
J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 1 – 11, 2005.
© IFIP International Federation for Information Processing 2005

On the Formalization of the Common Information Model
Metaschema

Jorge E. López de Vergara¹, Víctor A. Villagrá², and Julio Berrocal²

1 Departamento de Ingeniería Informática, Universidad Autónoma de Madrid,
Escuela Politécnica Superior, Francisco Tomás y Valiente, 11, E 28049 Madrid, Spain

jorge.lopez_vergara@uam.es
2 Departamento de Ingeniería de Sistemas Telemáticos, Universidad Politécnica de Madrid,

ETSI de Telecomunicación, Ciudad Universitaria, s/n, E 28040 Madrid, Spain
{villagra, berrocal}@dit.upm.es

Abstract. Integrated network management frameworks include a common
definition of the managed resources, known as an information model, which is a
key factor to describe the domain to be managed. In this scope, it is important to
understand the semantics each information model provides to allow
interoperation among different integrated management architectures. For this,
ontology languages have recently been proposed, because thanks to their
formalization they can deal with the semantics of information. Nevertheless,
they need to be adapted to meet the management requirements. An alternative
to the use of ontology languages can be the formalization of the management
information languages to cope with the semantics of the information models.
This paper provides a way to formalize one of these management languages: the
Common Information Model metaschema. The formalization is based on the
use of the Object Constraint Language to define in a formal way the set of
natural language rules that describe this metaschema, improving its semantics,
comparing also this solution to those based on ontologies.

1 Introduction

Network and service management has been a field in which traditionally proprietary
solutions from different vendors were usually imposed. In these solutions the
management of those equipments could only be performed with those vendor
products. Then, integrated network management architectures appeared that defined
standard protocols and information models allowing the interoperability between
multiple vendors managers and managed elements.

Due to historical reasons, two different management frameworks have survived the
standardization process: Internet network management framework (also known as
SNMP, Simple Network Management Protocol) and OSI network management
framework (also known as its protocol: CMIP, Common Management Information
Protocol). These frameworks are incompatible, so finally each one has got its own
application field, even though both frameworks have to coexist in some environments,
such as telecommunication companies.

2 J.E. López de Vergara, V.A. Villagrá, and J. Berrocal

Later on, other integrated network management architectures have appeared that
use other technologies for resources management, different to SNMP or CMIP. The
most significant example is the Web-Based Enterprise Management (WBEM) and its
associated Common Information Model, CIM.

Each integrated management architecture deals with its own information, defined
in a different language: same concepts can be defined to model a resource using
incompatible formats, which cannot be directly translated. This issue is a combination
of syntax and semantic problems. One way to deal with the semantics of the
management information is the use of ontologies: they are formal [1], and thus, the
meaning of this information is machine-interpretable.

By applying this knowledge representation technique, the work presented in [2]
provided a way to analyze management information languages, being useful to
identify their semantic expressiveness. One of the results obtained was that the
Common Information Model (CIM) had most of the elements usually contained in
ontology languages. However, it was not a model appropriate to deal with the
semantics of the information because of its lack of formalization: rules about its
structure have been defined in natural language, which is not machine interpretable,
so that they cannot be processed and checked.

Then, ontology languages have been proposed to describe the management
information [3, 4, 5, 6]. In this case, these languages have a formalized semantics.
Still, they have to be adapted to the management scope, as there are some constructs
they do not include.

Another way to deal with the semantics of management information is the
formalization of the CIM metaschema: in this case a management specific
information model is used, and a computer would be able to interpret the information
defined in such way. With respect to the formalization of a management language,
some works have been found [7, 8], but they are related to GDMO (Guidelines for the
Definition of Managed Objects), the language used for OSI Systems Management,
which had less constructions in common with ontology languages than CIM, as stated
in [2]. The formalization of the CIM metaschema also reinforces the information
defined in the CIM schema, which currently includes in its last release more than a
thousand classes that base their relationships on that metaschema.

This paper presents an approach to formalize the CIM metaschema. For this, first
of all, an analysis of this metaschema is given. Then, it is also compared to UML
(Unified Modeling Language) metamodel. Next, a set of rules defined in OCL (Object
Constraint Language) are shown that match natural language rules about CIM
elements, providing a formalization of the metaschema. After that, this approach is
compared with the use of a formal ontology language. Finally, conclusions and future
works are also presented.

