
H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 180 – 188, 2005.
© IFIP International Federation for Information Processing 2005

A Greedy Algorithm for Capacity-Constrained Surrogate
Placement in CDNs

Yifeng Chen1, Yanxiang He2, Jiannong Cao3, and Jie Wu4

1 State Key Laboratory of Water Resources and Hydropower Engineering Science,
Wuhan University, Wuhan 430072, Hubei, China

2 School of Computer, Wuhan University, Wuhan 430072, Hubei, China
{Csyfchen, Yxhe}@whu.edu.cn

3 Department of Computing, Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong, China
Csjcao@comp.polyu.edu.hk

4 Department of Computer Science & Engineering, Florida Atlantic University,
Boca Raton, FL 33431, USA
Jie@cse.fau.edu

Abstract. One major factor that heavily affects the performance of a content
distribution network (CDN) is placement of the surrogates. Previous works take a
network-centric approach and consider only the network traffic. In this paper, we
propose solutions to optimal surrogate placement, taking into consideration both
network latency and capacity constraints on the surrogates. For CDNs with a tree
topology, an efficient and effective greedy algorithm is proposed which mini-
mizes network traffic while at the same time maximizing system throughput.
Simulation results show that the greedy algorithm is far better than the existing
optimal placement scheme that makes decisions based solely on network traffic.
This suggests that capacity constraints on surrogates or server bottlenecks should
be considered when determining surrogate placement, especially when the ca-
pacities of CDN servers are limited.

1 Introduction

A content distribution network (CDN) is a network optimized to deliver specific con-
tent such as static Web pages, streaming media, or real-time video or audio. The design
of a CDN aims at quickly providing users with the most current content in a highly
available fashion [1]. This is achieved by pushing hosted content from the origin
server(s) to a set of surrogates located at the edge of the Internet closer to clients. For
any client request, an appropriate surrogate is selected to deliver the requested content
to the client on behalf of the origin server(s) [2]. Besides speeding up content delivery,
CDNs can also reduce server workload and alleviate network congestion.

The performance of a CDN can be significantly affected by the decisions on 1) how
many surrogates are needed, and 2) where they should be placed. Previous studies
typically formulate this decision problem as the minimum k-median problem [3,4], the

 A Greedy Algorithm for Capacity-Constrained Surrogate Placement in CDNs 181

facility location problem [3], the minimum k-center problem [5], or for simple network
topologies (e.g., line, ring, or tree), the dynamic programming problem [3,6-9].

All of these previous works [3-9], however, take a network-centric view of the issue
of surrogate placement, assuming that a client’s requests can always be directed to the
surrogates closest to the client. Consequently, they consider only the network latency
factor and the resultant placement scheme may very likely lead to an undesirable load
concentration on some surrogates. In this paper, we argue that, in order to minimize the
network traffic and maximize the system throughput, load balancing among surrogates
should also be considered in surrogate placement. We call this problem the capacity
constrained surrogate placement problem (CCSP).

In this paper, we focus on a simplified version of the CCSP problem in the context of
transparent data replication [8-10], in which the access paths to a Web site are ar-
ranged as a tree with the origin server at the root. The aim of transparent data replica-
tion is to reduce the management overhead incurred by client redirection and to sim-
plify the design of surrogate cooperation and load balancing. Fig. 1 illustrates a
surrogate hierarchy for transparent data replication. A collection of surrogates, together
with the origin server, is placed on {1, 6, 10, 15, 20}. The request issued from node 11
is forwarded toward the origin server along the unique path from 11 to 1. Normally, the
surrogate placed on node 10 will intercept the request and immediately satisfy the re-
quest on behalf of the origin server. However, if the surrogate is overloaded, the request
will be forwarded up the tree, until another available surrogate, say node 6, is able to
serve the request. For any update activity, the update message will first be propagated
from root, (i.e., the origin server node 1) to its immediate descendant surrogate node 6,
and node 20. Then the update message will continue to be propagated down the sur-
rogate hierarchy from node 6 to nodes 10 and 15.

