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Abstract. In this paper, we focus on how to construct an efficient unstructured 
P2P system. The main contributions of our proposal are two-fold. First, aiming at 
alleviating the topology mismatch problem between the P2P logical overlay 
network and the physical underlying network, we proposed a Topology-aware 
Multi-cluster Overlay (TMO) architecture where peers self-organize into clusters 
based on network locality. Second, in order to further improve the search 
efficiency of the TMO architecture, we present two novel index techniques, 
namely, cluster-index technique and topic-index technique. The two different 
techniques are highly effective in different application domains in which the 
TMO architecture is deployed. The simulation results indicate that our proposed 
schemes are efficient in both resource usage and data retrieval. 

1   Introduction 

In recent years, there has been much interest in peer-to-peer (P2P) systems because 
they provide a good substrate for building large scale data sharing and content 
distribution applications. P2P systems can be broadly classified into two categories: 
unstructured and structured P2P systems.  

Unstructured P2P systems, like Gnutella [1] and KaZaA [2], organize peers in a 
random graph and use flooding on the graph to query documents stored at overlay 
peers. The floods support arbitrary queries, but are not scalable because they cause 
exponentially increased network traffic. In contrast, structured P2P systems are 
developed to perform key queries by constructing Distributed Hash Tables (DHTs), 
such as Chord [3], CAN [4], and Pastry [5], etc. Although such schemes provide good 
performance for exact match queries, they almost don’t work for range, approximate, or 
text queries. Thus, many agree that unstructured P2P systems are more suitable for 
mass-market file sharing applications. 

In traditional unstructured P2P systems, the mechanism of a peer randomly joining 
and leaving causes topology mismatch between the P2P logical overlay network and 
the physical underlying network [6]. This topology mismatch problem causes a large 
amount of unnecessary traffic, which brings great stress on the Internet infrastructure. 

The objective of this paper is to construct an efficient unstructured P2P system. We 
propose an application architecture called Topology-aware Multi-cluster Overlay 
(TMO), which has two levels. Peers in the lower level self-organize into clusters based 
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on network locality, aiming at alleviating the topology mismatch problem. The clusters 
are organized into the upper level overlay defined by a directed graph (e.g. DTH graph) 
such that the efficient routing between clusters can be easily achieved.  

In order to further improve the search efficiency of the TMO architecture, we present 
two novel index techniques, namely, cluster-index technique and topic-index 
technique. In the cluster-index technique, each cluster has content indices from all 
peers of some other clusters. When a query is submitted, full search scope can be 
achieved even though some of the clusters are directly probed. In the topic-index 
technique, all the documents stored in the network are classified into topics. Each 
document’s index is sent to the cluster responsible for the topic that the document 
belongs to. A query probes only a few clusters that have the largest number of results 
under a particular topic. The two different techniques are highly effective in different 
application domains in which the TMO architecture is deployed. 

The rest of the paper is organized as follows. Section 2 introduces related work. 
Section 3 describes the TMO architecture in details. Section 4 and Section 5 describes 
the cluster-index technique and the topic-index technique, respectively. In Section 6, 
the simulation results are presented, followed by conclusions in Section 7. 

2   Related Work 

There are several P2P systems that use indexing approaches. For example, Napster [7] 
is a centralized system that uses specialized peers to maintain the indices of the 
documents available in the overlay network. To find a document, the user queries an 
index peer to identify peers having documents with the content of interest. KaZaA [2] is 
a popular super-peer network where a super-peer acts as a centralized server to a subset 
of clients. In order to process queries for its clients, a super-peer keeps an index over its 
clients’ documents. 

