

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 163 – 171, 2005.
© IFIP International Federation for Information Processing 2005

Topology-Aware Multi-cluster Architecture
Based on Efficient Index Techniques

Yun He, Qi Zhao, Jianzhong Zhang, and Gongyi Wu

Department of Computer Science and Technology, Nankai University,
Tianjin 300072, China

{hey1630, qizhao6688}@mail.nankai.edu.cn
{zjz, wgy}@nankai.edu.cn

Abstract. In this paper, we focus on how to construct an efficient unstructured
P2P system. The main contributions of our proposal are two-fold. First, aiming at
alleviating the topology mismatch problem between the P2P logical overlay
network and the physical underlying network, we proposed a Topology-aware
Multi-cluster Overlay (TMO) architecture where peers self-organize into clusters
based on network locality. Second, in order to further improve the search
efficiency of the TMO architecture, we present two novel index techniques,
namely, cluster-index technique and topic-index technique. The two different
techniques are highly effective in different application domains in which the
TMO architecture is deployed. The simulation results indicate that our proposed
schemes are efficient in both resource usage and data retrieval.

1 Introduction

In recent years, there has been much interest in peer-to-peer (P2P) systems because
they provide a good substrate for building large scale data sharing and content
distribution applications. P2P systems can be broadly classified into two categories:
unstructured and structured P2P systems.

Unstructured P2P systems, like Gnutella [1] and KaZaA [2], organize peers in a
random graph and use flooding on the graph to query documents stored at overlay
peers. The floods support arbitrary queries, but are not scalable because they cause
exponentially increased network traffic. In contrast, structured P2P systems are
developed to perform key queries by constructing Distributed Hash Tables (DHTs),
such as Chord [3], CAN [4], and Pastry [5], etc. Although such schemes provide good
performance for exact match queries, they almost don’t work for range, approximate, or
text queries. Thus, many agree that unstructured P2P systems are more suitable for
mass-market file sharing applications.

In traditional unstructured P2P systems, the mechanism of a peer randomly joining
and leaving causes topology mismatch between the P2P logical overlay network and
the physical underlying network [6]. This topology mismatch problem causes a large
amount of unnecessary traffic, which brings great stress on the Internet infrastructure.

The objective of this paper is to construct an efficient unstructured P2P system. We
propose an application architecture called Topology-aware Multi-cluster Overlay
(TMO), which has two levels. Peers in the lower level self-organize into clusters based

164 Y. He et al.

on network locality, aiming at alleviating the topology mismatch problem. The clusters
are organized into the upper level overlay defined by a directed graph (e.g. DTH graph)
such that the efficient routing between clusters can be easily achieved.

In order to further improve the search efficiency of the TMO architecture, we present
two novel index techniques, namely, cluster-index technique and topic-index
technique. In the cluster-index technique, each cluster has content indices from all
peers of some other clusters. When a query is submitted, full search scope can be
achieved even though some of the clusters are directly probed. In the topic-index
technique, all the documents stored in the network are classified into topics. Each
document’s index is sent to the cluster responsible for the topic that the document
belongs to. A query probes only a few clusters that have the largest number of results
under a particular topic. The two different techniques are highly effective in different
application domains in which the TMO architecture is deployed.

The rest of the paper is organized as follows. Section 2 introduces related work.
Section 3 describes the TMO architecture in details. Section 4 and Section 5 describes
the cluster-index technique and the topic-index technique, respectively. In Section 6,
the simulation results are presented, followed by conclusions in Section 7.

2 Related Work

There are several P2P systems that use indexing approaches. For example, Napster [7]
is a centralized system that uses specialized peers to maintain the indices of the
documents available in the overlay network. To find a document, the user queries an
index peer to identify peers having documents with the content of interest. KaZaA [2] is
a popular super-peer network where a super-peer acts as a centralized server to a subset
of clients. In order to process queries for its clients, a super-peer keeps an index over its
clients’ documents.

Although original Gnutella does not build indices, some indexing approaches have
been proposed to make Gnutella scalable. For example, in Local Indices policy
proposed in [9], each peer indexes the files stored at all peers within a certain radius r
and can answer queries on behalf of all of them. The work in [10] proposes 3 types of
Routing Indices (RIs), namely compound RIs, hop-count RIs and exponential RIs to
facilitate search in Gnutella. In particular, peers forward queries to their neighbors
based on their own RIs. Ways to improve searching has been extensively studied using
Search/Index Links (SIL) [8]. SIL points out that a parallel search cluster based P2P
network is superior to a super-peer network for several important scenarios. However,
the mechanism of how to break the P2P networks into multiple clusters has not been
mentioned yet.

