisheng Dong2

1 Department of Computer Science and Engineering, Yangzhou University
2 Department of Computer Science and Engineering, Southeast University

kfhu@seu.edu.cn

Abstract. Data cube has been playing an essential role in fast OLAP(on-line
analytical processing) in many multidimensional data warehouse. We often
execute range queries on aggregate cube computed by pre-aggregate technique
in MOLAP. For the cube with d dimensions, it can generate 2d cuboids. But in
a high-dimensional data warehouse (such as the applications of bioinformatics
and statistical analysis, etc.), we build all these cuboids and their indices and
full materialized the data cube impossibly. In this paper, we propose a multi-
dimensional hierarchical fragmentation of the fact table based on dimension hi-
erarchical encoding. This method partition the high dimensional data cube into
shell mini-cubes. Using dimension hierarchical encoding and pre-aggregated re-
sults, OLAP queries are computed online by dynamically constructing cuboids
from the fragment data cubes. Such an approach permits a significant reduction
of processing and I/O overhead for many queries by restricting the number of
fragments to be processed for both the fact table and bitmap encoding data. This
method also supports parallel I/O and parallel processing as well as load balanc-
ing for disks and processors. We have compared the methods of our parallel
method with the other existed ones such as partial cube by experiment. The ana-
lytical and experimental results show that the method of our parallel method
proposed in this paper is more efficient than the other existed ones.

1 Introduction

Data warehouses integrate massive amounts of data from multiple sources and are
primarily used for decision support purposes. They have to process complex analyti-
cal queries for different access forms such as OLAP, data mining, OLAM(on-line
analytical mining) etc. Since the advent of data warehousing and online analytical
processing (OLAP) [1], data cube has been playing an essential role in the implemen-
tation of fast OLAP operations [2]. Materialization of a data cube is a way to pre-
compute and store multi-dimensional aggregates so that multi-dimensional analysis
can be performed on the fly. For this task, there have been many efficient cube

* The research in the paper is supported by the National Natural Science Foundation of China

under Grant No. 60473012; the Natural Science Foundation of Jiangsu Province under Grant
No. BK2005047, BK2004052 and BK2005046; the National Tenth-Five High Technology
Key Project of China under Grant No. 2003BA614A; the Tenth-Five High Technology Key
Project of JiangSu Province of China under Grant No. BG2004034.

230 K. Hu et al.

computation algorithms proposed, such as ROLAP-based multi-dimensional aggre-
gate computation [3], BUC [4], H-cubing [5], and Star-cubing [6]. Since computing
the whole data cube not only requires a substantial amount of time but also generates
a huge number of cube cells, there have also been many studies on partial materializa-
tion of data cubes [7], computation of condensed[8], dwarf[9], or quotient cubes [10],
and computation of approximate cubes [11].

Besides large data warehouse applications, there are other kinds of applications
like bioinformatics, statistical analysis, and text processing that need the OLAP data
analysis. However, data in such applications usually are high in dimensionality,e.g.,
over 100 dimensions, and moderate size, e.g., around 106 tuples. This kind of datasets
behaves rather differently from the datasets in a traditional data warehouse which may
have about 10 dimensions but more than 109 tuples. Since a data cube grows exponen-
tially with the number of dimensions, it is too costly in both computation time and
storage space to materialize a full high-dimensional data cube. For example, a data
cube of 100 dimensions, each with 10 distinct values, may contain as many as 11100
aggregate cells. If we consider the dimension hierarchies, the aggregate cell will in-
crease by 2h times. Although the adoption of iceberg cube[5,6], condensed cube[8], or
approximate cube[11] delays the explosion, it does not solve the fundamental prob-
lem. No feasible data cube can be constructed with such data sets. In this paper we
will address the problem of developing an efficient algorithm to perform OLAP on
such data sets.