Although original Gnutella does not build indices, some indexing approaches have 
been proposed to make Gnutella scalable. For example, in Local Indices policy 
proposed in [9], each peer indexes the files stored at all peers within a certain radius r 
and can answer queries on behalf of all of them. The work in [10] proposes 3 types of 
Routing Indices (RIs), namely compound RIs, hop-count RIs and exponential RIs to 
facilitate search in Gnutella. In particular, peers forward queries to their neighbors 
based on their own RIs. Ways to improve searching has been extensively studied using 
Search/Index Links (SIL) [8]. SIL points out that a parallel search cluster based P2P 
network is superior to a super-peer network for several important scenarios. However, 
the mechanism of how to break the P2P networks into multiple clusters has not been 
mentioned yet.  

3   Topology-Aware Multi-cluster Overlay 

We begin by presenting a general framework for TMO. We assume that each 
participating peer has an IP address. The peers are organized into clusters. Each cluster 
has a unique cluster id. We let N denote the number of clusters, and Ci denote both 
cluster i and the id of cluster i. The clusters are organized by a graph (X, U), where 
X={C0, C1,…, CN-1} is the set of all clusters and U is a given set of virtual edges 
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between the nodes (that is, clusters) in X. The edges in U may be unidirectional or not. 
We believe that DHT graphs [3, 4, 5] can be efficiently used as the graph (X, U). In this 
paper, we use the Chord DHT graph as an example. 

TMO consists of two kinds of links. Short-distance links connect peers within a 
cluster. Long-distance links connect pairs of peers from different clusters. Two peers are 
short-distance neighbors if they are connected by a short-distance link. We require that if 
pi is a peer in Ci, and (Ci, Cj) is a unidirectional edge in U, then pi knows the IP address of 
a peer pj∈Cj. With this knowledge, pi establishes a long-distance link to pj, and pj 
becomes a long-distance neighbor of pi. It is important to note that pi keeps only one 
long-distance neighbor in each of Ci’s neighboring clusters. In addition, if Cj is the 
successor node of Ci in Chord DHT graph [3], we will say that pj is pi’s first long-distance 
neighbor. Of course, each peer has only one first long-distance neighbor, which plays the 
key role in the cluster-index technique that will be described in Section 4. 

Figure 1 shows an example of TMO architecture. Four clusters C0, C1, C2 and C3 are 
organized by a Chord graph. Each peer in cluster C0 selects a long-distance neighbor 
from both C1 and C2, because the neighboring clusters of C0 are C1 and C2.   
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        Fig. 1. A TMO architecture (N=4)            Fig. 2. A TMO-CI system (N=8, d=2) 

3.1   TMO Construction 

One key idea of TMO is that it partitions peers into clusters by network locality. We use 
the landmark clustering method proposed in [6] to generate topology information for 
clustering physically close peers. Landmark clustering method requires a set of 
well-known landmark nodes spread across the Internet. A peer measures the 
network-level Round-Trip-times (RTTs) to each of these landmark nodes and sorts the 
landmark nodes in terms of increasing RTTs. Peers with the same or similar landmark 
ordering are considered close to each other, and are expected to join the same cluster. 
The interested reader is referred to [6] for these details. 

When a new peer wants to join a TMO system, it first measures RTTs to all 
landmark nodes to get a landmark ordering, which assigns it to a specific cluster. Then 
the new peer sends a JOIN message destined for the target cluster. The message is sent 
into TMO via any existing peer. Peers receiving the message use Chord routing 
mechanism to forward the message via long-distance links, until it reaches a random 
peer in the target cluster. A new peer can only join one cluster at the same time. 

After the new peer has joined the target cluster, it gets short-distance neighbors in 
the Gnutella fashion, and gets long-distance neighbors as follows. If x is the new peer in 
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cluster Ci, it will send request messages to its short-distance neighbors for the IP 
addresses of their long-distance neighbors. If x gets the IP address of another peer y 
belonging to cluster Cj, which is a neighboring cluster of Ci, then x will try to connect y. 
If the attempt succeeds, y will become x’s long-distance neighbor for cluster Cj, or else 
y will send the IP address of its short-distance neighbors to x, then x will try to connect 
these peers for long-distance neighbors. It is enough for x to keep only one 
long-distance neighbor in each of Ci’s neighboring clusters. But in practice, x may 
cache more than one candidate peer in each cluster to improve system tolerance. 

