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Abstract. Data cube has been playing an essential role in fast OLAP(on-line 
analytical processing) in many multidimensional data warehouse. We often 
execute range queries on aggregate cube computed by pre-aggregate technique 
in MOLAP. For the cube with d dimensions, it can generate 2d  cuboids. But in 
a high-dimensional data warehouse (such as the applications of bioinformatics 
and statistical analysis, etc.), we build all these cuboids and their indices and 
full materialized the data cube impossibly. In this paper, we propose a multi-
dimensional hierarchical fragmentation of the fact table based on dimension hi-
erarchical encoding. This method partition the high dimensional data cube into 
shell mini-cubes. Using dimension hierarchical encoding and pre-aggregated re-
sults, OLAP queries are computed online by dynamically constructing cuboids 
from the fragment data cubes. Such an approach permits a significant reduction 
of processing and I/O overhead for many queries by restricting the number of 
fragments to be processed for both the fact table and bitmap encoding data. This 
method also supports parallel I/O and parallel processing as well as load balanc-
ing for disks and processors. We have compared the methods of our parallel 
method with the other existed ones such as partial cube by experiment. The ana-
lytical and experimental results show that the method of our parallel method 
proposed in this paper is more efficient than the other existed ones. 

1   Introduction 

Data warehouses integrate massive amounts of data from multiple sources and are 
primarily used for decision support purposes. They have to process complex analyti-
cal queries for different access forms such as OLAP, data mining, OLAM(on-line 
analytical mining) etc. Since the advent of data warehousing and online analytical 
processing (OLAP) [1], data cube has been playing an essential role in the implemen-
tation of fast OLAP operations [2]. Materialization of a data cube is a way to pre-
compute and store multi-dimensional aggregates so that multi-dimensional analysis 
can be performed on the fly. For this task, there have been many efficient cube  
                                                           
* The research in the paper is supported by the National Natural Science Foundation of China 

under Grant No. 60473012; the Natural Science Foundation of Jiangsu Province under Grant 
No. BK2005047, BK2004052 and BK2005046; the National Tenth-Five High Technology 
Key Project of China under Grant No. 2003BA614A; the Tenth-Five High Technology Key 
Project of JiangSu Province of China under Grant No. BG2004034. 



230 K. Hu et al. 

computation algorithms proposed, such as ROLAP-based multi-dimensional aggre-
gate computation [3], BUC [4], H-cubing [5], and Star-cubing [6]. Since computing 
the whole data cube not only requires a substantial amount of time but also generates 
a huge number of cube cells, there have also been many studies on partial materializa-
tion of data cubes [7], computation of condensed[8], dwarf[9], or quotient cubes [10], 
and computation of approximate cubes [11]. 

Besides large data warehouse applications, there are other kinds of applications 
like bioinformatics, statistical analysis, and text processing that need the OLAP data 
analysis. However, data in such applications usually are high in dimensionality,e.g., 
over 100 dimensions, and moderate size, e.g., around 106 tuples. This kind of datasets 
behaves rather differently from the datasets in a traditional data warehouse which may 
have about 10 dimensions but more than 109 tuples. Since a data cube grows exponen-
tially with the number of dimensions, it is too costly in both computation time and 
storage space to materialize a full high-dimensional data cube. For example, a data 
cube of 100 dimensions, each with 10 distinct values, may contain as many as 11100 
aggregate cells. If we consider the dimension hierarchies, the aggregate cell will in-
crease by 2h times. Although the adoption of iceberg cube[5,6], condensed cube[8], or 
approximate cube[11] delays the explosion, it does not solve the fundamental prob-
lem. No feasible data cube can be constructed with such data sets. In this paper we 
will address the problem of developing an efficient algorithm to perform OLAP on 
such data sets.  

The paper focuses on the design and evaluation of suitable data allocation methods 
for the fact table and bitmap indices to allow an efficient parallel processing of OLAP 
queries. We propose a multi-dimensional hierarchical fragmentation of the fact table 
based on multiple dimension attributes and their dimension hierarchical encoding. 
Such an approach permits a significant reduction of processing and I/O overhead for 
many queries by restricting the number of fragments to be processed for both the fact 
table and bitmap data. Such savings are achieved not only for the fragmentation at-
tributes themselves but also for attributes at different levels of a dimension hierarchy. 
The proposed data allocation and processing model also supports parallel I/O and 
parallel processing as well as load balancing for disks and processors.  