The paper focuses on the design and evaluation of suitable data allocation methods
for the fact table and bitmap indices to allow an efficient parallel processing of OLAP
queries. We propose a multi-dimensional hierarchical fragmentation of the fact table
based on multiple dimension attributes and their dimension hierarchical encoding.
Such an approach permits a significant reduction of processing and I/O overhead for
many queries by restricting the number of fragments to be processed for both the fact
table and bitmap data. Such savings are achieved not only for the fragmentation at-
tributes themselves but also for attributes at different levels of a dimension hierarchy.
The proposed data allocation and processing model also supports parallel I/O and
parallel processing as well as load balancing for disks and processors.

2 Parallel Shell mini-Cubes

OLAP Queries tend to be complex and ad hoc, often requiring computationally ex-
pensive operations such as joins and aggregation. Those queries must be performed
on tables having potentially millions of records. The OLAP query that accesses a
large number of fact table tuples that are stored in no particular order might result to
much more many I/Os, causing a prohibitive long response time. Due to the huge size
of the fact table, such full scans are very costly and must be avoided whenever possi-
ble even when parallel scans can be utilized. This is also because for most queries,
only a small fraction of the fact data is relevant. To illustrate the method ,a tiny data-
base, Table 1, is used as a running example.

 A Parallel and Distributed Method for Computing High Dimensional MOLAP 231

Table 1. A sample database with two measure values

Category Class Product Country Province City Year Month Day Count SaleNum
1 Office OA Computer China Jiangsu Nanjing 1998 1 1
2 Office OA Computer China Jiangsu Nanjing 1998 1 2
3 Office OA Computer China Jiangsu Yangzhou 1998 1 2
4 Office OA Computer China Jiangsu Yangzhou 1998 1 3
...

367 Office OA Computer China Jiangsu Nanjing 1999 1 2
...

Measure TID DimProduct dimRegion dimTime

From the RPT Cube, we would compute eight cuboids:{(P,R,T),(P,R,All),
(P,All,T),(All,R,T),(P,All,All), (All,R,All), (All,All,T), (All,All,All)}.To the cube of
d dimensions, it would create 2d cuboids (The P dimension in these cuboids would be

{P, All},such as the R and T dimension .The aggregate cuboids is d
d

i

22
1

=∏
=

).

For the cube with d dimensions (D1,D2,...,Dd) and | Di| distinct values for each di-

mension Di, it can generate 2d cuboids and)1|(|
1

+∏
=

d

i
iD cells. If we consider the

dimension hierarchies of each dimension, the cube would generate cuboids

∏
=

+
d

i
ih

1

)1(and)1|(|
1

∏∏ +
=

d

i

h

j

i
j

i

L cells. (where ih is the dimension hierarchy levels of

the dimension Di, | i
jL | is he max number of the distinct member of the

hierarchy i
jL).

For example, the RPT cube in figure 1 has three dimensions: DimProduct, DimRe-
gion and DimTime. The DimProduct dimension has three hierarchies as (Cate-
gory,Class,Product),the DimRegion dimension has three hierarchies as (Coun-
try,Province,City),and the DimTime dimension has three hierarchies as
(Year,Month,Day). Thus this cube would generate 64)13(*)13()13()1(

1

=++∗+=+∏
=

d

i
ih

cuboids such as {(Product,City,Day),(Product,City,Month),(Product,City,Year),
(Product,City,All),...,(All,All,All)}.But in a high-dimensional database with many
cuboids, it might not be practical to build all these cuboids and their indices. Further-
more, reading via an index implies random access for each row in the cuboid, which
could turn out to be more expensive than a sequential scan of the raw data.

A partial solution, which has been implemented in some commercial data ware-
house systems is to compute a thin cube shell. For example, one might compute all
cuboids with 3 dimensions or less in a 30-dimensional data cube. There are two dis-

advantages to this approach. First, it still needs to compute 1
30

2
30

3
30 CCC ++ = 4525

cuboids. Second, it does not support OLAP in a large portion of the high-dimensional
cube space. If we consider the dimension hierarchies, the cuboids is vary much. So we
can use the shell mini-Cubes.