2 CIM Metaschema Analysis

CIM [9] is the information model defined by DMTF to be used in the Web Based
Enterprise Management architecture, and has a considerable acceptation in the
industry. This model is object-oriented and much more powerful than SNMP SMI
(Structure of Management Information). However, its complexity is lower than

 On the Formalization of the Common Information Model Metaschema 3

GDMO, as discussed in [2]. With this format, classes can have properties (the name
they use for attributes) and methods. Other facets can be defined, thanks to the
possibility of specifying new qualifiers [9]. This information model can also be
expressed in XML (Extended Markup Language) to exchange the information.

As stated before, CIM has the information model metaschema with a largest
number of elements usually included in ontology languages. It includes these
characteristics, when comparing it to ontology languages [2]:

• Concepts or classes: They are a collection of instances with the same properties
and methods. CIM can define:
− Metaclasses: This item deals with the possibility of defining classes as instances

of other ones. In CIM it is possible to define new statements with qualifiers,
which indirectly makes feasible the redefinition of classes.

− Attributes: Concepts usually have attributes. In CIM they are defined in the
local scope of a class and can be instance attributes, class attributes, and
polymorph attributes.

− Facets: Attributes usually have a set of predefined properties or facets. In CIM
default value, data type constraint, cardinality constraint, and documentation can
be found among other facets such as the access, the key or index, and the
identifier. In addition, CIM can define new facets by using qualifiers.

• Taxonomy: Concepts are usually organized in taxonomies, with generalization/
specialization relationships among them. CIM allows the definition of subclasses
with simple inheritance.

• Relations and functions: Relations represent a type of interaction between
concepts. Functions provide a unique value from a list of valued arguments. CIM
can define both relations among classes and functions for every class, with data
type constraints.

• Instances: They represent elements of a given concept, a relation or an assertion.
CIM allows the definition of class and relation instances.

• Axioms: They model expressions that are always true, and are usually used to
define constraints. CIM does not currently support constraints, although a qualifier
could be defined with this purpose.

Also, CIM schemas are structured in a similar way to ontology libraries [10]. In
this way CIM schemas could be considered an ontology except for their lack of
formalism. On the other hand, CIM uses the Unified Modeling Language (UML)
class diagrams to model the management information, and several works [11, 12]
have identified UML as a valid ontology modeling language.

This set of reasons presents CIM as a good candidate to define management
information from a semantic viewpoint. Nevertheless, there is a problem that has to be
solved to achieve this goal: as stated before, CIM is not formal (the rules about its
metaschema are written in natural language, which cannot be processed and checked
by computers), so it is not valid for the definition of heavyweight ontologies. To solve
this problem it will be necessary the formalization of its metaschema. For this, the
Object Constraint Language (OCL) [13], used in UML to define constraints can be
applied, rewriting CIM metaschema rules, avoiding existing ambiguities that are
caused because they are currently written in natural language. Other rule languages
such as SWRL (Semantic Web Rule Language) [14] would also be useful for this

4 J.E. López de Vergara, V.A. Villagrá, and J. Berrocal

task, but OCL has been chosen because of its integration with UML, and because it is
being studied by the DMTF to specify constraints for management classes and objects
in the CIM schemas.

3 CIM and UML

CIM semantics has been defined in its metamodel or CIM metaschema, depicted in
Fig. 1, which describes the elements existing in this model by representing them in a
UML class diagram and defining a set of rules about these elements in natural
language.

Element Trigger

1..*

0..*

Named Element

+Name: String

Class

Method

Trigger
Qualifier

+Value: Variant

Schema

Association IndicationReference

Property

Characteristics

0..*

Element Schema0..*

2..*

Property Domain

0..*

Method Domain

0..*

Property Override

0..1

0..*

Range

0..*

Method Override 0..*

0..1

SubType Supertye

0..1

0..*

Fig. 1. CIM Metaschema [9]

Given that UML metamodel [15] includes a set of constraints defined in OCL that

formalizes the behavior of its elements, a question arises: if CIM metaschema uses
UML, are its elements as formal as UML? To answer it, a comparison between CIM
and UML is provided, which shows that there are important differences between
them.