2   Parallel Shell mini-Cubes 

OLAP Queries tend to be complex and ad hoc, often requiring computationally ex-
pensive operations such as joins and aggregation. Those queries must be performed 
on tables having potentially millions of records. The OLAP query that accesses a 
large number of fact table tuples that are stored in no particular order might result to 
much more many I/Os, causing a prohibitive long response time. Due to the huge size 
of the fact table, such full scans are very costly and must be avoided whenever possi-
ble even when parallel scans can be utilized. This is also because for most queries, 
only a small fraction of the fact data is relevant. To illustrate the method ,a tiny data-
base, Table 1, is used as a running example.  
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Table 1. A sample database with two measure values  

Category Class Product Country Province City Year Month Day Count SaleNum
1 Office OA Computer China Jiangsu Nanjing 1998 1 1
2 Office OA Computer China Jiangsu Nanjing 1998 1 2
3 Office OA Computer China Jiangsu Yangzhou 1998 1 2
4 Office OA Computer China Jiangsu Yangzhou 1998 1 3
... ... ... ... ... ... ... ... ... ... ... ...

367 Office OA Computer China Jiangsu Nanjing 1999 1 2
... ... ... ... ... ... ... ... ... ... ... ...

Measure TID DimProduct dimRegion dimTime
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For example, the RPT cube in figure 1 has three dimensions: DimProduct, DimRe-
gion and DimTime. The DimProduct dimension has three hierarchies as (Cate-
gory,Class,Product),the DimRegion dimension has three hierarchies as (Coun-
try,Province,City),and the DimTime dimension has three hierarchies as 
(Year,Month,Day). Thus this cube would generate 64)13(*)13()13()1(
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cuboids such as {(Product,City,Day),(Product,City,Month),(Product,City,Year), 
(Product,City,All),...,(All,All,All)}.But in a high-dimensional database with many 
cuboids, it might not be practical to build all these cuboids and their indices. Further-
more, reading via an index implies random access for each row in the cuboid, which 
could turn out to be more expensive than a sequential scan of the raw data. 

A partial solution, which has been implemented in some commercial data ware-
house systems is to compute a thin cube shell. For example, one might compute all 
cuboids with 3 dimensions or less in a 30-dimensional data cube. There are two dis-

advantages to this approach. First, it still needs to compute 1
30

2
30

3
30 CCC ++ = 4525 

cuboids. Second, it does not support OLAP in a large portion of the high-dimensional 
cube space. If we consider the dimension hierarchies, the cuboids is vary much. So we 
can use the shell mini-Cubes. 
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For example, for a database of 30 dimensions, D1, D2, ..., D30, we first partition the 
30 dimensions into 10 fragments(mini-Cubes) of size 3: (D1,D2,D3), (D4,D5,D6), ... , 
(D28,D29,D30). For each fragment, we compute its full data cube while recording the 
inverted indices. For example, in fragment mini-Cube (D1,D2,D3), we would compute 
eight cuboids: {(D1,D2,D3),(D1,D2,All),(D1,All,D3),(All,D2,D3),(D1,All,All), (All,D2, 
All),(All,All,D3),(All,All,All)}. An inverted encoding index is retained for each cell 
in the cuboids.  

The benefit of this method can be seen by a simple calculation. For a base cuboid 
of 30 dimensions, there are only 8*10 = 80 cuboids to be computed according to the 
above shell fragment partition. Comparing this to 4525 cuboids for the cube shell of 
size 3, the saving is enormous. 

As we will see, our multi-dimensional fragmentation permits eliminating some 
bitmaps, thus improving storage and access overhead. We propose this novel hierar-
chical encoding on each dimension table. The encoding is implemented through the 
assignment of a special surrogate key on each dimension table tuple, called dimension 
hierarchical encoding.We can create the dimRegion, DimTime and dimProduct di-
mension hierarchy encoding shown in Table 2, Table 3 and Table 4. 