232 K. Hu et al.

For example, for a database of 30 dimensions, D1, D2, ..., D30, we first partition the
30 dimensions into 10 fragments(mini-Cubes) of size 3: (D1,D2,D3), (D4,D5,D6), ... ,
(D28,D29,D30). For each fragment, we compute its full data cube while recording the
inverted indices. For example, in fragment mini-Cube (D1,D2,D3), we would compute
eight cuboids: {(D1,D2,D3),(D1,D2,All),(D1,All,D3),(All,D2,D3),(D1,All,All), (All,D2,
All),(All,All,D3),(All,All,All)}. An inverted encoding index is retained for each cell
in the cuboids.

The benefit of this method can be seen by a simple calculation. For a base cuboid
of 30 dimensions, there are only 8*10 = 80 cuboids to be computed according to the
above shell fragment partition. Comparing this to 4525 cuboids for the cube shell of
size 3, the saving is enormous.

As we will see, our multi-dimensional fragmentation permits eliminating some
bitmaps, thus improving storage and access overhead. We propose this novel hierar-
chical encoding on each dimension table. The encoding is implemented through the
assignment of a special surrogate key on each dimension table tuple, called dimension
hierarchical encoding.We can create the dimRegion, DimTime and dimProduct di-
mension hierarchy encoding shown in Table 2, Table 3 and Table 4.

Table 2. DimTime dimension hierarchy encoding

TimeID Year Month Day BTimeID

 yyy mmmm ddddd yyymmmmddddd

1 98 Jan 1 001000100001

2 98 Jan 2 001000100010

3 98 Jan 3 001000100011

… … … … …

Table 3. The dimRegion dimension hierarchy encoding

RegionID Country Province City BRegionID

 uuuuuuu vvvvv cccc uuuuuuuvvvvvcccc

1 China Jiangsu Nanjing 0000001000010001

2 China Jiangsu Yangzhou 0000001000010010

… … … … …

Table 4. The dimProduct dimension hierarchy encoding

ProductID Category Class Product BProductID

 gggg aaaaa ppppppp ggggaaaaappppppp

1 Office OA Computer 0001000010000001

2 Office OA Printer 0001000010000010

… … … … …

 A Parallel and Distributed Method for Computing High Dimensional MOLAP 233

By using dimension hierarchical encoding, we can register a list of tuples IDs (tids)
associated with the dimension members for each dimension. For example, the TID list
associated with the dimProduct , dimRegion and dimTime dimension are shown in
Table 5, Table 6 and Table 7 in turn. To compute a data cube for this database with
the measure avg() (obtained by sum()/count()), we need to have a tid-list for each cell:
{tid1,…, tidn}. Because each tid is uniquely associated with a particular set of measure
values, all future computations just need to fetch the measure values associated with
the tuples in the list. In other words, by keeping an array of the ID-measures in mem-
ory for online processing, one can handle any complex measure computation. Table 8
shows what exactly should be kept, which is substantially smaller than the database
itself.

Table 5. dimProduct dimension TID

BProductID TID List

0001000010000001 1-2-3-4-367
… …

Table 6. dimRegion dimension TID

BRegionID TID List

0000001000010001 1-2-367

0000001000010010 3-4

… …

Table 7. dimTime dimension TID

BTimeID TID List

001000100001 1

001000100010 2-3

001000100011 4

… …

Table 8. TID- measure array of Table 2

tid Count SaleNum

1 1 20

2 1 60

3 1 40

4 1 20
… … …

In our study , the method can rapidly retrieve the matching dimension member hi-

erarchical encoding and evaluate the set of query ranges for each dimension and im-
prove the efficiency of OLAP queries by using dimension hierarchical path prefix and
encoding prefix.

By using encoding prefix, we can register the dimension hierarchy encoding and its
TID list for every dimension hierarchy for each dimension. For example, the dimen-
sion hierarchy encoding and its TID list associated with the dimension hierarchies
Month and Province are shown in Table 9 , and so on.

