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Abstract. Most existing ontology mapping tools are inexact. Inexact
ontology mapping rules, if not rectified, result in imprecision in the ap-
plications that use them. We describe a framework to probabilistically
improve existing ontology mappings using a Bayesian Network. OMEN,
an Ontology Mapping ENhancer, is based on a set of meta-rules that cap-
tures the influence of the ontology structure and the existing matches to
match nodes that are neighbours to matched nodes in the two ontolo-
gies. We have implemented a protype ontology matcher that can either
map concepts across two input ontologies or enhance existing matches
between ontology concepts. Preliminary experiments demonstrate that
OMEN enhances existing ontology mappings in our test cases.

1 Introduction

Information sources, even those from the same domain, are heterogenous in na-
ture. The semantics of the information in one source differs from that of the other.
In order to enable interoperation among heterogenous information sources or to
compose information from multiple sources, we often need to establish mappings
among database schemas and among ontologies. These mappings capture the se-
mantic correspondence between the schemas or the concepts in the ontologies.
Several problems arise when an expert entrusted with matching two ontolo-
gies constructs the semantic mappings between them. First, the expert needs
automatic or semi-automatic means for establishing the mappings. Often, the
schemas or ontologies are quite large. Manually establishing the mappings among
large ontologies is prohibitively expensive or downright impossible due to the
sheer number of entities that the expert needs to match. Thus, an expert needs an
automated ontology matching tool. However, automatic tools often use heuristics
and may be imprecise. The expert would like to specify, along with each map-
ping, the amount of uncertainty associated with it. Second, precise mappings
may not even exist. Even a human expert may be able to come up only with
approximate mappings. In particular, the expert may not be able to come up
with precise mappings if the expert has incomplete information about class def-
initions. Therefore, we introduce probabilistic mappings that map each pair
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of concepts from two sources and the mapping between them has an associated
probability.

Our main premise in this work is the following: if we know a mapping be-
tween two concepts from the sources, we can use the mapping to infer mappings
between related concepts. For example, if two properties are equivalent, and so
are their domains, we can infer (with some certainty) that their ranges are equiv-
alent as well. Therefore, we can build a Bayes Net with the concept mappings.
The Bayes Net uses a set of meta-rules that expresses how each mapping affects
other related mappings. We can use existing automatic and semi-automatic tools
to come up with initial probability distributions for mappings. Next, we use this
probability distribution to infer probability distributions for other mappings.

We have implemented a tool, OMEN, an Ontology Mapping Enhancer. OMEN
uses a Bayes Net to provide probabilistic inference and aids in enhancing existing
ontology mappings by deriving missed matches and invalidating existing false
matches. Preliminary results show that using OMEN an expert can enhance the
quality of existing mappings between concepts across ontologies.

The primary contributions of this paper are as follows:

1. We introduce a probabilistic method of enhancing existing ontology map-
pings by using a Bayes Net to represent the influences between potential
concept mappings across ontologies.

2. In OMEN, we provide an implemented framework where domain knowledge of
mapping influences can be input easily using simple meta-rules. We demon-
strate the effectiveness of OMEN in our preliminary experiments.

To the best of our knowledge, no existing work has extensively used a proba-
bilistic representation of ontology mapping rules and probabilistic inference to
improve the quality of existing ontology mappings.

The rest of the paper is organized as follows. Section 2 contains a description
of the knowledge model used to represent the ontologies and the mapping expres-
sions, In Section 3, we discuss the use of meta-rules to generate new probability
distributions based on existing ones. Section 4 contains a description of how the
Bayes Net that OMEN uses is constructed. In Section 5, we briefly outline our
prototype implementation and provide the results of our experiments. Section 6
describes some open issues and scope for future work. In Section 7, we discuss
the related work and conclude the paper in Section 8.

2 Knowledge Model and Mapping Expressions

We assume a simple ontology model (that is more or less similar to RDF Schema
or a subset of OKBC with more commonly used facets). We use the following
components to express ontologies:

Classes. Classes are concepts in a domain, organized in a subclass—superclass
hierarchy with multiple inheritance.
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Properties. Properties describe attributes of classes (which are primitive val-
ues, such as numbers, strings, etc., and we omit these from mapping con-
sideration) and relationships between classes. Properties have one or more
domains, which are classes to which the property can be attached; and one
or more ranges, which restrict the classes for the values of property.