Table 2. DimTime dimension hierarchy encoding 

TimeID Year Month Day BTimeID 

 yyy mmmm ddddd yyymmmmddddd 

1 98 Jan 1 001000100001 

2 98 Jan 2 001000100010 

3 98 Jan 3 001000100011 

… … … … … 

 
Table 3. The dimRegion dimension hierarchy encoding 

RegionID Country Province City BRegionID 

 uuuuuuu vvvvv cccc uuuuuuuvvvvvcccc 

1 China Jiangsu Nanjing 0000001000010001 

2 China Jiangsu Yangzhou 0000001000010010 

… … … … … 

Table 4. The dimProduct dimension hierarchy encoding 

ProductID Category Class Product BProductID 

 gggg aaaaa ppppppp ggggaaaaappppppp 

1 Office OA Computer 0001000010000001 

2 Office OA Printer 0001000010000010 

… … … … … 
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By using dimension hierarchical encoding, we can register a list of tuples IDs (tids) 
associated with the dimension members for each dimension. For example, the TID list 
associated with the dimProduct , dimRegion and dimTime dimension are shown in 
Table 5, Table 6 and Table 7 in turn. To compute a data cube for this database with 
the measure avg() (obtained by sum()/count()), we need to have a tid-list for each cell: 
{tid1,…, tidn}. Because each tid is uniquely associated with a particular set of measure 
values, all future computations just need to fetch the measure values associated with 
the tuples in the list. In other words, by keeping an array of the ID-measures in mem-
ory for online processing, one can handle any complex measure computation. Table 8 
shows what exactly should be kept, which is substantially smaller than the database 
itself. 

 
Table 5. dimProduct dimension TID 

BProductID TID List 

0001000010000001 1-2-3-4-367 
… … 

 

Table 6. dimRegion dimension TID 

BRegionID TID List 

0000001000010001 1-2-367 

0000001000010010 3-4 

… …  

Table 7. dimTime dimension TID 

BTimeID TID List 

001000100001 1 

001000100010 2-3 

001000100011 4 

… …  

Table 8. TID- measure array of Table 2 

tid Count SaleNum 

1 1 20 

2 1 60 

3 1 40 

4 1 20 
… … … 

 
 
In our study , the method can rapidly retrieve the matching dimension member hi-

erarchical encoding and evaluate the set of query ranges for each dimension and im-
prove the efficiency of OLAP queries by using dimension hierarchical path prefix and 
encoding prefix.  

By using encoding prefix, we can register the dimension hierarchy encoding and its 
TID list for every dimension hierarchy for each dimension. For example, the dimen-
sion hierarchy encoding and its TID list associated with the dimension hierarchies 
Month and Province are shown in Table 9 , and so on. 

For each fragment, we compute the complete data cube by intersecting the TID-
lists in the dimension and its hierarchies in a bottom-up depths-first order in the cu-
boid lattice (as seen in [6]). For example, to compute the cell {0001000010000001, 
0000001000010001, 0010001}, we intersect the TID lists of BProductID 
=0001000010000001, BRegionID =0000001000010001, and Bprefix(BTimeID,Month)= 
0010001 to get a new list of {1,2}. 
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Table 9. Month hierarchy encoding Prefix AND its TID 

BTimeID Bprefix(BTimeID,Month) TID List 

001000100001 

001000100010 

001000100011 

0010001 1-2-3-4 

… … … 

010000100001 0100001 367 
… … … 

3   Parallel and Distributed MOLAP Aggregation Algorithm 

The data cube can be distributed across a set of parallel computers by parallel 
constructing the segment Cubes. Therefore, for the end-user and other potential 
applications, we consider this data cube as one large virtual cube, which is dis-
tributed across a set of parallel computers, which manage the creation, updates 
and querying of the associated cube portions. To develop appropriate scheduling 
mechanisms for these management tasks, we consider that the virtual cube is split 
into several smaller parts, called mini-Cube segments. But a mini-Cube segment 
could furthermore also be split into smaller segments and so on, till we achieve 
the level of chunks. They can then be assigned to parallel computers, having se-
quential or parallel computing power, which are responsible for their manage-
ment. The algorithm for shell cube segment parallel computation can be summa-
rized as follows. 