1

93

62

7

4 85

10

2221

2019

18

17

16

15

14

131211

23

origin server

client

surrogate

surrogate

surrogate

surrogate

retrieval
request

update
request

Fig. 1. Request-routing and consistency maintenance under transparent data replication

We employ queuing theory [11] to model server throughput and achieve load
balancing among surrogates by redirecting part of the client requests initially assigned
to the heavily loaded surrogates to other lightly loaded ones according to transparent
data replication. We propose an efficient greedy algorithm to solve the CCSP problem.
The performance of the proposed algorithm is evaluated in terms of communication
cost and system throughput. We compare our algorithm with an existing optimal
placement scheme that solely minimizes the communication cost and a random

182 Y. Chen et al.

placement scheme that uniformly chooses sites to place surrogates. The simulation
results show that our proposed CCSP approach significantly outperforms these two
benchmarks.

2 Problem Formulation

In this section, we first develop a queuing model of the throughput of CDN servers, and
then formulate the CCSP problem for tree networks.

We model each CDN server as an M/G/1/K*PS queuing system [11]. The arrival
process of HTTP requests is assumed to be Poissonian with rate (λ+µ) (λ is the read
rate, µ the write rate), whereas the service time has a general distribution with mean

_
x .

The service discipline is processor sharing. The total number of requests that can be
processed at one time is limited to K (

_
x and K represent the processing power of each

CDN server). Denoting the blocking probability by Pb′, we have

)1(
)1('

1+−
−=

K

K
bP ρ

ρρ

(1)

where ρ=(λ+µ)

_
x . Thus, the rate of blocked requests is given by (λ+µ)Pb′. A CDN

increases the throughput of the whole system by enabling the surrogates to cooperate
for redirecting the overloaded amount of requests (i.e., (λ+µ)Pb′) that have routed to
one surrogate to other lightly loaded ones. Note that update requests should always be
served locally and only retrieval requests can be redirected. Thus, if we define Pb=
(1+µ/λ)Pb′, the request blocking rate can be represented as λPb. This transformation is
reasonable, since the CDN servers are typically dominated by retrieval requests.

The network is modeled as a tree Tr(V,E), where V is a set of nodes, E⊆V×V is a set
of edges and r∈V is the root where the origin server is located. Each node represents an
autonomous system (AS) and each edge corresponds to a physical link connecting two
AS’s. For any node v∈Tr, we denote by Tv the subtree of Tr rooted at v.

Assume that the origin server holds N objects. The size of each object i is denoted by
si(1≤i≤N). For each object i, every node v is associated with a nonnegative retrieval rate
λv,i. The origin server is responsible for propagating update information down the sur-
rogate hierarchy and is additionally associated with a nonnegative update rate µi for
object i. Any link (u,v) in E is associated with a distance metric d(u,v), which could be
interpreted as bandwidth, hop counts, link cost, etc. Assuming that πx,y is a path be-
tween node x and y, the distance associated with path πx,y could be represented as
d(x,y)=∑ ∈ yxvu vud

,),(),(π . We use f(si,d(u,v)) to denote the data transmission cost for
object i traverses link (u,v) or path πu,v, which measures the resource utilization on that
link or path for transferring object i from node u to v.

Suppose M surrogates are to be placed on a set of domains P(P⊆V, r∈P and |P|=M).
For any node v∈Tr, we say a node is the parent surrogate of v, denoted by C(v,P), if it is
the first node in P\{v} that is seen while going up from v to the root r, i.e., the lowest
ancestor of v which is contained in P\{v}. Also, the immediate descendant surrogates
of any v, denoted by D(v), is defined as follows. If v∉P, D(v)={u: u∈P ∧ u∈Tv ∧
C(u,P)=C(v,P)}; if v∈P, D(v) = {u: u∈P ∧ C(u,P)=v}.

 A Greedy Algorithm for Capacity-Constrained Surrogate Placement in CDNs 183

Now, suppose a set of surrogates P are placed on the network, the reduction of data
transfer cost, denoted by Cost(Tr,P), is ready to be obtained by:

∑ ∑
= ∈

−−=
N

i rPv
iii

t
iv

b
vr PvCvdsfurvdsfPPTCost

1 }\{
,)))),(,(,()),(,()1((),(λ (2)

where the first term corresponds to the total decrease of retrieval cost and the second
term represents the total increase of update cost due to the placement of surrogates. λv,i
denotes the access rate to object i issued from node v. λv,i

t denotes the total retrieval
requests for object i that traverse node v:

∑ ∈+=
vBu

t
iu

b
uiv

t
iv P ,,, λλλ (3)

where Bv is the children of v, and Pv
b is the blocking probability of v. Here we extend

the concept of blocking probability: If v is a surrogate node (i.e., v∈P), Pv
b would be

derived via a queuing model; otherwise, Pv
b is set to one, meaning that, for the nodes

where no surrogates are located, all the incoming requests will be forwarded to their
parent nodes. We define λv

t=∑ =
N
i

t
iv1 ,λ and µt=∑ =

N
i i1 µ to compute Pv

b.
Under the given request-routing mechanism, the drop of requests occurs only if the

origin server is overloaded. The total requests blocked in the CDN therefore is

t
r

b
rr PPTBlock λ=),((4)

where λr
t denotes the total retrieval request rate directed to r after placing a set of surro-

gates P. Now, we are ready to define the CCSP problem in tree topologies: Given
Tr(V,E), traffic pattern, and surrogate capacity constraints, find a set of M surrogates
P(P⊆V, r∈P, |P|=M) such that the objective function (5) is satisfied.

)),(),((),(
,|,|

PTBlockPTCostMaxPTObj rrrr PMPVP
γ−= ∈=⊆ (5)

γ in (5) is a penalty coefficient to make a tradeoff between traffic reduction and load
balancing among surrogates.

3 A Greedy Algorithm

From the computation of Pv
b, it’s easy to verify that the CCSP problem for tree to-

pologies can not be solved via a dynamic programming approach similar to that used in
[8]. In this section, we develop an efficient greedy algorithm.

The greedy algorithm is illustrated in Algorithm 1. Initially, we set P={r} and the
network cost reduction to zero. The objective is determined by the dropped requests.
Then the algorithm iterates and chooses one surrogate in each step until M surrogates
are chosen. In each iteration, for ∀v∈V\P, we compute the objective increment as-
suming v is added to P. The node that yields the maximum objective increment is
chosen and added to P. The objective increment of candidate node v, besides the con-
tribution of v itself, includes (a) modifying the retrieval cost reduction of v’s ancestor
surrogates (the ratio of the request directed to and the blocking probabilities of these
surrogates will change when a surrogate is placed on v); and (b) modifying the update

184 Y. Chen et al.

cost of immediate descendant surrogates whose parent surrogate is C(v,P) (their parent
surrogate has changed from C(v,P) to v).

The objective increment can be computed in the following fashion. Suppose a set of
surrogates P(P⊂V, |P|<M, r∈P) has been placed over the network, and a candidate
node v(v∈V\P) is intended to join P. Define by A(v) the ordered ancestor nodes of v,
v∉A(v), i.e., the elements in A(v) are the nodes ordered as seen while going up from v to
the root r. Obviously, the first element in A(v) is the parent of v, and for any successive
node u and w in A(v), w is the parent of u. After the candidate v joins in P, the increment
of data transfer cost reduction ∆Cost(Tr,P∪{v}) and that of objective ∆Obj(Tr, P∪{v})
can be obtained by the following steps.

Step 1: compute the contribution of v itself
∆Cost(Tr,P∪{v})=∑i=1

N((1-Pv
b)λv,i

tf(si,d(v,r))-µif(si,d(v,C(v,P)))

Step 2: modify the retrieval cost reduction of ancestor surrogates of v

Let ∆λ=-(1-Pv
b)λv

t, ∆λi=-(1-Pv
b)λv,i

t

Then obtain a node u from A(v) in order until all the elements are traversed. Note that
the variable with a superscript of new corresponds to the case where v has joined in P.

If u∉P, set λu
t,new=λu

t+∆λ, λu,i
t,new=λu,i

t+∆λi

Otherwise if u∈P, set λu
t,new=λu

t+∆λ, λu,i
t,new=λu,i

t+∆λi, compute Pu
b,new by λu

t,new

∆λ=∆λ-(1-Pu
b,new) λu

t,new+(1-Pu
b)λu

t
∆λi=∆λi-(1-Pu

b,new) λu,i
t,new+(1-Pu

b)λu,i
t

∆Cost(Tr,P∪{v})=∆Cost(Tr,P∪{v})+∑i=1
N(((1-Pu

b,new)λu,i
t,new-(1-Pu

b)λu,i
t)f(si,d(u,r)))