3 Topology-Aware Multi-cluster Overlay

We begin by presenting a general framework for TMO. We assume that each
participating peer has an IP address. The peers are organized into clusters. Each cluster
has a unique cluster id. We let N denote the number of clusters, and Ci denote both
cluster i and the id of cluster i. The clusters are organized by a graph (X, U), where
X={C0, C1,…, CN-1} is the set of all clusters and U is a given set of virtual edges

 Topology-Aware Multi-cluster Architecture Based on Efficient Index Techniques 165

between the nodes (that is, clusters) in X. The edges in U may be unidirectional or not.
We believe that DHT graphs [3, 4, 5] can be efficiently used as the graph (X, U). In this
paper, we use the Chord DHT graph as an example.

TMO consists of two kinds of links. Short-distance links connect peers within a
cluster. Long-distance links connect pairs of peers from different clusters. Two peers are
short-distance neighbors if they are connected by a short-distance link. We require that if
pi is a peer in Ci, and (Ci, Cj) is a unidirectional edge in U, then pi knows the IP address of
a peer pj∈Cj. With this knowledge, pi establishes a long-distance link to pj, and pj
becomes a long-distance neighbor of pi. It is important to note that pi keeps only one
long-distance neighbor in each of Ci’s neighboring clusters. In addition, if Cj is the
successor node of Ci in Chord DHT graph [3], we will say that pj is pi’s first long-distance
neighbor. Of course, each peer has only one first long-distance neighbor, which plays the
key role in the cluster-index technique that will be described in Section 4.

Figure 1 shows an example of TMO architecture. Four clusters C0, C1, C2 and C3 are
organized by a Chord graph. Each peer in cluster C0 selects a long-distance neighbor
from both C1 and C2, because the neighboring clusters of C0 are C1 and C2.

C0

C2

C4

C6

C7

C5 C3

C1

 Fig. 1. A TMO architecture (N=4) Fig. 2. A TMO-CI system (N=8, d=2)

3.1 TMO Construction

One key idea of TMO is that it partitions peers into clusters by network locality. We use
the landmark clustering method proposed in [6] to generate topology information for
clustering physically close peers. Landmark clustering method requires a set of
well-known landmark nodes spread across the Internet. A peer measures the
network-level Round-Trip-times (RTTs) to each of these landmark nodes and sorts the
landmark nodes in terms of increasing RTTs. Peers with the same or similar landmark
ordering are considered close to each other, and are expected to join the same cluster.
The interested reader is referred to [6] for these details.

When a new peer wants to join a TMO system, it first measures RTTs to all
landmark nodes to get a landmark ordering, which assigns it to a specific cluster. Then
the new peer sends a JOIN message destined for the target cluster. The message is sent
into TMO via any existing peer. Peers receiving the message use Chord routing
mechanism to forward the message via long-distance links, until it reaches a random
peer in the target cluster. A new peer can only join one cluster at the same time.

After the new peer has joined the target cluster, it gets short-distance neighbors in
the Gnutella fashion, and gets long-distance neighbors as follows. If x is the new peer in

166 Y. He et al.

cluster Ci, it will send request messages to its short-distance neighbors for the IP
addresses of their long-distance neighbors. If x gets the IP address of another peer y
belonging to cluster Cj, which is a neighboring cluster of Ci, then x will try to connect y.
If the attempt succeeds, y will become x’s long-distance neighbor for cluster Cj, or else
y will send the IP address of its short-distance neighbors to x, then x will try to connect
these peers for long-distance neighbors. It is enough for x to keep only one
long-distance neighbor in each of Ci’s neighboring clusters. But in practice, x may
cache more than one candidate peer in each cluster to improve system tolerance.

 There are two reasons for why we use the Chord graph to organize clusters. First,
using the Chord graph can maintain network connectivity and route queries in a few
hops without requiring too many long-distance links per peer. Second, the Chord graph
is able to embed the two index techniques that we will describe later.