Algorithm 1 (Parallel Shell mini-Cube Computation) 
Input: A base cuboid BC of n dimensions:(D1; ... ;Dn). 

{ partition the set of dimensions :(D1; ... ;Dn) into a set of k mini-Cube fragments 
{P1;..., Pk}; 
scan base cuboid BC once and do the following with parallel processing 
{ insert each <tid, measure> into ID-measure array; 

for each attribute value ai of each dimension Di; 
build an dimension hierarchy encoding index entry: <B; TID list>;} 

parallel processing  all fragment partition Pi as follows 
{build a local fragment mini-cubes MCi by intersecting their corre-

sponding tid-lists and computing their measures; 
build MCi’s aggregate cuboids by the cuboid lattice;} 

We can parallel construct the high dimensional cube with the Cube segments paral-
lel construction. The system architecture of these shell mini-Cube segment parallel 
construction is shown in Figure 2. 
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Warehouse
Cube

Constructor Cube Index
Cube

Operator OLAP Query 

Cube Segment 1 
D1 D2 D3

D1D2 D2D3 D1D3

D1D2D3 P1

Cube Segment 2 
D4 D5 D6

D4D5 D5D6 D4D6

D4D5D6 P2

Cube Segment m 
D3m-2 D3m-1 D3m

D3m-2D3m-1

D3m-2D3m-1D3m

D3m-1D3m D3m-2D3m

 Pm…

Connection handling 

 

Fig. 2. The system architecture of these shell Cube segment parallel construction 

4   Performance Analysis 

The bitmap encoding index table uses the same amount of storage space as the origi-
nal database. Since we have |T| tuple IDs in total, the entire inverted index will still 
only need d×|T| bitmap encoding indices. The amount of memory needed to store the  
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shell mini-cubes of size f is O(|T|*(2f*d/f)),but the amount of storage needed to store 

partial cube with f dimensions is O(|T|*(∑
=

f

i

i
dC

1

)),and the full cube’s is O(|T|*(2d)). 

Based on the above analysis, for a base cuboid of 30 dimensions with 106 tuples, 
our precomputed shell fragments of size 3 will consist of 80 cuboids plus one ID 
measure array, with the total estimated size of roughly 320 + 12 = 332 MB in total. In 
comparison, a shell cube of size 3 will consist of 4525 cuboids, with estimated 
roughly 18 GB in size. A full 30-dimensional cube will have 230= 109 cuboids, with 
the total cube size beyond the summation of the capacities of all storage devices. The 
performance of shell fragment mini-cube method with the partial cube is shown in 
Figure 3- Figure 5. 

Figure 3-Figure 5 show the shell fragment mini-cube method has more efficient 
than other existed ones. 

5   Conclusion 

Data cube has been playing an essential role in fast OLAP in many multidimensional 
data warehouse. We often execute range queries on aggregate cube computed by pre-
aggregate technique in MOLAP. For the cube with d dimensions, it can generate 2d  
cuboids. But in a high-dimensional data warehouse(such as the applications of bioin-
formatics and statistical analysis, etc.),  while full materialization of the data cube is 
impossible, we have proposed a reasonable method to partition the high dimensional 
cube into a set of disjoint low dimensional cubes (i.e., shell fragment mini-cubes). We 
propose a multi-dimensional hierarchical fragmentation of the fact table based on 
multiple dimension attributes and their dimension hierarchical encoding. Using in-
verted hierarchical encoding indices and pre-aggregated results, OLAP queries are 
computed online by dynamically constructing cuboids from the fragment data cubes. 
With this method, for high-dimensional OLAP, the total space that needs to store such 
shell-fragment mini-cubes is negligible in comparison with a high-dimensional cube. 
Moreover, the query I/O costs for large data sets are reasonable and are comparable 
with reading answers from a materialized data cube, when such a cube is available. 
We have compared the methods of parallel shell mini-cubes with the other existed 
ones such as partial cube by experiment. The analytical and experimental results show 
that the methods of our parallel shell mini-cubes proposed in this paper are more 
efficient than the other existed ones. 
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