Given two ontologies, O and O’, a mapping between two concepts, C' € O
and C" € O, m(C,C") (C and C’ can be either classes or properties), is one of
the following values:

— = if the concepts are equivalent;

— C if C is a specialization of C’;

— D if ¢’ is a generalization of C;

— N if there is an overlap between C and C’;
— x if C' and C’ are not related.

Note, that we may not know the value of the mapping at all. In other words,
if (m(C,C")) = x, then we know that they are not related, which is different
from not knowing what their relationship is.

Therefore, for each mapping m(C, C"), we can talk about a probability dis-
tribution over the mapping values {=, C, D, N, x }. For each mapping m(C, C"),
the sum of the values in the distribution must be less than or equal to 1. It is
less than one if we do not have complete information about the distribution.

3 Meta-rules for Generating New Probability
Distributions

In this section, we show examples of meta-rules that are used to match the
ontologies and discuss how the algorithm generates new probability distributions
depending upon the existing ones. The algorithm starts the process by initializing
probability distributions for some of the mappings, using the output of various
automatic mapping tools. It then uses a set of meta-rules to derive new mappings
based on existing ones.

3.1 Examples of Meta-rules

Before giving an example of a meta-rule, we describe the notations and short-
hands that we use for brevity. In all the rules for mapping between two ontologies,
O and O', we use the following:

— all concepts from O have no prime (’); all concepts from O" have a prime (’);
— upper-case C with or without a subscript is a class;

lower-case ¢ with or without a subscript is a property;

— P(C10C%, z) indicates that the probability of the match (C16C%) is .
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The following is an example of a meta-rule to generate a mapping between
classes in the range of a property based on the mapping of the properties them-
selves and their domains. Not included explicitly in the rule (for brevity) is an
assumption that both properties, ¢ and ¢, have a single domain and range.

P(Cy=Clz)NP(g=¢ , 1A
domainO f(q,Cq) A domainOf(q', C))A
rangeO f(q,Cy) ArangeOf(q',CY)

= P(C, =C/,z)

Below are some (informal) examples of other metarules:

Mappings between superclasses and all but several siblings: Here we can probably
still say something about the probabilities that the rest of the siblings match
in a pairwise fashion. (If these are later combined with rules producing other
evidence, such an observation will be helpful).

Mappings between a property and domain of a property: Natasha, can you
please fill in what you meant by this

Mapping between properties: If two classes are ranges for matching properties,
then they may match (but probabilities are reduced somewhat compared to the
case when the domains match as well).

Mappings between superclasses and all but one sibling: In this case, we say that
the existing matches between the superclasses and the matched siblings result
in the remaining siblings matching with high probability.

3.2 Combining the Results from Several Rules for the Same
Mapping

Consider a pair of classes, C' and C’ (Figure[l]). Let us assume that initially we do
not have any probability distribution for m(C, C”). Then a number of meta-rules
affect the probability distribution for m(C, C"). In the example in the figure, the
following rules and mappings affect the result:

— A mapping between superclasses of C and C’; mappings between the siblings
of C' and C’. Let’s say we know that P(Cy = C{,z), for some z < 1, and
P(Cy C Cf,y), for some y < 1, (x +y < 1), and P(Cy; = C1,1). We then
use the following rule (we omit the relationships that are obvious from the
figure, such as subclassOf (C, Cp) from the rule):

p(C=/CC x)
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subclass
subclass subclass
\ subclass

Fig. 1. The probability distribution for the mapping between C' and C’ is affected by
the mappings between their superclasses, siblings, and domains of the properties ¢ and
q' for which C and C’ are ranges

— A mapping between properties ¢ and ¢’ (P(¢ = ¢, 1)) for which C and C’
are ranges respectively, and mappings between domains of ¢ and ¢’ (P(Cy =
C!, z)). We are assuming that both ¢ and ¢’ have a single domain and range
each.