 There are two reasons for why we use the Chord graph to organize clusters. First, 
using the Chord graph can maintain network connectivity and route queries in a few 
hops without requiring too many long-distance links per peer. Second, the Chord graph 
is able to embed the two index techniques that we will describe later. 

4   Cluster-Index Technique 

In this section we present an efficient index technique: cluster-index technique 
(TMO-CI). Let us suppose that peer x constructs content index over its own documents 
soon after it joins a cluster. The content index, which is used to assist in answering 
queries, may be inverted lists of words, sets of metadata or simply a list of filenames. 
The peer x will send its content index to its first long-distance neighbor. The peer that 
receives x’s content index will cache the index and select its first long-distance 
neighbor to relay the index. The whole process is repeated until d different peers have 
received x’s content index, where d is a system-wide variable known as the depth 
parameter. If these d peers receive queries, they can process the queries on behalf of x. 
It is important to note that a peer does not send any content indices to other 
long-distance neighbors except its first long-distance neighbor.  

4.1   Select the Directly Probed Clusters 

Using the cluster-index technique, a cluster can be directly probed or indirectly probed. 
Figure 2 shows a TMO-CI system where the depth parameter d is set to 2. So each peer 
in cluster Ci sends its content index to its first long-distance neighbor in cluster Ci+1 and 
in turn to a peer in cluster Ci+2. Hence, we can deduce that the cluster Ci+2 has content 
indices of all peers in cluster Ci and Ci+1. If a query is propagated in cluster Ci+2, we will 
say that cluster Ci+2 is directly probed, and will say that cluster Ci and Ci+1 are indirectly 
probed. For a query, it is unnecessary to require a cluster to be directly probed if it has 
been indirectly probed already. 

A probe to a directly probed cluster proceeds in two steps. First, the Chord routing 
mechanism in system’s upper level makes sure that the query message is routed to the 
target cluster. Next, an intra-cluster flood mechanism is used to further propagate the 
query within the cluster. Although, we implement only the intra-cluster flood 
mechanism, the TMO system can also use other search mechanisms, such as Random 
Walks [11] or Gossip [12], to propagate queries within a cluster. 

We propose that the selection of directly probed clusters should follow two 
criterions. First, with the same number of probed clusters, minimize the number of 
directly probed clusters, aiming to reduce query traffic. Second, make sure that the 
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query messages sent from the source peer to these directly probed clusters traverse as 
few long-distance links as possible, aiming to shorten the query response time.  

For example, illustrating in figure 2, if a peer in cluster C0 submits a query and 
requires all of the eight clusters to be probed, then the cluster C0, C2 and C5 are selected 
as the directly probed clusters according to our criterions. 

5   Topic-Index Technique 

In this section, we present another index technique for the TMO architecture: topic-index 
(TMO-TI). In the TMO-TI system, all the documents stored in the network are classified 
into topics. For example, for a music sharing application, TMO-TI may create topics like 
“Rock”, “Heavy metal”, “Classical” and so forth. Each document belongs to one or more 
topics. For each topic, there are one or more clusters responsible for it. A cluster collects 
the indices of documents belong to specific topics that it is responsible for. An index of a 
document may be an inverted list of words or simply the name of the document. We let M 
denote the number of topics, Ti (0≤i≤M-1) denote topic i, and Si (0≤i≤M-1) denote the set 
of clusters responsible for Ti. It is obvious that Si ⊆ {C0, C1,…, CN-1}. 

A peer will classify its own documents after it joins a cluster. If some documents do 
not belong to the topics that the peer’s cluster is responsible for, the peer will send these 
documents’ indices to the responsible clusters. To explain, we assume p is a peer in 
cluster Ci, for each document Di stored on p, if Di∈Ti and Ci∉Si, then the index of Di 
will be send to a cluster Cj∈Si.  

