
H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 176 – 179, 2005.
© IFIP International Federation for Information Processing 2005

An Efficient Load Balancing Algorithm for Cluster
System

Chunkyun Youn1,* and Ilyoung Chung2

1 Department of Internet Software, Honam University, Kwangju, Korea
chqyoun@honam.ac.kr

2 Department of Computer Science, Chosun University, Kwangju, Korea
iyc@mail.chosun.ac.kr

Abstract. Load balancing is one of the best efficient methods for performance
improvement of cluster system. Recently, WLC algorithm is used for the load
balancing of cluster system. But, the algorithm also has load imbalance between
servers, because it uses inaccurate static load status of servers. In this paper, I
suggest a more efficient dynamic load balancing algorithm base on various load
status information of servers by real time. It shows that load imbalance phe-
nomenon is improved greatly and response time is also improved compare with
WLC algorithm.

1 Introductions

Fast growing Internet user and huge amount of multimedia data are rapidly increasing
network traffic. Servers and network are bottle-neck in this situation. Now a days,
performance elevation and high availability of server are important to solve the prob-
lem [1]. Various cluster systems are used as suitable solution of it [2, 3]. Among
them, load sharing cluster system consists of several low-cost servers which are con-
nected to high speed network, and applies load balancing technique between servers.
It offers high computing power and high availability.

The load balancing algorithm is core function of the cluster system. Many tech-
niques were studied. Well known algorithms are round-robin (RR) scheduling [4],
weighted round-robin (WRR) scheduling [5], least-connection (LC) scheduling [6]
and WLC (Weighted Least Connection) scheduling [7]. The WLC is widely used now
among them.

Above load balancing algorithms select a server according to fixed weights which
are calculated by server's physical processing capacity and the number of established
connections mainly. Such methods can’t know server's load state exactly, because
those are not considered various load elements of real servers. And measuring time is
not suitable, because Director gets the connection number of real servers periodically.
So, it is not correct load of real servers. That is, inaccurate load status and unsuitable
measuring time are the cause of load imbalance.

* Corresponding author.

 An Efficient Load Balancing Algorithm for Cluster System 177

2 Proposal of an Efficient Load Balancing Algorithm

2.1 Various Load Elements Investigation and Application Plan

In this paper, various load elements of UNIX web server are considered to measure
exact load situation. CPU, memory and network are selected as influential suitable
elements among them. The detail statuses of main load elements are followings;

CPU load. Usually, we have to collect whole CPU usage, average CPU load and CPU
usage of each process etc to measure CPU load. When a client requests connection,
correct present CPU load of real servers is very important to decide which server will
handle the request. Numbers of waiting process is suitable for that purpose. It can be
different according to cluster system configuration, number of users and concurrent
connection ratio etc. Usually, connection requests are processed without waiting be-
cause servers are very powerful. Therefore, if there is waiting processes that mean the
CPU is busy. So, we can select which server has lower load [8, 9].

Load of memory. We can use virtual memory amount of processes, free memory
amount and paging activity that are performed in the latest 20 seconds from memory.
We can confirm relatively exact present memory load by the free memory amount
among them [8, 9].

Load of network. Packet I/O amount of each network interface, packet error rate and
collision rate are available for load status of network. We can estimate that a network
interface is over load if collision rate approaches to 5 ~ 10%, and use packet I/O
amount if necessary [8, 9].

2.2 Dynamic Load Measuring and Balancing Algorithm

I propose a dynamic load measuring algorithm
(Fig. 1) that can collect load status of server base
on the selected elements by real time. It will be
loaded on each real server and called using
broadcasting RPC by Director. A called real
server collects own load status according to Fig.
1 algorithm and transmits it to the director. The
value “Y” and “Init_Average” should be
adjusted properly according to configuration of
cluster system and users' environment after
system configuration.

Fig. 3 shows the proposed load balancing
algorithm that handles user's request with real
time load status of servers.

Fig. 1. Load measuring algorithm

178 C. Youn and I. Chung

 Fig. 2. Prototype module configuration Fig. 3. Load balancing algorithm

3 Test and Results Analysis

I use the WLC which is the most efficient among existing algorithms for performance
comparative test of the proposed algorithm. Comparison items are free memory
change of each real server and response time of cluster system for the two algorithms.

3.1 Test Result Analysis for Free Memory

When number of concurrent connecters is below 200, free memory difference of each
server is not so big in the WLC and the proposed algorithm. But, when the number is

Fig. 4. Free memory changes of WLC and the proposed algorithm (at 400 numbers)

Fig. 2 and 3 show the proposed
prototype modules configuration
and load balancing algorithm.

 An Efficient Load Balancing Algorithm for Cluster System 179

0 200 400 600 800

WLC

RTSS

WLC

RTSS

WLC

RTSS

WLC

RTSS

10
0

20
0

30
0

40
0

Response time (ms)

400, server's free memory of the WLC is not even, while it is similar in the proposed
algorithm (RTSS) as shown Fig. 4. This means that more efficient load balancing was
done by the proposed algorithm.

3.2 Test Result Analysis for Response Time

Fig. 5 shows the test result for
average response time of two
algorithms by the number of
concurrent connecters. Response
time of the proposed algorithm
(RTSS) is improved 9.3msec than
existing algorithm (WLC) in case
of 100, while it is improved
203msec in case of 400.

When the number of concurrent
connecter is few, the response time
is not so big different. But, when it
is increased, the difference is big.
This means performance of cluster
system is optimized well in the
proposed algorithm.

 Fig. 5. Results of response time comparison

4 Conclusions

I proposed an efficient load balancing algorithm to improve the performance of clus-
ter system. The WLC algorithm tries to balance load according to the fixed physical
resources of real servers’ and connection numbers. On the other hand, the proposed
algorithm measures waiting process, free memory and collision rate by real time to
get more accurate load state of real servers, and used them to balance load efficiently.

References

1. Delivering High Availability Solutions with Red Hat Enterprise Linux AS 2.1, RedHat
(2003)

2. Jian liu, Lorghu Xu, Baogen Gu, Jing Zhang, A scalable, high performance Internet cluster
server, High performance computing in the Asia-Pacific region, 2000 Proceedings. The firth
International Conference/ Exhibition, Vol.2, (2000) 941-944

3. OYoung Kwon, Cluster system introduction Korea institute of science and technology in-
formation news letter (2000)

	Introductions
	Proposal of an Efficient Load Balancing Algorithm
	Various Load Elements Investigation and Application Plan
	Dynamic Load Measuring and Balancing Algorithm

	Test and Results Analysis
	Test Result Analysis for Free Memory
	Test Result Analysis for Response Time

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