P(Cy=Cl,2)NP(g=¢,1) =
P(C=Cz)

For the moment, let us assume that there are no more influences on the
mapping m(C, C").
We now need to combine the following three results of the rules above:

1. P(C=C,x)
2. P(CcC,y)
3. P(C=C">2)

We also know that = + y < 1. The algorithm must combine probabilitic
influences of different rules and determine the probability distribution of the
matching nodes.

In theory, we could introduce some certainty factor into the rules. However,
an easier solution would be to use probabilities to reflect that. For example, if
the rule is fairly certain, then we simply propagate the initial probability = (as
in the rules above). If the rule is more speculative, we can reduce the probability
in the result of the rule by some factor.

3.3 Eliminating Circular Dependencies
We define a generation of classes in the following way:

1. All subclasses of the same superclass (siblings) belong to the same generation.
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2. If a class C is a range of property p, then all other classes in the range of p
are in the same generation as C.

In order to make the problem tractable, we use only the rules that link
neighboring generations.

We can now categorize the rules in the following three categories:

Down-flow rules: rules where mapping values for one generation affects the
mappings of the next generation

Up-flow rules: rules where mapping values for one generation affects the map-
pings for the previous generation

Same-generation rules: rules where mapping values for one generation affect
mapping values for the same generation.

Combination rules: any combination of the above.

In order to avoid circular dependencies, we use the following restrictions:

1. In same-generation rules, only the values that were available prior to the
current iteration, can be used in the antecedent of rules. Same-generation
rules that introduce cycles are broken arbitrarily by dropping some edges.

2. Each iteration is either a down-flow iteration or an up-flow iteration. The
only rules that are allowed in a down-flow (up-flow) iteration are down-
flow (up-flow) rules, same-generation rules, and combination rules with only
down-flow (up-flow) rules.

For the rest of this note, we only consider a down-flow iteration.
During a down-flow iteration, a mapping between two classes, m(C,C") is
affected by the mappings between:

— their superclasses;

— their siblings;

— the properties for which C' and C’ are ranges, the domains of these properties,
and other ranges of these properties.

Note that all the examples of the rules in section Bhre down-flow, same-
generation, or combination rules (where combination is same-generation and
down-flow). In other words, all these rules can be used in a down-flow iteration.

4 Construction of the Bayesian Network

We construct a Bayes Net to represent the influences and inter-relationships
between ontology matches as described below. We describe the construction of
a down-flow graph, that is a graph constructed using only the down-flow rules,
or same-generation rules. An up-flow graph can be constructed correspondingly.
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4.1 The BN-Graph

Initially, we construct all possible nodes representing all possible matches across
the two ontologies. That is, if ontology O1 contains n nodes, and ontology O2
contains m nodes, we construct m x n nodes in the Bayes Net graph represent-
ing all possible matches. Each node in the Bayes Net graph represents a unique
match between two concepts in the source ontologies. That is, each node repre-
sents a match from a pair of concepts such that no two concepts in a pair come
from the same ontology and no two nodes represent the same set of concepts.
As is evident, we create a large number of matches that are very unliquely to
exist in practice. We discuss later how we can reduce the number of nodes in the
Bayes Net for large ontologies.

Down-flow edges: The down-flow edges in the graph are constructed as follows.
Let there be parent concepts P; and Pj such that concepts Cy and Cy are the
children of the parent concepts respectively in the source ontologies. For all
possible quadruple (Py, Py, C1,C3), a directed edge between nodes nl and n2 is
added to the graph, where node n1 represents the match between P; and P> and
node n2 represents the match between Cy and Cs.

In the current implementation, we do not add any same-generation edges to
avoid creating cycles. Recall, the graph in a Bayes Net must not contain cycles
and is a DAG. How same-generation information can be introduced in a Bayes
Net is left for future work.