Step 3: modify the update cost of the immediate descendant surrogates of v
∆Cost(Tr,P∪{v})=∆Cost(Tr,P∪{v})+|D(v)|∑i=1

Nµif(si,d(v,C(v,P)))

Step 4: compute Block(Tr,P∪{v}) and ∆Obj(Tr,P∪{v})
Block(Tr,P∪{v})=Pr

b,newλr
t,new

∆Obj(Tr,P∪{v})=∆Cost(Tr,P∪{v})-γ(Block(Tr,P∪{v})-Block(Tr,P))

Algorithm 1. The greedy algorithm for surrogate placement

set P={r}, set λv,i
t=∑ ∈ vTu iu ,λ , λv

t=∑ =
N
i

t
iv1 ,λ , for ∀v∈Tr, ∀i (1≤i≤N),

set Cost(Tr,P)=0, compute Block(Tr,P), Obj(Tr,P);
while(|P|≤M){
 for ∀v∈ V\P, compute ∆Cost(Tr,P∪{v}), Block(Tr,P∪{v}) and

∆Obj(Tr,P∪{v});
 find v∈ V\P such that ∆Obj(Tr,P∪{v}) is maximized;

P←P∪{v}, Cost(Tr,P)←Cost(Tr,P)+∆Cost(Tr,P),
Obj(Tr,P)←Obj(Tr,P)+∆Obj(Tr,P);

 for ∀u∈A(v), update λu
t, λu,i

t in order;
 for ∀u∈D(v), C(u,P) ←v; }

 A Greedy Algorithm for Capacity-Constrained Surrogate Placement in CDNs 185

4 Performance Evaluation

We have evaluated the performance of the proposed algorithm through simulations, in
comparison with two baseline algorithms: a random algorithm and a throughput-
oblivious dynamic programming (DP) algorithm.

We use synthetic tree topologies and traffic pattern to evaluate the algorithms, as in
[8]. Tree topologies are created randomly in a breadth-first manner with two parame-
ters: the total number of nodes (treeSize) and the maximum degree of a tree node
(treeDegree). Each tree edge is associated with a distance randomly distributed in (0,1).
Every node v is associated with a retrieval rate λv and values,

_
x and K, uniformly dis-

tributed in (minSvTime, maxSvTime) and in (minJobLimit, maxJobLimit), respec-
tively. The root r is further associated with an update rate of µ uniformly distributed in
(minWtRate, maxWtRate).

The origin server holds a collection of N Web objects. The access popularity of the
objects follows a Zipf-like distribution [12,13] with a parameter of θr for retrieval and
θw for update. Each object i is assigned an object size of si, whose distribution has been
found to be heavy-tailed [13]. The cumulative distribution function is given by

F(s)=1-(s0/s) β β, s0>0, s≥ s0 (6)

where β is known as the tail index, and s0 represents the smallest possible value of the
random object size in the heavy-tailed distribution. For simplicity, we set f(si,d(u,v))=
si*d(u,v). Default parameter settings are summarized in Table 1.

We vary the number of nodes from 60 to 1000 and examine the impacts on surrogate
placement decision of the penalty coefficient, traffic volume, and server capacity. Fig.
2 shows a typical simulation result on a 600-node tree with M=0.3*treeSize.

We have made the following observations: (1) The greedy algorithm significantly
outperforms the benchmarks in both network cost reduction and dropped request rate;
(2) The greedy algorithm is not very sensitive to the penalty coefficient. A larger γ,
however, will lead to a decrease in blocked requests at slight cost of network traffic; (3)
When the traffic is relatively small, adding one more surrogate can absorb a significant
amount of traffic and remarkably improve the performance of the system. As traffic
increases, more surrogates are needed to achieve the same normalized performance; (4)
When candidate surrogates are configured powerful (i.e., set

_
x close to zero), the

Table 1. Default simulation parameter settings

Parameter Setting Parameter Setting Parameter Setting
minRdRate 1 minSvTime 0.0001 θr 0.8
maxRdRate 80 maxSvTime 0.01 θw 0.4
minWtRate 1 minJobLimit 50 β 1.2
maxWtRate 80 maxJobLimit 300 s0 4
treeDegree 6 N 1000 γ 10