For each fragment, we compute the complete data cube by intersecting the TID-
lists in the dimension and its hierarchies in a bottom-up depths-first order in the cu-
boid lattice (as seen in [6]). For example, to compute the cell {0001000010000001,
0000001000010001, 0010001}, we intersect the TID lists of BProductID
=0001000010000001, BRegionID =0000001000010001, and Bprefix(BTimeID,Month)=
0010001 to get a new list of {1,2}.

234 K. Hu et al.

Table 9. Month hierarchy encoding Prefix AND its TID

BTimeID Bprefix(BTimeID,Month) TID List

001000100001

001000100010

001000100011

0010001 1-2-3-4

… … …

010000100001 0100001 367
… … …

3 Parallel and Distributed MOLAP Aggregation Algorithm

The data cube can be distributed across a set of parallel computers by parallel
constructing the segment Cubes. Therefore, for the end-user and other potential
applications, we consider this data cube as one large virtual cube, which is dis-
tributed across a set of parallel computers, which manage the creation, updates
and querying of the associated cube portions. To develop appropriate scheduling
mechanisms for these management tasks, we consider that the virtual cube is split
into several smaller parts, called mini-Cube segments. But a mini-Cube segment
could furthermore also be split into smaller segments and so on, till we achieve
the level of chunks. They can then be assigned to parallel computers, having se-
quential or parallel computing power, which are responsible for their manage-
ment. The algorithm for shell cube segment parallel computation can be summa-
rized as follows.

Algorithm 1 (Parallel Shell mini-Cube Computation)
Input: A base cuboid BC of n dimensions:(D1; ... ;Dn).

{ partition the set of dimensions :(D1; ... ;Dn) into a set of k mini-Cube fragments
{P1;..., Pk};
scan base cuboid BC once and do the following with parallel processing
{ insert each <tid, measure> into ID-measure array;

for each attribute value ai of each dimension Di;
build an dimension hierarchy encoding index entry: <B; TID list>;}

parallel processing all fragment partition Pi as follows
{build a local fragment mini-cubes MCi by intersecting their corre-

sponding tid-lists and computing their measures;
build MCi’s aggregate cuboids by the cuboid lattice;}

We can parallel construct the high dimensional cube with the Cube segments paral-
lel construction. The system architecture of these shell mini-Cube segment parallel
construction is shown in Figure 2.

 A Parallel and Distributed Method for Computing High Dimensional MOLAP 235

Warehouse
Cube

Constructor Cube Index
Cube

Operator OLAP Query

Cube Segment 1
D1 D2 D3

D1D2 D2D3 D1D3

D1D2D3 P1

Cube Segment 2
D4 D5 D6

D4D5 D5D6 D4D6

D4D5D6 P2

Cube Segment m
D3m-2 D3m-1 D3m

D3m-2D3m-1

D3m-2D3m-1D3m

D3m-1D3m D3m-2D3m

 Pm…

Connection handling

Fig. 2. The system architecture of these shell Cube segment parallel construction

4 Performance Analysis

The bitmap encoding index table uses the same amount of storage space as the origi-
nal database. Since we have |T| tuple IDs in total, the entire inverted index will still
only need d×|T| bitmap encoding indices. The amount of memory needed to store the

0

100

200

300

400

500

600

6 9 15

Number of dimensions

N
um

be
r

of
 C

ub
oi

ds mini-Cube
Partial cube

0

500

1000

1500

2000

2500

6 9 15
 Number of dimensions

St
or

ag
e

si
ze

(M
B

) mini-Cube
Partial cube

Fig. 3. Cuboids of mini-Cube Fig. 4. Storage size of mini-Cube

0

400

800

1200

15 30 45
Number of Dimensions

I/
O

(P
ag

e
A

cc
es

s) mini-Cube
Partial Cube

Fig. 5. Average I/Os

236 K. Hu et al.

shell mini-cubes of size f is O(|T|*(2f*d/f)),but the amount of storage needed to store

partial cube with f dimensions is O(|T|*(∑
=

f

i

i
dC

1

)),and the full cube’s is O(|T|*(2d)).