The first difference is related to abstraction levels: Table 1 shows a comparison
between CIM and the four-layer metamodel architecture used in UML: CIM meta-
metamodel (the model used to define the CIM metaschema) is directly UML; the
metamodel (the model used to define the models) is the CIM metaschema; the set of
CIM schemas are in the model level; finally, CIM schema class instances are the user
objects.

If the comparison is focused in the metamodel layer, CIM metaschema is also
different to UML metamodel. Fig. 2 shows a subset of the UML metamodel that

 On the Formalization of the Common Information Model Metaschema 5

includes a set of elements which could be equivalent to CIM metaschema, shown in
Fig. 1. Although they share a similar structure there is a different number of elements
in both figures, as there are more specialization degrees in UML.

Table 1. Comparison of UML and CIM layers

Layer UML CIM
Meta-metamodel OMG MOF meta-metamodel UML
Metamodel UML metamodel CIM Metaschema
Model UML models CIM schemas
User objects UML model instances CIM class instances

ModelElement

+name

Namespace GeneralizableElement

+isRoot

+isLeaf

+isAbstract

Feature

+ownerScope

+visibility

Classifier

StructuralFeature

+multiplicity

+final changeability

+targetScope

+ordering

BehavioralFeature

+isQuery

Attribute

+initialValue

Method

+body

Class

+isActive
AssociationClass

Package

Transition

Signal

TaggedValue

+dataValue: String

Association

0..*

0..*

importedElement

0..*

taggedValue

0..*

ownedElement

0..1

namespace

0..*

feature

0..1
owner

0..*

typedFeature

type

0..*

context

0..*

raisedSignal

0..*

referenceTag

0..*

referenceValue

Fig. 2. UML metamodel subset

As a result, UML formalization rules are not directly applicable to CIM
metaschema. New rules have to be defined to achieve this goal, as shown in next
section.

4 CIM Metaschema Formalization

This section presents a formal specification of CIM metamodel. For this, a set of rules
have been defined in OCL, trying to cover the set of rules defined in natural language
in CIM specification [9]. During this process, some incongruities were found among

6 J.E. López de Vergara, V.A. Villagrá, and J. Berrocal

existing rules, which were solved when possible. This formalization does not modify
existing information defined in CIM, but on the other side it allows its validation with
OCL constraints.

To carry on this formalization, all information given in CIM specification has been
taken into account: This specification first describes the CIM metaschema with a
UML class diagram (as shown in Fig. 1). Then, it provides a set of rules written in
natural language (and thus, not formal). Next, it specifies in ABNF (Augmented
Backus-Naur Form) the MOF (Managed Object Format) syntax. Finally, it presents
the CIM metaschema written in MOF format. This specification has been revised by
DMTF [16], but defined rules are mostly similar to prior version, and are still in
natural language. Some conflicts have been found among these sections:

The UML class diagram that models the CIM metaschema is not complete. It does
not include constraints related to each element, neither other elements named in the
natural language rules or in the MOF syntax (e.g. Instance element).

Some natural language rules are incongruous, as there exist different properties for
an element in different rules (e.g. rules about the Qualifier element).

Other rules are redundant with respect to the class diagram (e.g. cardinality
relationships, or element specialization), so that it is not necessary their definition.

Taking into account these conflicts, a formalization has been performed on the
CIM metaschema, as shown in Fig. 3.

The formalized diagram includes these points:

1. All elements named in rules or in MOF syntax have been added, including those
that were not depicted previously (e.g. DataType and Instance elements, and some
associations between elements).

2. All association ends have been named when they start and finish in the same
element, to improve the diagram semantics and to make easier the definition of
OCL rules (e.g. Overriding and Overridden in Property and Method elements, or
Subtype and Supertype in Class element). For the rest of associations the name of
the association end is directly the name of the associated element, except when the
constraint rule uses other name (e.g. Range in the association end of Class with
Reference, or Domain in the aggregation end of Class with Property and Method).