4 Cluster-Index Technique

In this section we present an efficient index technique: cluster-index technique
(TMO-CI). Let us suppose that peer x constructs content index over its own documents
soon after it joins a cluster. The content index, which is used to assist in answering
queries, may be inverted lists of words, sets of metadata or simply a list of filenames.
The peer x will send its content index to its first long-distance neighbor. The peer that
receives x’s content index will cache the index and select its first long-distance
neighbor to relay the index. The whole process is repeated until d different peers have
received x’s content index, where d is a system-wide variable known as the depth
parameter. If these d peers receive queries, they can process the queries on behalf of x.
It is important to note that a peer does not send any content indices to other
long-distance neighbors except its first long-distance neighbor.

4.1 Select the Directly Probed Clusters

Using the cluster-index technique, a cluster can be directly probed or indirectly probed.
Figure 2 shows a TMO-CI system where the depth parameter d is set to 2. So each peer
in cluster Ci sends its content index to its first long-distance neighbor in cluster Ci+1 and
in turn to a peer in cluster Ci+2. Hence, we can deduce that the cluster Ci+2 has content
indices of all peers in cluster Ci and Ci+1. If a query is propagated in cluster Ci+2, we will
say that cluster Ci+2 is directly probed, and will say that cluster Ci and Ci+1 are indirectly
probed. For a query, it is unnecessary to require a cluster to be directly probed if it has
been indirectly probed already.

A probe to a directly probed cluster proceeds in two steps. First, the Chord routing
mechanism in system’s upper level makes sure that the query message is routed to the
target cluster. Next, an intra-cluster flood mechanism is used to further propagate the
query within the cluster. Although, we implement only the intra-cluster flood
mechanism, the TMO system can also use other search mechanisms, such as Random
Walks [11] or Gossip [12], to propagate queries within a cluster.

We propose that the selection of directly probed clusters should follow two
criterions. First, with the same number of probed clusters, minimize the number of
directly probed clusters, aiming to reduce query traffic. Second, make sure that the

 Topology-Aware Multi-cluster Architecture Based on Efficient Index Techniques 167

query messages sent from the source peer to these directly probed clusters traverse as
few long-distance links as possible, aiming to shorten the query response time.

For example, illustrating in figure 2, if a peer in cluster C0 submits a query and
requires all of the eight clusters to be probed, then the cluster C0, C2 and C5 are selected
as the directly probed clusters according to our criterions.

5 Topic-Index Technique

In this section, we present another index technique for the TMO architecture: topic-index
(TMO-TI). In the TMO-TI system, all the documents stored in the network are classified
into topics. For example, for a music sharing application, TMO-TI may create topics like
“Rock”, “Heavy metal”, “Classical” and so forth. Each document belongs to one or more
topics. For each topic, there are one or more clusters responsible for it. A cluster collects
the indices of documents belong to specific topics that it is responsible for. An index of a
document may be an inverted list of words or simply the name of the document. We let M
denote the number of topics, Ti (0≤i≤M-1) denote topic i, and Si (0≤i≤M-1) denote the set
of clusters responsible for Ti. It is obvious that Si ⊆ {C0, C1,…, CN-1}.

A peer will classify its own documents after it joins a cluster. If some documents do
not belong to the topics that the peer’s cluster is responsible for, the peer will send these
documents’ indices to the responsible clusters. To explain, we assume p is a peer in
cluster Ci, for each document Di stored on p, if Di∈Ti and Ci∉Si, then the index of Di
will be send to a cluster Cj∈Si.

A query is also classified into one or more topics, and the clusters responsible for the
topics will be directly probed. The classification of documents and queries can be done
manually or automatically. However, classifiers may make mistakes by returning the
wrong topics for a query or document. In the simulations we will study how much the
system is affected in the presence of classifier mistakes.

6 Simulations

The two types of topologies, physical topology and logical topology are needed in the
simulation. A transit-stub topology [15] of approximately 35,000 nodes is generated as
the physical topology in which the delays of intra-transit domain links, stub-transit
links and intra-stub domain links are set to 20, 5 and 2ms respectively. We generate a
flat logical topology with average connectivity degree of 6 for measuring Gnutella
search. This logical topology has 16,000 peers, each of which is uniquely mapped to
one physical node. In order to measure our TMO search, we randomly select 8 physical
nodes as the landmark nodes, and partition all the logical peers into 8-32 clusters based
on locality.

We distribute 3,000 different documents of varying popularity in the simulation. A
zipfian distribution is used to model both the replication distribution and the query
distribution to achieve results similar to the results in [13]: The most popular 10% of
documents amount for 50% of the total number of stored documents and account for
over 50% of total queries. The documents are classified into 50 different topics, each of
which only one cluster is responsible for.