186 Y. Chen et al.

0 60 120 180
0.0

0.2

0.4

0.6

0.8

1.0

Num ber of S urrogates

N
or

m
al

iz
ed

 C
os

t
R

ed
uc

tio
n

Optim al
Greedy
DP
Random

0 60 120 180
0.0

0.2

0.4

0.6

0.8

1.0

Num ber of S urrogates

N
or

m
al

iz
ed

 D
ro

pp
ed

 R
at

e

G reedy
DP
Random

Fig. 2. Traffic reduction (normalized by “optimal” measure of placing a maximum of M surro-
gates) and blocked request rate (normalized by “optimal” measure of placing only a single sur-
rogate at the root of the tree)

greedy algorithm can offer a performance close to optimal. Otherwise, the network cost
reduction has to be traded off against the system throughput; (5) Heterogeneity in CDN
servers and skewness in traffic pattern do not hurt the performance of the proposed
greedy algorithm.

5 Conclusion

In this paper, we have investigated the capacity constrained surrogate placement
problem (CCSP), aiming at minimizing the network traffic while maximizing the
throughput of a CDN. An efficient greedy algorithm is developed to solve the problem
in the context of transparent data replication.

The performance of the proposed algorithm is compared with a random solution and
a dynamic programming based optimal solution, that makes decisions considering only
data transmission cost. The simulation results demonstrate that the proposed greedy
algorithm has a performance close to optimality and can find the placement scheme that
remarkably increases the throughput of the system. Therefore, capacity constraints on
surrogates or server bottlenecks should be integrated into the surrogate placement de-
cision. This is especially the case when the power of CDN servers is limited for some
reason. If the traffic volume increases roughly in proportion in the domains, an in-
cremental or amortized surrogate placement scheme will be appropriate, just as the
proposed greedy algorithm does.

Acknowledgement

This work is supported in part by the University Grant Council of Hong Kong under the
CERG grant PolyU 5075/02E, the Hong Kong Polytechnic University under the grant
G-YY41 and the National Natural Science Foundation of China under the grant
90104005.

 A Greedy Algorithm for Capacity-Constrained Surrogate Placement in CDNs 187

References

1. Lazar, I., Terrill, W.: Exploring Content Delivery Networking. IEEE IT Pro. (2001) 47-49
2. Day, M., Cain, B., Tomlinson, G., Rzewski, P.: A Model for Content Internetworking. RFC

3466. Network Working Group (2003)
3. Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the Placement of Web Server Replicas.

Proc. IEEE INFOCOM’01, Vol. 3 (2001) 1587-1596
4. Li, Y., Liu, M.T.: Optimization of Performance Gain in Content Distribution Networks with

Server Replicas. Proc. 2003 Symp. Applications and the Internet (2003)
5. Cronin, E., Jamin, S., Jin, C., Kurc, A.R., Raz, D., Shavitt, Y.: Constrained Mirror Place-

ment on the Internet. IEEE J. Select. Areas Commun., Vol. 20. 7 (2002) 1369-1381
6. Li, B., Golin, M.J., Italiano, G.F., Deng, X., Sohraby, K.: On the Optimal Placement of Web

Proxies in the Internet. Proc. IEEE INFOCOM’99 (1999) 1282-1290
7. Jia, X., Li, D., Hu, X., Du, D.: Placement of Read-Write Web Proxies on the Internet. Proc.

IEEE ICDCS’01 (2001) 687-690
8. Xu, J., Li, B., Lee, D.L.: Placement Problems for Transparent Data Replication Proxy Ser-

vices. IEEE J. Select. Areas Commun., Vol. 20. 7 (2002) 1383-1398
9. Krishnan, P., Raz, D., Shavitt, Y.: The Cache Location Problem. IEEE/ACM Trans. Net-

working, Vol.8. 5 (2002) 568-582
10. Heddaya, A., Mirdad, A.: WebWave: Globally Load Balanced Fully Distributed Caching of

Hot Published Documents. Proc. IEEE ICDCS’97 (1997) 160-168
11. Cao, I., Andersson, M., Nyberg, C., Kihl, M.: Web Server Performance Modeling Using an

M/G/1/K*PS Queue. Proc. 10th Int’l Conf. Telecommunications, Vol. 2. (2003) 1501-1506
12. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web Caching and Zipf-like Distri-

butions: Evidence and Implications. Proc. IEEE INFOCOM’99, New York (1999) 126-134
13. Mahanti, A., Williamson, C., Eager, D.: Traffic Analysis of a Web Proxy Caching Hierar-

chy. IEEE Network (2000) 16-23

Appendix: Correctness Proof for Algorithm 1

Theorem 1. Algorithm 1 is correct, and can be computed in O(ML) time. L is the path
length of Tr, which is defined as the sum over Tr of the number of ancestors of each
node.