All those rules defined in English that could be formalized have been written in
OCL, defining invariants inside the scope of each element. Other rules about the
utility of each element were not formalized. Following lines present most important
ones:

The rule that says that “A Class must belong to only one schema” has been
specified as:

context Class

 inv: self.Schema->size()=1

The rule about overriding properties “The Domain of the overridden Property must
be a supertype of the Domain of the overriding Property” has been defined as:

context Property

 inv: self.Domain.Supertype->includes(self.Overriden.Domain)

 On the Formalization of the Common Information Model Metaschema 7

A similar rule has been defined for methods: “The Domain of the overridden
Method must be a superclass of the Domain of the overriding Method”.

context Method

 inv: self.Domain.Supertype->

 includes(self.Overridden.Domain)

There are some interesting rules about associations, such as “Associations are
classes with an Association qualifier”, “An Association cannot inherit from a non-
association Class”, or “Any subclass of an Association is an association”.

context Association

 inv: self.Supertype->isEmpty() or

 self.Supertype->forall(st |

 st.oclIsTypeOf(Association))

 inv: self.Qualifier->includes(q |

 q.Name='Association')

 inv: self.Subtype->forall(st |

 st.oclIsTypeOf(Association))

Named Element

+Name: String

Class

Method

+Return Type: Data Type

+Parameter List: Set

Trigger

Qualifier

+Value: Data Type

+Scope: Set

+Flavor: Set

+Default Value: Data Type

Schema

Association Indication

Reference

Property

+Default Value: Data Type

context Class
inv: self.Schema->size()=1

inv: Class.allInstances()->
forall(c1, c2 | c1.Schema.Name.concat(’:’).concat(c1.Name).toUpper()=
c2.Schema.Name.concat(’:’).concat(c2.Name).toUpper()
implies c1=c2)

inv: self.Trigger->
forall(t1, t2 | t1.Name.toUpper()=t2.Name.toUpper()
implies t1=t2)

inv: self.Method->
forall(m1, m2 | m1.Name.toUpper()=m2.Name.toUpper()
implies m1=m2)

inv: self.Property->
forall(p1, p2 | p1.Name.toUpper()=p2.Name.toUpper()
implies p1=p2)

Data Type

context Reference
inv: self.Range=self.Overriden.Range
or self.Overriden.Range.Subtype->includes(self.Range)

inv: self.Domain.oclIsTypeOf(Association)

Instance

context Association
inv: self.Qualifier->includes(q |q.Name=’Association’)

inv: self.Supertype->isEmpty() or
self.Supertype->forall(st | st.oclIsTypeOf(Association))

inv: self.Subtype->forall(st | st.oclIsTypeOf(Association))

inv: self.Reference->
forAll(r1, r2 | r1.Name.toUpper()=r2.Name.toUpper()
implies r1=r2)

context Method
inv: self.Domain.Supertype->includes(self.Overriden.Domain)

inv: self.Trigger->
forall(t1, t2 | t1.Name.toUpper()=t2.Name.toUpper()
implies t1=t2)

context Named Element
inv: self.Qualifier->
forall(q1, q2 | q1.Name.toUpper()=q2.Name.toUpper()
implies q1=q2)

context Property
inv: self.Domain.Supertype
->includes(self.Overriden.Domain)

inv: self.Trigger->
forall(t1, t2 | t1.Name.toUpper()=t2.Name.toUpper()
implies t1=t2)

Characteristics

0..*

Element Schema0..*

2..*

Property Domain

0..*

Property

Domain

Method Domain
Domain

0..*

Method

Element Trigger1..*

0..*

Property Override

0..1Overridden

0..*

Overriding

Range

0..*
Reference

Range

Method Override0..*

Overriding

0..1

Overridden

QualifierType Subtype Supetype
0..1

Supertype

0..* Subtype
0..*

0..*

PropertyType

Fig. 3. CIM Metamodel formalized with OCL

8 J.E. López de Vergara, V.A. Villagrá, and J. Berrocal

For references, rules like “The Class referenced by the Range association of an
overriding Reference must be the same as, or a subtype of, the Class referenced by the
Range associations of the Reference being overridden” or “The Domain of a
Reference must be an Association” have been defined as follows:

context Reference

 inv: self.Range=

 self.Overridden.Range or

 self.Overriden.Range.Subtype->

 includes(self.Range)

 inv: self.Domain.oclIsTypeOf(Association)