4.2  Apriori Probabilities and Evidence

The ”"root” nodes in the BN-Graph, that is nodes that have no parents, must
be provided with a set of apriori probabilities. This set of apriori probabilities is
obtained from the previous matching — the output of a matcher that is input to
OMEN. [ We assume that the previous matching matched the source ontologies
and generated probabilities that model the certainty of all possible candidate
matches (or at least the matches represented by the root nodes in the BN-
Graph). OMEN also obtains the evidence to the Bayes Net from the final result
of the previous matcher.

4.3 Meta-rules and Conditional Probability Tables

The meta-rules form the basis for constructing the conditional-probability ta-
bles(CPTs) for each node. The construction of appropriate conditional proba-
bility tables is the hardest and most subjective task in the design of our Bayes
Net . Yet, the accuracy of the CPTs deeply influence the veracity of the results
obtained from any Bayes Net .

The interface to OMEN allows external functions to generate and provide the
tool with appropriate CPTs. These functions are called on a per node basis and

! Recall, that OMEN enhances existing ontology matches.
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passed a neighbourhoods (in the source ontologies) of the two concepts that the
node represents as arguments.

OMEN also provides internal functions that generate the CPTs based on
meta-rules and the apriori probabilities. Ideally, the CPTS should not depend
upon the apriori probabilities of the nodes and an expert will indicate how one
match in the Bayes Net influences other matches and also provide the probability
tables expressing such an influence. However, when such an expert is absent, we
have empirically observed that using the apriori probabilities in conjunction
with the meta-rules to generate the CPTs provides better matches than those
obtained by just using the meta-rules.

4.4 Reducing the Number of Nodes

If the source ontologies are very large, the number of nodes in the Bayes Net
being quadratic in the number of nodes in the source ontologies, are extremely
large too. We reduce this number by removing nodes in the Bayes Net that
do not have any parents or children. We observed empirically that there are a
significant number of such nodes.

The Bayes Net that is constructed is a collection of DAGs. Consider a node
present in a DAG none of whose nodes are supplied as evidence. This situation
happens because all the nodes in the DAG represent matches that are deemed
unrealistic by the previous matcher. In absence of a single evidence in the entire
DAG, the Bayes Net cannot perform any inference in that DAG. Therefore, we
can reduce the Bayes Net by removing that DAG from the collection of DAGs
altogether.

If we want to reduce the number of nodes even further, we can adopt the
following policy. Before the Bayes Net is constructed, identify the evidence nodes
— those that are classfied as matches by the previous matcher. Now create a
node in the Bayes Net only for those pairs of nodes such that their distance
from the evidence node is at most k, where k is a small integer (1,2,3,...).
This restriction implies that any node in the Bayes Net represents nodes in the
ontology whose distance from a node (in the ontology) that has been matched
by the previous matcher is at most k.

5 Implementation and Experimentation

OMEN uses BNJ, Version 2.0 [I] as its probabilistic inference engine. In the
current implementation, only down-flow meta-rules were used. The experiments
were run on ...

6 Future Work

Up-flow rules: The current implementation takes into account only down-flow
rules. In the future, we intend to perform experiments to determine whether the
system based on up-flow rules outperform one based on down-flow rules and to
identify the scenarios when one outperforms the other.
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Multiple iterations: We start with some initial set of probability distributions and
use a down-flow iteration to create new probability distributions for mappings.
A case could be made to combine successive passes of down-flow and up-flow
iterations using the down-flow and up-flow meta-rules alternately. Ideally, the
system will perform multiple iterations until it meet some convergence criteria (or
have done some “sufficient” number of iterations). The usefulness of performing
multiple iterations needs to be empirically verified in the future. We also need
to characterize whether the system automatically converges or whether there
needs to be an arbitrary cut-off on the number of passes done. Another issue is
whether the same meta-rules and CPTs be used during mutliple iterations or
should different CPTs be generated for different passes?

Using inferred mappings in rules: We start with a set of mappings that we get
“from the outside” as an initial sample of values. These mappings are set and
we do not alter them. We generate new mappings and posterior probabilities in
the first pass. Should the second pass, the first up-flow pass be performed using
the output of the first pass? Or should it be performed on the original results
and the results of the two independent passes combined to get better results.
Should the evidence provided by the previous matcher be constantly treated as
evidence, or should it be changed depending upon the posterior probabilities
generated by the several iterations of OMEN?