168 Y. He et al.

The quality of a search mechanism is judged by the following metrics:

 Traffic cost: We define traffic cost as 1 i

N
i

m
i y s=∑ , where Nm is the number of

messages, si is the size of message i, and yi is the delay of the link which message i
traverses. Implicit here is the assumption that links with higher delay and messages
with larger size tend to be associated with higher traffic cost.

 Hits: We define hits as the size of total result set for a query.
 Response Time: We define response time as the time that has elapsed from when

the query is submitted by the peer, to when the peer receives the first result.

6.1 Results of Gnutella Search

We conduct our simulations to evaluate the performance of TMO search against
Gnutella search. In the first simulation, we examine the performance of Gnutella search
with different TTLs. The simulation results in Table 1 indicate that increasing the TTL
of Gnutella search increases the traffic cost quickly, but results in more hits and better
response time as we model the network delay in the simulation.

Table 1. Results for Gnutella search

Scheme Cost Hits Time Scheme Cost Hits Time
TTL=7 3275376 52.76 354 TTL=5 799886 24.75 404.8
TTL=6 1955845 43.49 393.2

TTL=4 183658 7.34 406

6.2 Effectiveness of TMO-CI

In this subsection, we examine the effectiveness of TMO-CI search with different TTLs
(that is, TTLs of intra-cluster floods used within each cluster). Here we representatively
present the results based on 16 clusters only, since changing the number of clusters
produces similar results. We set the depth parameter d to from 0 (means the degenerate
TMO case without cluster-index technique) to 7. When a query is submitted, we require
all the clusters to be probed, aiming to get full search scope.

Figure 3, figure 4 and figure 5 show the average query traffic cost, query hits and
response time, respectively. Based on these simulation results, we make the following
inferences on TMO-CI search.

 Similar to Gnutella search, increasing the TTL of TMO-CI search also increases
traffic cost, but results in more hits and better response time.

 Compared with Gnutella search, by appropriately selecting TTLs the TMO-CI
search really reduces the average traffic cost while achieving the same or similar query
hits. Furthermore, increasing the value of d usually results in larger reduction of query
traffic cost. For example, when TTL= 5, the strategies that setting d to from 0 to 7
achieve similar query hits of Gnutella search with TTL=7, but reduce average traffic
cost by from 38% to 90%. In fact, the traffic cost each query generates largely depends
on the number of directly probed clusters, which is equal to ()/ 1N d +⎡ ⎤⎢ ⎥ , where N is
the number of clusters.

 Topology-Aware Multi-cluster Architecture Based on Efficient Index Techniques 169

 Fig. 3. Average Traffic Cost in TMO-CI Fig. 4. Average Hits in TMO-CI

 Fig. 5. Average Response Time in TMO-CI Fig. 6. Average Hits in TMO-TI

 The TMO-CI search can shorten the response time, since it takes the physical
network topology into consideration when the overlay is constructed. Besides,
increasing the value of d usually results in better response time, since a peer can answer
queries for many other peers when d is set to a large value. For example, compared with
Gnutella search, the strategies that setting d to from 0 to 7 in TMO-CI search can
shorten the response time by from 31% to 59%.

 It may be difficult to choose the appropriate TTL for TMO-CI search. Empirically,
we would choose a smaller TTL when the number of clusters is large, and a larger TTL
when in the contrast case. However, we also believe that it is difficult to choose the
appropriate TTL for the Gnutella search.

6.3 Effectiveness of TMO-TI

In this subsection, we examine the effectiveness of TMO-TI search. We let Ad denote
the accuracy of classification of documents, and Aq denote the accuracy of
classification of queries.

We representatively present the results based on TTL=5 only. Figure 6 illustrates the
average query hits of TMO-TI. Different curves correspond to the performance on
different Aq with different value of Ad. If classifiers don’t make mistake, the TMO-TI
search achieves similar query hits compared with Gnutella search. However, with the

170 Y. He et al.

decrements of Aq and Ad, the query hits also decreases. For example, TMO-TI search
achieves 67% query hits of Gnutella search when Aq=85% and Ad=75%.

Figure 7 shows the average response time for TMO-TI search. We can see that
decreasing the values of Aq and Ad results in a little longer response time.