There are some rules about qualifiers, but they reference elements that are not in
the CIM metaschema class diagram, such as “A Qualifier Type (not shown in Fig. 1)
is a Named Element and must be used to supply a type for a Qualifier (that is, a
Qualifier must have a Qualifier Type). A Qualifier Type can be used to type zero or
more Qualifiers” or “A Qualifier is a Named Element and has a Name, a Type
(intrinsic data type), a Value of this type, a Scope, a Flavor and a default Value. The
type of the Qualifier Value must agree with the type of the Qualifier Type”. They
could be defined as:

context QualifierType

 inv: self.oclIsKindOf(NamedElement)

 inv: self.Qualifier->size()>=0

context Qualifier

 inv: self.QualifierType->size()=1

 inv: self.oclIsKindOf(NamedElement)

 inv: self.attributes()->

 includesAll(Set { 'Name', 'Type', 'Value', 'Scope',

'Flavor', 'Default-Value' })

 inv:

 self.Value.oclIsTypeOf(self.Type)

Other rules have been defined mainly to constraint that element names are case
insensitive.

Redundant rules about multiplicity or specialization have not been included,
because metaclasses associations already define them graphically in the diagram.

This formalization allows a compiler to check the defined information, by
automatically processing the UML diagram with OCL rules, with just one possible
interpretation, avoiding rules with multiple meanings.

5 Comparison with an Ontology Language

The approach given in this paper can be compared to other one presented in [4],
where the use of the Web Ontology Language (OWL) [17] has been proposed to
define management information. In this other work, the elements of this language

 On the Formalization of the Common Information Model Metaschema 9

have been studied, mapping them with management language constructions, and
adding those facets not included in OWL that are common in management languages.

Both approaches could be valid depending on the application scope to enhance the
semantic expressiveness of the information, as they provide different advantages and
drawbacks, which can be taken into account when choosing the language more
suitable for each case:

• CIM formalized version allows a smooth transition from the network management
domain to the ontology domain. Moreover, with this approach it is not necessary to
translate every CIM schema to other language, as they can be directly validated
with defined OCL rules because the metamodel has been formalized. OCL can also
be used in CIM to define constraints about the behavior of classes, methods and
properties. Other UML artifacts different from OCL have also been used to
describe behavior in [18]. Nevertheless, currently there are not tools to work with
this information model from a semantic viewpoint. Another drawback is that this
solution is CIM-centric: other management information defined in other language
(for instance, SNMP MIBs) cannot directly profit from this approach.

• An ontology language such as OWL provides all the expressiveness of this kind of
languages, because they are formalized. Also, there are many tools developed to
use and validate it. In addition, other rule languages such as the Semantic Web
Rule Language (SWRL) [14] can be used to define constraints about the behavior
of that information. However, its main drawback is that all already defined
management information has to be translated to OWL. Moreover, OWL does not
allow the definition of class methods, so that part of the information can get lost.

These advantages and drawbacks can be compared in Table 2. As a conclusion, it
can be said that CIM is better for current management tools, but OWL is better if
ontology engines are used that analyze information to infer knowledge. The final
decision can be based on the tools that are going to be used to handle the management
information.

Table 2. Comparison of formalized CIM metaschema and OWL approaches

 Advantages Drawbacks
Formalized
CIM
metaschema

• Smooth transition to the use
of ontologies

• CIM schemas are kept the
same

• OCL can also be used to
define constraints for CIM
schemas

• Semantic tools have to be
developed

• It only deals with CIM
information

OWL • Already formalized
• Many developed tools
• Definition of constraints with

SWRL

• All management information
has to be translated to OWL

• Class methods cannot be
defined in OWL

10 J.E. López de Vergara, V.A. Villagrá, and J. Berrocal

6 Conclusions

This paper has presented a proposal to formalize the CIM metaschema. For this, OCL
has been used, rewriting the rules defined in natural language. With this, a compiler
can load and interpret these rules to automatically check the semantics of defined
information. This approach has also been compared with the use of an ontology
language, obtaining that both solutions can be valid, providing each one some
advantages and drawbacks.

There are some open issues. For instance, this formalization has been applied to
CIM metaschema qualifiers, but not to qualifiers instances. This can be a problem,
because these elements are used to extend the metaschema. However, in ontology
languages every element is formalized. Thus, it would be necessary to carry out a
formalization for every qualifier instance as performed above, specifying which
invariants must be true for every element that have such qualifiers. This task is more
complicated, because due to the qualifiers nature, metamodel and model levels get
mixed.