A query is also classified into one or more topics, and the clusters responsible for the 
topics will be directly probed. The classification of documents and queries can be done 
manually or automatically. However, classifiers may make mistakes by returning the 
wrong topics for a query or document. In the simulations we will study how much the 
system is affected in the presence of classifier mistakes. 

6   Simulations 

The two types of topologies, physical topology and logical topology are needed in the 
simulation. A transit-stub topology [15] of approximately 35,000 nodes is generated as 
the physical topology in which the delays of intra-transit domain links, stub-transit 
links and intra-stub domain links are set to 20, 5 and 2ms respectively. We generate a 
flat logical topology with average connectivity degree of 6 for measuring Gnutella 
search. This logical topology has 16,000 peers, each of which is uniquely mapped to 
one physical node. In order to measure our TMO search, we randomly select 8 physical 
nodes as the landmark nodes, and partition all the logical peers into 8-32 clusters based 
on locality. 

We distribute 3,000 different documents of varying popularity in the simulation. A 
zipfian distribution is used to model both the replication distribution and the query 
distribution to achieve results similar to the results in [13]: The most popular 10% of 
documents amount for 50% of the total number of stored documents and account for 
over 50% of total queries. The documents are classified into 50 different topics, each of 
which only one cluster is responsible for. 
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The quality of a search mechanism is judged by the following metrics: 

 Traffic cost: We define traffic cost as 1 i

N
i

m
i y s=∑ , where Nm is the number of 

messages, si is the size of message i, and yi is the delay of the link which message i 
traverses. Implicit here is the assumption that links with higher delay and messages 
with larger size tend to be associated with higher traffic cost. 

 Hits: We define hits as the size of total result set for a query.  
 Response Time: We define response time as the time that has elapsed from when 

the query is submitted by the peer, to when the peer receives the first result. 

6.1   Results of Gnutella Search 

We conduct our simulations to evaluate the performance of TMO search against 
Gnutella search. In the first simulation, we examine the performance of Gnutella search 
with different TTLs. The simulation results in Table 1 indicate that increasing the TTL 
of Gnutella search increases the traffic cost quickly, but results in more hits and better 
response time as we model the network delay in the simulation. 

Table 1. Results for Gnutella search 

Scheme Cost Hits Time Scheme Cost Hits Time 
TTL=7 3275376 52.76 354 TTL=5 799886 24.75 404.8 
TTL=6 1955845 43.49 393.2 

 

TTL=4 183658 7.34 406 

6.2   Effectiveness of TMO-CI 

In this subsection, we examine the effectiveness of TMO-CI search with different TTLs 
(that is, TTLs of intra-cluster floods used within each cluster). Here we representatively 
present the results based on 16 clusters only, since changing the number of clusters 
produces similar results. We set the depth parameter d to from 0 (means the degenerate 
TMO case without cluster-index technique) to 7. When a query is submitted, we require 
all the clusters to be probed, aiming to get full search scope. 

Figure 3, figure 4 and figure 5 show the average query traffic cost, query hits and 
response time, respectively. Based on these simulation results, we make the following 
inferences on TMO-CI search. 

 Similar to Gnutella search, increasing the TTL of TMO-CI search also increases 
traffic cost, but results in more hits and better response time. 

 Compared with Gnutella search, by appropriately selecting TTLs the TMO-CI 
search really reduces the average traffic cost while achieving the same or similar query 
hits. Furthermore, increasing the value of d usually results in larger reduction of query 
traffic cost. For example, when TTL= 5, the strategies that setting d to from 0 to 7 
achieve similar query hits of Gnutella search with TTL=7, but reduce average traffic 
cost by from 38% to 90%. In fact, the traffic cost each query generates largely depends 
on the number of directly probed clusters, which is equal to ( )/ 1N d +⎡ ⎤⎢ ⎥ , where N is 
the number of clusters. 
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          Fig. 3. Average Traffic Cost in TMO-CI             Fig. 4. Average Hits in TMO-CI 

      

     Fig. 5. Average Response Time in TMO-CI             Fig. 6. Average Hits in TMO-TI 

 The TMO-CI search can shorten the response time, since it takes the physical 
network topology into consideration when the overlay is constructed. Besides, 
increasing the value of d usually results in better response time, since a peer can answer 
queries for many other peers when d is set to a large value. For example, compared with 
Gnutella search, the strategies that setting d to from 0 to 7 in TMO-CI search can 
shorten the response time by from 31% to 59%. 