Other mappings to consider: For now, all the rules are “symmetric” in the way
we treat generations. For example, the mappings between superclasses and some
of their siblings affect the mapping between the remaining siblings. What if we
have a mapping between two classes, C' and C’, some of their subclasses, but
then a subclass of C' is mapped to a class in O’ that is not closely related to C’
(definitely not its subclass)?

7 Related Work

Two research directions are related to our work: automatic or semi-automatic
discovery of ontology mappings and the use of uncertainty in knowledge-based
systems.

7.1 Automatic Ontology Mapping

Over the past decade, researchers have actively worked on developing methods
for discovering mappings between ontologies or database schemas. These method
employ a slew of different techniques. For example, Similarity Flooding [8] and
AnchorPrompt [I0] algorithms compare graphs representing the ontologies or
schemas, looking for similarities in the graph structure. GLUE [3] is an exam-
ple of a system that employs machine-learning techniques to find mappings.
GLUE uses multiple learners exploiting information in concept instances and
taxonomic structure of ontologies. GLUE uses a probabilistic model to combine
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results of different learners. Hovy [5] describes a set of heuristics that researcher-
sat ISI/USC used for semi-automatic alignment of domain ontologiesto a large
central ontology. Their techniques are based mainly onlinguistic analysis of con-
cept names and natural-languagedefinitions of concepts. A number of researchers
propose similarity metrics between concepts in different ontologies based on their
relations to other concepts. For example, a similarity metric between concepts in
OWL ontologies developed by Euzenat and Volchev [] is a weighted combina-
tion of similarities of various features in OWL concept definitions: their labels,
domains and ranges of properties, restrictions on properties (such as cardinality
restrictions), types of concepts, subclasses and superclasses, and so on. Finally,
approaches such as ONION [9] and Prompt [11] use a combination of interactive
specifications of mappings and heuristics to propose potential mappings.

The approach that we describe in this paper is complementary to the tech-
niques for automatic or semi-automatic ontology mapping. Many of the methods
above produced pairs of matching terms with some degree of certainty. We can
use these results as input to our network and run our algorithm to improve the
matches produced by others or to suggest additional matches. In other words,
our work complements and extends the work by other researchers in this area.

7.2 Probabilistic Knowledge-Based Systems

Several researchers have explored the benefits of bringing together Nayes Nets
an knowledge-based systems and ontologies. For instance, Koller and Pfeffer
[7] developed a “probabilistic frame-based system,” which allows annotation of
frames in a knowledge base with a probability model. This probability model
is a Bayes Net representing a distribution over the possible values of slots in a
frame. In another example, Koller and colleagues [6] have proposed probabilistic
extensions to description logics based on Bayesean Networks.

In the context of the Semantic Web, Ding and Peng [2] have proposed proba-
bilistic extensions for OWL. In this model, the OWL language is extended to allow
probabilistic specification of class descriptions. The authors then build a Bayesean
Network based on this specification, which models whether or not an individual
matches a class description and hence belongs to a particular class in the ontology.

Researchers in machine learning have employed probabilistic techniques to find
ontology mappings. For example, the GLUE system mentioned earlier [3], uses a
Bayes classifier as part of its integrated approach. Similarly, Prasad and colleagues
[12] use a Bayesean approach to find mappings between classes based on text docu-
ments classified as exemplars of these classes. These approaches, however, consider
instances of classes in their analysis and not relations between classes, as we do. As
with other approaches to ontology mapping, our work can be viewed as comple-
mentary to the work done by others.

8 Conclusion

We have outlined the design and implementation of OMEN, an ontology match
enhancer tool, that improves existing ontology matches based on a probabilistic
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inference. This tool is dependent upon a set of meta-rules which express the influ-
ences of matching nodes on the existence of other matches across concepts in source
ontologies that are located in the proximity of the matching nodes. We described
how we implemented a simple first version of the matching tool and discussed our
preliminary results. We have also outlined several improvements that can be made
to the tool and identified several open questions that if resolved can make the per-
formance of the tool even better.
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