 Fig. 7. Average Response Time in TMO-TI Fig. 8. Ratio of Overall Traffic Costs

In the simulation, we find that TMO-TI search only generates around 5% of the
average query traffic cost of Gnutella search. Changing the values of Aq and Ad has little
influence on the average traffic cost that the queries generate.

6.4 The Impact of Index Update

One of the key factors that affect the performance of TMO system is the frequency of
index update operations, which heavily depends on the dynamic nature of overlay
network. In a real environment, the source peer should do index update operations
periodically, which incurs extra traffic cost. Especially, in the TMO-CI system,
increasing the depth parameter d could increase the extra traffic cost proportionally.

In the simulation, we assume that each peer executes 10 index update operations per
minute. We also assume that each peer issues 0.3 queries per minute, which is
calculated from the observation data shown in [14], i.e., 12,805 unique IP addresses
issued 1,146,782 queries in 5 hours. Figure 8 shows the ratio of the overall traffic costs
in different TMO systems to the overall traffic cost in Gnutella system. Compared with
Gnutella system, our TMO-CI system can reduce overall traffic cost by at least 67%,
and TMO-TI system can reduce overall traffic cost by 90%. Thus, the search
improvements afforded by TMO and the two index techniques are seldom outweighed
by the extra traffic cost of index update operations.

Based on the observations above, we believe that the strength of the cluster-index
technique lies in that it can help the TMO system to reduce both query traffic cost and
response time without decreasing the query hits. Thus, it is highly effective in the
applications where 100% recall is required, for example, a patent information sharing
application. The advantage of the topic-index technique is that it can help the TMO
system to reduce a quite large amount of traffic cost, though it may result in reduction
of query hits. Thus, it is highly effective in the applications where users are satisfied
with tens of (but not all) results, such as the music sharing application.

 Topology-Aware Multi-cluster Architecture Based on Efficient Index Techniques 171

Conclusion

In this paper, we proposed TMO, a topology-aware multi-cluster overlay architecture
which using a hierarchical structure with two levels. Furthermore, we present two novel
index techniques, namely cluster-index technique and topic-index technique that can be
incorporated into the TMO system to enhance search efficiency. From our simulation
results we conclude that TMO with index techniques offers significant improvements
versus Gnutella-like overlay networks. We believe that the TMO system and the two
index techniques can help improve the search performance of current and future P2P
systems.

References

1. Gnutella. http://gnutella.wego.com/
2. KaZaA. http://www.kazaa.com/
3. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A scalable

peer-to-peer lookup service for Internet applications,” In Proceedings of ACM SIGCOMM,
2001.

4. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content
-addressable addressable network,” In Proceedings of ACM SIGCOMM, 2001.

5. A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems,” In Proceedings of International Conference on
Distributed Systems Platforms, 2001.

6. S. Ratnasamy, N. Handley, R. Karp, and S. Shenker, “Topologically-Aware Overlay
Construction and Server Selection,” In Proceedings of IEEE INFOCOM, 2002.

7. Napster. http://www.napster.com/
8. B. F. Cooper and H. Garcia-Molina, “Studying search networks with SIL,” In Proceedings

of IPTPS, 2003.
9. B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer Networks,” In

Proceedings of IEEE ICDCS, 2002.
10. A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer systems,” In

Proceedings of 22nd International Conference on Distributed Computing Systems, 2002.
11. C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in unstructured

peer-to-peer networks,” In Proceedings of ACM ICS, 2002.
12. Kermarrec, A.-N., Massoulie, L., and Ganesh, A. J, “Probabilistic reliable dissemination in

large-scale systems,” IEEE Transactions on Parallel and Distributed Systems, 2003.
13. J. Chu, K. Labonte, and B. Levine, “Availability and Locality Measurements of

Peer-to-Peer File Systems,” In Proceedings of SPIE, 2002.
14. K. Sripanidkulchai, “The popularity of Gnutella queries and its implications on scalability,”

In Proceedings of O’Reilly’s Peer-to-Peer and Web Services Conference, 2001.
15. E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to Model An Internetwork,” In

Proceedings of IEEE INFOCOM, 1996.

7

	Introduction
	Related Work
	Topology-Aware Multi-cluster Overlay
	TMO Construction

	Cluster-Index Technique
	Select the Directly Probed Clusters

	Topic-Index Technique
	Simulations
	Results of Gnutella Search
	Effectiveness of TMO-CI
	Effectiveness of TMO-TI
	The Impact of Index Update

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