 It may be difficult to choose the appropriate TTL for TMO-CI search. Empirically, 
we would choose a smaller TTL when the number of clusters is large, and a larger TTL 
when in the contrast case. However, we also believe that it is difficult to choose the 
appropriate TTL for the Gnutella search. 

6.3   Effectiveness of TMO-TI 

In this subsection, we examine the effectiveness of TMO-TI search. We let Ad denote 
the accuracy of classification of documents, and Aq denote the accuracy of 
classification of queries.  

We representatively present the results based on TTL=5 only. Figure 6 illustrates the 
average query hits of TMO-TI. Different curves correspond to the performance on 
different Aq with different value of Ad. If classifiers don’t make mistake, the TMO-TI 
search achieves similar query hits compared with Gnutella search. However, with the 
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decrements of Aq and Ad, the query hits also decreases. For example, TMO-TI search 
achieves 67% query hits of Gnutella search when Aq=85% and Ad=75%.  

Figure 7 shows the average response time for TMO-TI search. We can see that 
decreasing the values of Aq and Ad results in a little longer response time.  

      

       Fig. 7. Average Response Time in TMO-TI        Fig. 8. Ratio of Overall Traffic Costs 

In the simulation, we find that TMO-TI search only generates around 5% of the 
average query traffic cost of Gnutella search. Changing the values of Aq and Ad has little 
influence on the average traffic cost that the queries generate. 

6.4   The Impact of Index Update 

One of the key factors that affect the performance of TMO system is the frequency of 
index update operations, which heavily depends on the dynamic nature of overlay 
network. In a real environment, the source peer should do index update operations 
periodically, which incurs extra traffic cost. Especially, in the TMO-CI system, 
increasing the depth parameter d could increase the extra traffic cost proportionally.  

In the simulation, we assume that each peer executes 10 index update operations per 
minute. We also assume that each peer issues 0.3 queries per minute, which is 
calculated from the observation data shown in [14], i.e., 12,805 unique IP addresses 
issued 1,146,782 queries in 5 hours. Figure 8 shows the ratio of the overall traffic costs 
in different TMO systems to the overall traffic cost in Gnutella system. Compared with 
Gnutella system, our TMO-CI system can reduce overall traffic cost by at least 67%, 
and TMO-TI system can reduce overall traffic cost by 90%. Thus, the search 
improvements afforded by TMO and the two index techniques are seldom outweighed 
by the extra traffic cost of index update operations. 

Based on the observations above, we believe that the strength of the cluster-index 
technique lies in that it can help the TMO system to reduce both query traffic cost and 
response time without decreasing the query hits. Thus, it is highly effective in the 
applications where 100% recall is required, for example, a patent information sharing 
application. The advantage of the topic-index technique is that it can help the TMO 
system to reduce a quite large amount of traffic cost, though it may result in reduction 
of query hits. Thus, it is highly effective in the applications where users are satisfied 
with tens of (but not all) results, such as the music sharing application.  
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Conclusion 

In this paper, we proposed TMO, a topology-aware multi-cluster overlay architecture 
which using a hierarchical structure with two levels. Furthermore, we present two novel 
index techniques, namely cluster-index technique and topic-index technique that can be 
incorporated into the TMO system to enhance search efficiency. From our simulation 
results we conclude that TMO with index techniques offers significant improvements 
versus Gnutella-like overlay networks. We believe that the TMO system and the two 
index techniques can help improve the search performance of current and future P2P 
systems. 
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