Based on the above analysis, for a base cuboid of 30 dimensions with 106 tuples,
our precomputed shell fragments of size 3 will consist of 80 cuboids plus one ID
measure array, with the total estimated size of roughly 320 + 12 = 332 MB in total. In
comparison, a shell cube of size 3 will consist of 4525 cuboids, with estimated
roughly 18 GB in size. A full 30-dimensional cube will have 230= 109 cuboids, with
the total cube size beyond the summation of the capacities of all storage devices. The
performance of shell fragment mini-cube method with the partial cube is shown in
Figure 3- Figure 5.

Figure 3-Figure 5 show the shell fragment mini-cube method has more efficient
than other existed ones.

5 Conclusion

Data cube has been playing an essential role in fast OLAP in many multidimensional
data warehouse. We often execute range queries on aggregate cube computed by pre-
aggregate technique in MOLAP. For the cube with d dimensions, it can generate 2d
cuboids. But in a high-dimensional data warehouse(such as the applications of bioin-
formatics and statistical analysis, etc.), while full materialization of the data cube is
impossible, we have proposed a reasonable method to partition the high dimensional
cube into a set of disjoint low dimensional cubes (i.e., shell fragment mini-cubes). We
propose a multi-dimensional hierarchical fragmentation of the fact table based on
multiple dimension attributes and their dimension hierarchical encoding. Using in-
verted hierarchical encoding indices and pre-aggregated results, OLAP queries are
computed online by dynamically constructing cuboids from the fragment data cubes.
With this method, for high-dimensional OLAP, the total space that needs to store such
shell-fragment mini-cubes is negligible in comparison with a high-dimensional cube.
Moreover, the query I/O costs for large data sets are reasonable and are comparable
with reading answers from a materialized data cube, when such a cube is available.
We have compared the methods of parallel shell mini-cubes with the other existed
ones such as partial cube by experiment. The analytical and experimental results show
that the methods of our parallel shell mini-cubes proposed in this paper are more
efficient than the other existed ones.

References

1. Chaudhuri, U., Dayal, U.: Data Warehousing and OLAP for Decision Support. ACM
SIGMOD Record 26 (1997) 507-508

2. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow
F., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-by,
Cross-tab and Subtotals. Data Mining and Knowledge Discovery 1(1997)29-54

3. Agarwal, S., Agrawal, R., Deshpande, P. M., Gupta, A., Naughton, J. F., Ramakrishnan,
R., Sarawagi, S.: On the Computation of Multidimensional Aggregates. VLDB(1996) 506-
521

 A Parallel and Distributed Method for Computing High Dimensional MOLAP 237

4. Beyer, K., Ramakrishnan, R.: Bottom-up Computation of Sparse and Iceberg Cubes. ACM
SIDMOD (1999) 359-370

5. Han, J., Pei, J., Dong, G., Wang, K.: Efficient Computation of Iceberg Cubes with Com-
plex Measures. ACM SIGMOD (2001)1-12

6. Xin, D., Han, J., Li, X., Wah, B. W.: Star-cubing:Computing Iceberg Cubes by Top-down
and Bottom-up Integration. VLDB(2003) 476-487

7. Harinarayan, V., Rajaraman, A., Ullman, J. D.: Implementing Data Cubes Efficiently.
ACM SIGMOD (1996) 205-216

8. Wang, W., Lu, H., Feng, J., Yu, J. X.: Condensed Cube: An Effective Approach to Reduc-
ing Data Cube Size. ICDE(2002) 155-165

9. Sismanis, Y. , deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical Dwarfs for
the Rollup Cube.VLDB(2004) 540-551

10. Lakshmanan, L. V. S., Pei, J., Zhao, Y.: Q-trees: An Efficient Summary Structure for Se-
mantic OLAP. ACM SIGMOD(2003) 64-75

11. Shanmugasundaram, J., Fayyad, U. M., Bradley, P. S.: Compressed Data Cubes for OLAP
Aggregate Query Approximation on Continuous Dimensions. ACM SIGKDD(1999) 223-
232

	Introduction
	Parallel Shell mini-Cubes
	Parallel and Distributed MOLAP Aggregation Algorithm
	Performance Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