Another future task is related to the measurement units. Currently, CIM only
defines a list of values for the Units qualifier, but not their relationship. If they are
formalized a property can be directly translated from a measurement unit to another.
This formalization is useful if different classes are going to be compared. Then, for
instance, two classes that measure the throughput of a channel can be mapped, even if
one is in bits per second and the other in Megabits per second. Existing ontology
libraries such as Ontolingua STANDARD-UNITS or DAML GNU Units can be
leveraged with this purpose.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Education and
Science under the project GESEMAN (TIC2002-00934).

References

1. R. Studer, V.R. Benjamins, and D. Fensel: Knowledge Engineering: Principles and
Methods. Data & Knowledge Engineering. Vol. 25 (1998) 161-197.

2. J. E. López de Vergara, V. A. Villagrá, J. I. Asensio, J. Berrocal, Ontologies: Giving
Semantics to Network Management Models. IEEE Network, Vol. 17, No. 3 (2003) 15-21.

3. E. Lavinal, T. Desprats, Y. Raynaud: A Conceptual Framework for Building CIM-Based
Ontologies. In: Proc. of the Eighth IFIP/IEEE International Symposium on Integrated
Network Management (IM’2003), Colorado Springs, Colorado, U.S.A., (2003)

4. J. E. López de Vergara, V. A. Villagrá, J. Berrocal: Applying the Web Ontology Language
to management information definitions. IEEE Communications Magazine, Vol. 42, Issue 7
(2004) 68-74.

5. G. Lanfranchi, P. Della Peruta, A. Perrone, D. Calvanese: Towards a new landscape of
systems management in an autonomic computing environment. IBM Systems Journal, Vol.
42, No. 1 (2003) 119-128

 On the Formalization of the Common Information Model Metaschema 11

6. S. Quirolgico, P. Assis, A. Westerinen, M. Baskey, E. Stokes: Toward a Formal Common
Information Model Ontology. Lecture Notes in Computer Science, Vol. 3307, Springer
Verlag (2004) 11-21

7. S. Bapat: Towards Richer Relationship Modeling Semantics. IEEE Journal on Selected
Areas in Communications, Vol. 11, No. 9 (1993) 1373-1384

8. T. Zhang, PanosGavriil Tsigaridas: A Knowledge-based Model for Network Service
Management. In Proceedings of the First IEEE Symposium Global Data Networking
(December 1993)

9. Distributed Management Task Force, Inc.: Common Information Model Specification,
Version 2.2. DMTF Standard DSP0004 (June 1999)

10. J. E. López de Vergara, V. A. Villagrá, J. Berrocal, J. I. Asensio, R. Pignaton: Semantic
Management: Application of Ontologies for the Integration of Management Information
Models. In: Proc. of the Eighth IFIP/IEEE International Symposium on Integrated
Network Management (IM’2003), Colorado Springs, Colorado, U.S.A. (2003)

11. S. Cranefield, M. Purvis: UML as an Ontology Modelling Language. In Proc. of the
Workshop on Intelligent Information Integration, Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI-99), Stockholm, Sweden (1999)

12. P. Kogut, S. Cranefield, L. Hart, K. Baclawski, M. Kokar, J. Smith: UML for Ontology
Development. Knowledge Engineering Review Journal, Special Issue on Ontologies in
Agent Systems, Vol. 17, Issue 1 (2002) 61-64

13. Object Management Group: Object Constraint Language Specification. OMG document
formal/03-03-13 (March 2003)

14. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission
(21 May 2004)

15. Object Management Group: Unified Modeling Language (UML), version 1.5. OMG
document formal/03-03-01 (March 2003)

16. Distributed Management Task Force, Inc.: Common Information Model (CIM)
Infrastructure Specification, Version 2.3 Preliminary. DMTF Standard DSP0004 (October
2004)

17. D. L. McGuinness, F. van Harmelen: OWL Web Ontology Language Overview. W3C
Recommendation (10 February 2004)

18. M. Sibilla, A. Barros de Sales, J. Broisin, P. Vidal, F. Jocteur-Monrozier: Behaviour
modelling: a contribution to CIM. DMTF Academic Alliance Paper (2004)

	Introduction
	CIM Metaschema Analysis
	CIM and UML
	CIM Metaschema Formalization
	Comparison with an Ontology Language
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