Proof. The time complexity of the algorithm is straightforward. The proof for the cor-
rectness can be reduced to proving that for ∀u∈A(v), the computation of λu

t,new (and
similarly λu,i

t,new for ∀i(1≤i≤N)) is correct. We first prove the following Lemma.

Lemma 1. For any surrogate placement scheme P in tree topologies, there holds

λv
t=λv

t,0-Σu∈D(v) λu
t,0+Σu∈D(v)Pu

bλu
t , for ∀v∈Tr (7)

where λv
t,0 is the corresponding result after execution of the first step in Algorithm 1.

Proof: The proof is done by induction.
(1) Basis: when P={r}, we have D(v)=∅, λv

t=λv
t,0 for ∀v∈Tr. Thus (7) trivially holds.

(2) Induction: Suppose (7) holds when a set of surrogates P(P⊂V, |P|<M, r∈P) is
placed over the network. Now we prove that (7) still holds after any node v(v∈V\P) is
added to P.

188 Y. Chen et al.

First, according to the request-routing mechanism, placing a surrogate on v can only
affect the retrieval requests of its ancestor nodes A(v). Therefore, based on the induction
hypothesis, (7) holds for ∀u∈Tr\A(v), and λu

t,new=λu
t. For A(v), we first consider the first

element u in A(v), i.e., the parent of v. Obviously, D(v)⊆D(u). Now due to the join of v,
Dnew(u)=(D(u)-D(v))∪{v}. According to the algorithm, λu

t,new=λu
t+∆λ =λu

t-(1-Pv
b)λv

t.
By λu

t=λu
t,0-Σw∈D(u) λw

t,0+Σw∈D(u)Pw
bλw

t (induction hypothesis)

λu
t,new=λu

t,0-Σw∈D(u)-D(v)λw
t,0+Σw∈D(u)-D(v)Pw

bλw
t+(λv

t,0-Σw∈D(v)λw
t,0+Σw∈D(v)Pw

bλw
t-λv

t,0)-(1-Pv
b)λv

t
=λu

t,0-Σw∈Dnew(u)λw
t,0+Σw∈Dnew(u) Pw

bλw
t

=λu
t,0-Σw∈Dnew(u)λw

t,0+Σw∈Dnew(u) Pw
b,newλw

t,new

(7) holds. Then for the successive element x of u in A(v), if u∉P, it is completely the
same as u. Otherwise, if u∈P, there is evidently u∈D(x), but D(u)⊄D(x). Therefore,
Dnew(x)=D(x). According to the algorithm, λx

t,new=λx
t+∆λ=λx

t-(1-Pv
b)λv

t-(1-Pu
b,new)

λu
t,new+(1-Pu

b)λu
t. By λx

t=λx
t,0-Σw∈D(x)λw

t,0+Σw∈D(x) Pw
bλw

t (induction hypothesis)
λx

t,new=λx
t,0-Σw∈D(x)λw

t,0+Σw∈D(x)-uPw
bλw

t+Pu
bλu

t-(1-Pv
b)λv

t- (1-Pu
b,new) λu

t,new+(1-Pu
b)λu

t

=λx
t,0-Σw∈Dnew(x)λw

t,0+Σw∈Dnew(x)Pw
b,newλw

t,new+λu
t-(1-Pv

b)λv
t-λu

t,new
=λx

t,0-Σw∈Dnew(x)λw
t,0+Σw∈Dnew(x)Pw

b,newλw
t,new

(7) holds. Based on this approach, we can prove one by one that (7) holds for all the
elements in A(v). Thus Lemma 1 is true. Noticing that (7) is equivalent to λv

t=∑ =
N
i

t
iv1 ,λ ,

where λv,i
t is computed by (3), it can be trivially inferred that Theorem 1 is true.

	Introduction
	Problem Formulation
	A Greedy Algorithm
	Performance Evaluation
	Conclusion
	Acknowledgement
	References
	Appendix: Correctness Proof for Algorithm 1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

